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Abstract

Monolingual alignment is the task of pair-
ing semantically similar units from two
pieces of text. We report a top-performing
supervised aligner that operates on short
text snippets. We employ a large feature set
to (1) encode similarities among semantic
units (words and named entities) in context,
and (2) address cooperation and competi-
tion for alignment among units in the same
snippet. These features are deployed in a
two-stage logistic regression framework for
alignment. On two benchmark data sets,
our aligner achieves F1 scores of 92.1%
and 88.5%, with statistically significant er-
ror reductions of 4.8% and 7.3% over the
previous best aligner. It produces top re-
sults in extrinsic evaluation as well.

1 Introduction

Computer applications frequently require seman-
tic comparison between short snippets of natural
language text. Such comparisons are key to para-
phrase detection (Das and Smith, 2009; Madnani et
al., 2012), textual similarity identification (Agirre
et al., 2015; Sultan et al., 2015) and recognition
of textual entailment (Dagan and Glickman, 2004;
Padó et al., 2015). And they underpin applications
such as short answer grading (Mohler et al., 2011),
question answering (Hixon et al., 2015), machine
translation evaluation (Padó et al., 2009), and ma-
chine reading (de Marneffe et al., 2007).

A central problem underlying all text compari-
son tasks is that of alignment: pairing related se-
mantic units (i.e. words and phrases) across the
two snippets (MacCartney et al., 2008; Thadani
and McKeown, 2011; Thadani et al., 2012; Yao et
al., 2013a; Yao et al., 2013b; Sultan et al., 2014a).
Studies have shown that such tasks can benefit from
an explicit alignment component (Hickl and Bens-
ley, 2007; Sultan et al., 2014b; Sultan et al., 2015).

However, alignment is still an open research prob-
lem. We present a supervised monolingual aligner
that produces top results in several intrinsic and
extrinsic evaluation experiments. We pinpoint a set
of key challenges for alignment and design a model
with components targeted at each.

Lexical and phrasal alignments can both be rep-
resented as pairs of words – in the form of many-
to-many mappings among the two phrases’ com-
ponent words in the latter case. Thus without loss
of generality, we formulate alignment as a binary
classification task where given all word pairs across
two sentences, the goal is to assign each a class la-
bel in {aligned, not aligned}. However, this is not a
straightforward classification scenario where each
word pair can be treated independently – words in
the same snippet can play both mutually cooper-
ating and competing roles in complex ways. For
example, semantically similar words in a snippet
can be in competition for alignment with a word
in the other snippet, whereas words that constitute
a phrase can provide supporting evidence for one
another (e.g. in named entity alignments such as
Watson↔ John Hamish Watson). To han-
dle such interdependencies, we employ a two-stage
logistic regression model – stage 1 computes an
alignment probability for each word pair based
solely on its own feature values, and stage 2 assigns
the eventual alignment labels to all pairs following
a comparative assessment of stage 1 probabilities
of cooperating and competing pairs.

On two alignment data sets reported in (Brock-
ett, 2007) and (Thadani et al., 2012), our aligner
demonstrates respective F1 scores of 92.1% and
88.5%, with statistically significant error reduc-
tions of 4.8% and 7.3% over the previous best
aligner (Sultan et al., 2014a). We also present ex-
trinsic evaluation of the aligner within two text
comparison tasks, namely sentence similarity iden-
tification and paraphrase detection, where it demon-
strates state-of-the-art results.
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British 1

armor 2

crashed 3

into 4

a 5

jail 6

to 7

free 8

two 9

soldiers 10

arrested 11

by 12

Iraqi 13

police 14

. 15

1 2 3 4 5 6 7 8 9

Figure 1: A human-aligned sentence pair from
the MSR alignment corpus. The shaded
cells depict the alignment, which can also be
represented as the set of word index pairs
{(1, 1), (2, 2), (3, 3), (4, 3), (5, 4), . . . , (15, 9)}.

2 Alignment: Key Pieces of the Puzzle

We illustrate with examples key pieces of the align-
ment puzzle and discuss techniques used by exist-
ing aligners to solve them. We use the term ‘unit’
to refer to both words and phrases in a snippet.

Figure 1 shows a shortened version of sentence
pair 712 in the MSR alignment corpus dev set
(Brockett, 2007) with related units aligned by hu-
man annotators. Evident from these alignments is
the fact that aligned units are typically semantically
similar or related. Existing aligners utilize a variety
of resources and techniques for computing simi-
larity between units: WordNet (MacCartney et al.,
2008; Thadani and McKeown, 2011), PPDB (Yao
et al., 2013b; Sultan et al., 2014a), distributional
similarity measures (MacCartney et al., 2008; Yao
et al., 2013b) and string similarity measures (Mac-
Cartney et al., 2008; Yao et al., 2013a). Recent
work on neural word embeddings (Mikolov et al.,
2013; Baroni et al., 2014) have advanced the state
of distributional similarity, but remain largely un-
explored in the context of alignment.

Lexical or phrasal similarity does not entail align-
ment, however. Consider function words: the align-
ment (5, 4) in Figure 1 exists not just because
both units are the word a, but also because they
modify semantically equivalent units: jail and
police station. The influence of context on
content word alignment becomes salient particu-

larly in the presence of competing words. In Fig-
ure 1, (soldiers(10), troops(2)) are not
aligned despite the two words’ semantic equiva-
lence in isolation, due to the presence of a compet-
ing pair, (armor(2), troops(2)), which is
a better fit in context.

The above examples reveal a second aligner re-
quirement: the ability to incorporate context into
similarity calculations. Existing supervised align-
ers use various contextual features within a learning
algorithm for this purpose. Such features include
both shallow surface measures (e.g., the relative
positions of the tokens being aligned in the respec-
tive sentences, similarities in the immediate left
or right words) (MacCartney et al., 2008; Thadani
and McKeown, 2011; Yao et al., 2013a) and syn-
tactic measures like typed dependencies (Thadani
and McKeown, 2011; Thadani et al., 2012). Sul-
tan et al. (2014a) design an unsupervised model
that more directly encodes context, via surface and
dependency-based neighbors which allow contex-
tual similarity to be represented as a weighted sum
of lexical similarity. But their model lacks a key
structural advantage of supervised models: to be
able to use an arbitrarily large feature set to robustly
encode lexical and/or contextual similarity.

The third and final key component of an aligner
is a mechanism to combine lexical/phrasal and con-
textual similarities to produce alignments. This
task is non-trivial due to the presence of cooperat-
ing and competing units. We first discuss compet-
ing units: semantically similar units in one snippet,
each of which is a potential candidate for alignment
with one or more units in the other snippet. At least
three different possible scenarios of varying diffi-
culty exist concerning such units:

• Scenario 1: No competing units. In Figure 1,
the aligned pair (British(1), UK(1))
represents this scenario.

• Scenario 2: Many-to-one competition: when
multiple units in one snippet are similar to
a single unit in the other snippet. In Fig-
ure 1, pairs (armors(2), troops(2))
and (soldiers(10), troops(2)) are
in such competition.

• Scenario 3: Many-to-many competition:
when similar units in one snippet have multi-
ple potential alignments in the other snippet.

Groups of mutually cooperating units can also
exist where one unit provides supporting evidence
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for the alignment of other units in the group. Ex-
amples (besides named entities) include individual
words in one snippet that are grouped together in
the other snippet (e.g., state of the art↔
state-of-the-art or headquarters in
Paris↔ Paris-based).

We briefly discuss the working principles of ex-
isting aligners to show how they respsond to these
challenges. MacCartney et al. (2008), Thadani
and McKeown (2011) and Thadani et al. (2012)
frame alignment as a set of phrase edit (insertion,
deletion and substitution) operations that transform
one snippet into the other. Each edit operation is
scored as a weighted sum of feature values (in-
cluding lexical and contextual similarity features),
and an optimal set of edits is computed. Yao et
al. (2013a; 2013b) take a sequence labeling ap-
proach: input snippets are considered sequences
of units and for each unit in one snippet, units in
the other snippet are considered potential labels.
A first order conditional random field is used for
prediction. Sultan et al. (2014a) treat alignment as
a bipartite matching problem and use a greedy al-
gorithm to perform one-to-one word alignment. A
weighted sum of two words’ lexical and contextual
similarities serves as the pair’s edge weight.

Noticeable in the designs of the supervised align-
ers is a lack of attention to the scenarios competing
units can pose – alignment of a unit depends only
on its own feature values. While the unsupervised
aligner by Sultan et al. (2014a) employs techniques
to deal with such scenarios, it allows only one-to-
one alignment, which fundamentally limits the set
of reachable alignments.

3 Approach

We primarily focus on word alignment, which Yao
et al. (2013b) report to cover more than 95% of
all alignments in multiple human-annotated cor-
pora. Named entities are the only phrasal units we
consider for alignment; in a later section we dis-
cuss how our techniques can be extended to general
phrasal alignment.

Figure 2 shows our two-stage logistic regres-
sion model. We address the first two challenges,
namely identifying lexical and contextual simi-
larities, in stage 1 of the model. Given input
text snippets T (1) = (T (1)

1 , ..., T
(1)
n ) and T (2) =

(T (2)
1 , ..., T

(2)
m ) where T (t)

k is the k-th word of snip-
pet T (t), the goal of this stage is to assign each
word pair of the form (T (1)

i , T
(2)
j ) an alignment
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𝒇11
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Figure 2: Two-stage logistic regression for align-
ment. Stage 1 computes an alignment probability
φij for each word pair based on local features f (1)

ij

and learned weights θ(1)
tij

(see Section 4.1). Stage
2 assigns each pair a label Aij ∈ {aligned, not
aligned} based on its own φ, the φ of its cooperat-
ing and competing pairs, a max-weighted bipartite
matching Mφ with all φ values as edge weights,
the semantic similaritiesSw of the pair’s words and
words in all cooperating pairs, and learned weights
θ

(2)
tij

for these global features.

probability φij , based on the pair’s lexical and con-
textual similarity features. We discuss our stage 1
features in Section 4.1.

We categorize each word along two different di-
mensions: (1) whether or not it is part of a named
entity, and (2) which of the following groups it
belongs to: content words, function words, and
punctuation marks. This distinction is important
because, (1) certain features apply only to certain
types of words (e.g., acronymy applies only to
named entities; punctuation marks do not partici-
pate in dependency relationships), and (2) certain
features can be more important for certain types of
words (e.g., the role of a function word depends
heavily on its surrounding words and therefore con-
textual features can be more important for function
words). Combined, the two above dimensions form
a domain of six possible values which can be repre-
sented as the Cartesian product {non-named entity,
named entity} × {content word, function word,
punctuation mark}. Each member of this set is a
word type in our model; for instance, named entity
function word is a word type.

This notion of types is then extended to word
pairs in T (1) × T (2): the type of pair (T (1)

i , T
(2)
j )

is the union of the types of T (1)
i and T (2)

j . Given
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the pair’s stage 1 feature vector f (1)
ij and the stage

1 weight vector θ(1)
tij

for its type tij , we compute its
stage 1 alignment probability φij as:

φij =
1

1 + e
−θ(1)

tij
·f (1)

ij

The weight vector θ(1)
t for word pair type t is

derived by minimizing the L1-regularized loss:

J(θ(1)
t ) = − 1

Nt

Nt∑
p=1

[
y

(p)
t log(φ(p)

t ) +

(1− y(p)
t ) log(1− φ(p)

t )
]

+ λ‖θ(1)
t ‖1

where Nt is the number of word pairs of type t
over all sentence pairs in the training data, y(p)

t is
the gold label for pair p of type t (1 = aligned,
0 = not aligned), and φ(p)

t is its stage 1 alignment
probability.

Stage 2 of the model assigns the final alignment
label Aij ∈ {0, 1} to (T (1)

i , T
(2)
j ). Like stage 1, it

uses L1-regularized logistic regression to compute
an alignment probability for each word pair, but
additionally assigns a final 0/1 label using a 0.5
threshold. Stage 2 factors in the stage 1 probabil-
ities of cooperating and competing pairs as well
as a maximum-weighted matching Mφ between
T (1) and T (2), where word pairs in T (1) × T (2)

are weighted by their stage 1 φ values. Such global
knowledge is useful in addressing cooperation and
competition among words. We describe our stage
2 features in Section 4.2.

The two stages are trained separately, each as
n standard logistic regression models where n is
the number of word pair types for which at least
one instance per class is observed in the training
data. The stage 1 models are first trained and used
to make predictions for each training sentence pair
(for each training pair, all other training pairs are
used to train the model). Given all the stage 1 align-
ment probabilities and the other stage 2 features,
the stage 2 models are then trained. At test time,
the two sets of trained models (i.e. stage 1 and
2 models) are successively applied to each input
sentence pair.

4 Features

As mentioned above, we train a separate model
for each individual word pair type. Our feature

set is largely the same across word pair types, with
some differences. In the two following sections, we
discuss these features and indicate the associated
word pair types. We assume alignment of the two
words T (1)

i ∈ T (1) and T (2)
j ∈ T (2).

4.1 Stage 1: Assessing Pairs Individually

4.1.1 Word Similarity Features
Our first feature combines neural word embed-
dings, used previously for word similarity predic-
tion (Mikolov et al., 2013; Baroni et al., 2014),
with a paraphrase database (Ganitkevitch et al.,
2013). Our feature is the output of a ridge regres-
sion model trained on human annotations of word
similarity (Radinsky et al., 2011; Halawi et al.,
2012; Bruni et al., 2014) with two features: the
cosine similarity between the neural embedding
vectors of the two words (using a publicly avail-
able set of 400-dimensional word vectors (Baroni
et al., 2014)), and the presence/absence of the word
pair in the PPDB XXXL database. This regression
model produces similarities (sim henceforth) in
[0, 1], though we only consider similarities above
0.5 as lower scores are often noisy. To deal with
single-letter spelling errors, we consider T (1)

i and
T

(2)
j to be an exact match if exactly one of the two

is correctly spelled and their Levenshtein distance
is 1 (words of length ≥ 3 only).

We also use the following semantic and string
similarity features: a boolean feature that is 1 iff
one of T (1)

i and T (2)
j is hyphenated and the other

is identical to a hyphen-delimited part of the first,
the same feature for highly similar (sim ≥ 0.9)
words, two features that show what proportion of
the characters of one word is covered by the other
if the latter is a prefix or a suffix of the former and
zero otherwise (length < 3 words are discarded).

For named entities, we (1) consider acronymy
as exact match, (2) use membership in two lists of
alternative country names and country-nationality
pairs (from Wikipedia) as features, and (3) include
a feature that encodes whether T (1)

i and T (2)
j be-

long to the same named entity (determined by one
mention containing all words of the other, e.g.,
Einstein and Albert Einstein).

4.1.2 Contextual Features
Effective identification of contextual similarity
calls for a robust representation of word context in
a sentence. Our contextual features are based on
two different sentence representations. The word-
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Günter Grass won the Nobel Prize.

nn nsubj

det

nn

dobj

Günter Grass won the Nobel Prize.

nsubj det

dobj

Figure 3: Word and entity-based representations
of a sentence. Words in the same named entity are
grouped together in the latter representation.

based representation treats each individual word
as a semantic unit whereas the entity-based rep-
resentation (1) groups together words in a multi-
word named entity, and (2) treats non-name words
as individual entities. Figure 3 shows an exam-
ple. The two representations are complementary –
the entity-based representation can capture equiva-
lences between mentions of different lengths of a
named entity, while the word-based representation
allows the use of similarity resources for named
entity words. Non-name words are treated iden-
tically. For simplicity we only discuss our word-
based features below, but each feature also has an
entity-based variant.

Dependency-based context. These features ap-
ply only if neither of T (1)

i and T (2)
j is a punctuation

mark. We compute the proportion of identical and
highly similar (sim ≥ 0.9) parents and children of
T

(1)
i and T (2)

j in the dependency trees of T (1) and
T (2) (Stanford collapsed dependencies (de Marn-
effe et al., 2006)). Equivalent dependency types
(Sultan et al., 2014a) are included in the above
computation, which encode semantic equivalences
between typed dependencies (e.g., nsubjpass and
dobj). We employ separate features for identicality
and similarity. Similar features are also computed
for a dependency neighborhood of size 2 (parents,
grandparents, children and grandchildren), where
we consider only content word neighbors.

Dependency neighbors of T (1)
i and T

(2)
j that

are less similar (0.9 > sim ≥ 0.5; e.g., (gas,
energy) or (award, winner)) can also con-
tain useful semantic information for an aligner. To
accommodate this relatively large range of word
similarities, rather than counting such pairs, we find
a maximum-weighted bipartite matching of T (1)

i

and T (2)
j neighbors in a neighborhood of size 2 us-

ing the primal-dual algorithm (content words only),
where word similarities across the two neighbor-
hoods serve as edge weights. We use as a feature
the sum of similarities between the matched neigh-
bors, normalized by the total number of content
words in the two neighborhoods.

Surface-form context. We draw several contex-
tual features from nearby words of T (1)

i and T (2)
j

in the surface forms of T (1) and T (2): (1) whether
the left and/or the right word/lemma is identical ,
(2) whether the two are highly similar (sim ≥ 0.9),
(3) the longest common word/lemma sequence con-
taining T (1)

i and T (2)
j such that at least one word in

the sequence is a content word, (4) proportion of
identical and highly similar (sim ≥ 0.9) words in
a neighborhood of 3 content words to the left and
3 content words to the right; we use two versions
of this feature, one compares neighbors only in the
same direction (i.e. left with left, right with right)
and the other compares neighbors across the two di-
rections, (5) similarly to dependency-based context,
similarity in a max-weighted matching of all neigh-
bors with sim ∈ [0.5, 0.9) in the above [−3, 3]
window. For punctuation mark pairs, we use an
additional feature indicating whether or not they
both mark the end of their respective sentences.

4.2 Stage 2: Cooperation and Competition

We consider two groups of mutually cooperating
words in a sentence: (1) words that belong to the
same named entity, and (2) words in a sentence
that are joined together to form a larger word in
the other sentence (e.g., state-of-the-art).
Speaking in terms of T (1)

i , the goal is to be able to
use any evidence present for a (T (1)

k , T
(2)
j ) align-

ment also as evidence for a (T (1)
i , T

(2)
j ) alignment

if T (1)
i and T (1)

k both belong to such a group. We
call T (1)

i and T
(1)
k mutually cooperating words

with respect to T
(2)
j in such cases. Any word

T
(1)
l ∈ T (1) which is not a cooperating word for
T

(1)
i is a competing word: a word that can poten-

tially make (T (1)
i , T

(2)
j ) a less viable alignment by

having a larger stage 1 alignment probability in
(T (1)
l , T

(2)
j ). We call a pair (T (1)

k , T
(2)
j ) a cooper-

ating (competing) pair for (T (1)
i , T

(2)
j ) if T (1)

k is a

cooperating (competing) word for T (1)
i with respect

to T (2)
j . With a reversal of word order and appro-

priate substitution of indexes, the above discussion
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equally holds for T (2)
j .

Given sets of stage 1 probabilities Φcop
ij and

Φcmp
ij of cooperating and competing pairs for

the pair (T (1)
i , T

(2)
j ), we employ three features

to deal with scenario 2 of Section 2: (1)
max(φij ,max(Φcop

ij )): the greater of the pair’s
own stage 1 alignment probability and the high-
est among all cooperating pair probabilities, (2)
max(Φcmp

ij ): the highest of all competing pair
probabilities, and (3) a binary feature indicating
which of the two above is larger.

To address scenario 3, we construct a weighted
bipartite graph: nodes represent words in T (1) and
T (2) and the weight of each edge represents the
stage 1 alignment probability of a word pair in
T (1) × T (2). We find a max-weighted bipartite
matchingMφ of word pairs in this graph. For each
word pair, we employ a feature indicating whether
or not it is in Mφ. The presence of (T (1)

i , T
(2)
j )

and (T (1)
k , T

(2)
l ) in Mφ, where all four words are

similar, is a potential indicator that (T (1)
i , T

(2)
l ) and

(T (1)
k , T

(2)
j ) are no longer viable alignments.

Low recall has traditionally been the primary
weakness of supervised aligners (as we later show
in Table 1). Our observation of the aligner’s be-
havior on the dev set of the MSR alignment cor-
pus (Brockett, 2007) suggests that this happens
primarily due to highly similar word pairs being
left unaligned even in the absence of competing
pairs because of relatively low contextual evidence.
Consequently, aligner performance suffers in sen-
tences with few common or similar words. To
promote high recall, we employ the higher of a
word pair’s own lexical similarity and the lexical
similarity of the cooperating pair with the highest
stage 1 probability as a stage 2 feature.

The stage 2 feature set is identical across word
pair types, but as in stage 1, we train individual
models for different pair types.

5 Experiments

5.1 System Evaluation

We report evaluation on two alignment data sets
and extrinsic evaluation on two tasks: sentence
similarity identification and paraphrase detection.

5.1.1 Alignment
We adopt the evaluation procedure for aligners re-
ported in prior work (MacCartney et al., 2008;
Thadani and McKeown, 2011; Yao et al., 2013a).

Aligner P % R % F1 % E %

M
S
R

MacCartney et al. (2008) 85.4 85.3 85.3 21.3
Thadani & McKeown (2011) 89.5 86.2 87.8 33.0
Yao et al. (2013a) 93.7 84.0 88.6 35.3
Yao et al. (2013b) 92.1 82.8 86.8 29.1
Sultan et al. (2014a) 93.7 89.8 91.7 43.8
Our Aligner 95.4 89.0 92.1 47.3

E
D
B
+
+

Thadani et al. (2012) 76.6 83.8 79.2 12.2
Yao et al. (2013a) 91.3 82.0 86.4 15.0
Yao et al. (2013b) 90.4 81.9 85.9 13.7
Sultan et al. (2014a) 93.5 82.5 87.6 18.3
Our Aligner 92.1 85.2 88.5 18.3

Table 1: Performance on two alignment data sets.
Improvements in F1 are statistically significant.

Data. The MSR alignment corpus (Brockett,
2007) contains 800 dev and 800 test sentence pairs
from the PASCAL RTE 2006 challenge. Each pair
is aligned by three human annotators; Fleiss Kappa
agreement of about 0.73 (“substantial agreement”)
is reported on both sets. Following prior work, we
only consider the sure alignments, take the majority
opinion on each word pair, and leave out three-way
disagreements.

The Edinburgh++ corpus (Thadani et al., 2012)
contains 714 training and 306 test sentence pairs.
Each test pair is aligned by two annotators and the
final gold alignments consist of a random but even
selection of the two sets of annotations.

Evaluation metrics. Our primary evaluation
metrics are macro-averaged precision (P), recall
(R) and F1 score. A fourth metric E measures the
proportion of sentence pairs for which the system
alignments are identical to the gold alignments.

Model setup. For each corpus, we train our
model using the dev set and evaluate on the test set.
We use the logistic regression implementation of
Scikit-learn (Pedregosa et al., 2011) and use leave-
one-out cross-validation on the dev pairs to set the
regularization parameter C.

Results. Table 1 shows the performance of dif-
ferent aligners on the two test sets. Our aligner
demonstrates the best overall performance in terms
of both F1 and E. Wilcoxon signed-rank tests
(with Pratt’s treatment for zero-difference pairs)
show that the improvements in F1 over the previous
best aligner (Sultan et al., 2014a) are statistically
significant at p < 0.01 for both test sets.

5.1.2 Identification of Sentence Similarity
Given two input sentences, the goal in this task,
known also as Semantic Textual Similarity (STS),
is to output a real-valued semantic similarity score.
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System Pearson’s r Rank
Han et al. (2013) 73.7 1
Yao et al. (2013a) 46.2 66
Sultan et al. (2014a) 67.2 7
Our Aligner 67.8 4

Table 2: STS results. Performances of past systems
are reported by Sultan et al. (2014a).

Data. To be able to directly compare with past
aligners, we select three data sets (headlines: pairs
of news headlines; OnWN, FNWN: gloss pairs)
from the 2013 *SEM STS corpus (Agirre et al.,
2013), containing 1500 sentence pairs in total. Sul-
tan et al. (2014a) reports the performance of two
state-of-the-art aligners on these pairs.

Evaluation metric. At SemEval, STS systems
output a similarity score in [0, 5]. For each individ-
ual test set, the Pearson product-moment correla-
tion coefficient (Pearson’s r) is computed between
system scores and human annotations. The final
evaluation metric is a weighted sum of r’s over
all test sets, where the weight assigned to a set is
proportional to its number of pairs.

Method. Being a logistic regression model,
stage 2 of our aligner assigns each word pair an
alignment probability. For STS, we compute a
length-normalized sum of alignment probabilities
of content word pairs across the two sentences. We
include all pairs with probability > 0.5; the re-
maining pairs are included in decreasing order of
their probabilities and already included words are
ignored. Following (Sultan et al., 2014a), we nor-
malize by dividing with the harmonic mean of the
numbers of content words in the two sentences.

Results. Table 2 shows the performance of dif-
ferent aligners on the three STS 2013 test sets. We
also show the performance of the contest-winning
system (Han et al., 2013). Our STS system demon-
strates a weighted correlation of 67.8%, which is
better than similar STS systems based on the two
previous best aligners. The difference with the next
best aligner is statistically significant at p < 0.05
(two-sample one-tailed z-test). Overall, our system
outperforms 86 of the 89 participating systems.

5.1.3 Paraphrase Detection
Given two input sentences, the goal in this task is
to determine if their meanings are the same.

Data. The MSR paraphrase corpus (Dolan et al.,
2004) contains 4076 dev and 1725 test sentence
pairs; a paraphrase label (true/false) for each pair

System A % P % R % F 1 %

Madnani et al. (2012) 77.4 79.0 89.9 84.1
Yao et al. (2013a) 70.0 72.6 88.1 79.6
Yao et al. (2013b) 68.1 68.6 95.8 79.9
Sultan et al. (2014a) 73.4 76.6 86.4 81.2
Our Aligner 73.2 75.3 88.8 81.5

Table 3: Paraphrase results. Performances of past
systems are taken from (Sultan et al., 2014a).

is provided by human annotators.
Evaluation Metrics. We report performance in

terms of: (1) accuracy in classifying the sentences
into true and false classes (A), and (2) true class
precision (P ), recall (R) and F1 score.

Method. Following prior aligners (MacCartney
et al., 2008; Yao et al., 2013b; Sultan et al., 2014a),
we output a true decision for a test sentence pair iff
the length-normalized alignment score for the pair
exceeds a threshold derived from the dev set.

Results. The top row of Table 3 shows the best
result by any system on the MSR test set. Among
all aligners (all other rows), ours achieves the best
F1 score and the second best accuracy.

We report paraphrase detection results primarily
to allow comparison with past aligners. However,
this simplistic application to a complex task only
gives a ballpark estimate of an aligner’s quality.

Model P % R % F1 % E %

M
S
R Two-Stage Model 95.4 89.0 92.1 47.3

Stage 1 Only 92.9 85.6 89.1 28.0

E
D
B
+
+ Two-Stage Model 92.1 85.2 88.5 18.3

Stage 1 Only 93.0 79.0 85.4 13.7

Table 4: Performance with and without stage 2.

5.2 Ablation

We perform ablation tests to find out how important
(1) the two-stage framework, and (2) the different
features are for our aligner.

5.2.1 Results without Stage 2
Stage 1 of our aligner can operate as an aligner by
itself by mapping each alignment probability to a
0/1 alignment decision based on a threshold of 0.5.
From a design perspective, this is an aligner that
does not address scenarios 2 and 3 of Section 2.

The performance of the aligner with and without
stage 2 is shown in Table 4. On each test set, the F1

and E scores increase with the addition of stage 2.
On the MSR test set, performance improves along
all dimensions. On the Edinburgh++ test set, the
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MSR EDB++
Features P % R % F1 % P % R % F1 %

All Features 95.4 89.0 92.1 92.1 85.2 88.5
- Lexical 95.1 82.8 88.5 90.9 84.0 87.3
- Resources 96.0 87.0 91.3 92.2 84.3 88.1
- Contextual 89.0 79.2 83.9 89.9 66.3 76.3
- Dependency 95.3 88.2 91.6 91.9 84.9 88.3
- Surface 94.4 85.6 89.8 90.6 76.9 83.2
- Word-Based 94.6 87.7 91.0 92.0 85.1 88.4
- Entity-Based 95.5 89.0 92.1 92.1 85.1 88.5

Table 5: Results without different stage 1 features.

MSR EDB++
Features P % R % F1 % P % R % F1 %

All Features 95.4 89.0 92.1 92.1 85.2 88.5
- φ values 87.3 90.7 88.9 86.4 86.9 86.7
- Matching 95.3 87.9 91.5 92.3 84.6 88.3
- Word Sim 95.5 88.4 91.8 92.7 84.7 88.5

Table 6: Results without different stage 2 features.

precision drops a little, but this effect is offset by a
larger improvement in recall. These results show
that stage 2 is central to the aligner’s success.

5.2.2 Without Different Stage 1 Features
We exclude different stage 1 features (which fall
into one of two groups: lexical and contextual) and
examine the resulting model’s performance. Table
5 shows the results. The subtraction sign represents
the exclusion of the corresponding feature.

Without any lexical feature (i.e., if the model re-
lies only on contextual features), both precision and
recall decrease, resulting in a considerable overall
performance drop. Exclusion of word similarity
resources (i.e. embeddings and PPDB) improves
precision, but again harms overall performance.

Without any contextual features, the model suf-
fers badly in both precision and recall. The extreme
overall performance degradation indicates that con-
textual features are more important for the aligner
than lexical features. Leaving out surface-form
neighbors results in a larger performance drop than
when dependency-based neighbors are excluded,
pointing to a more robust role of the former group
in representing context. Finally, our entity-based
representation of context neither helps nor harms
system performance, but relying only on entity-
based neighbors has detrimental effects. Factoring
in semantic similarities of named entities should
improve the utility of these features.

5.2.3 Without Different Stage 2 Features
Table 6 shows the aligner’s performance after the
exclusion of different stage 2 features. Leaving out
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Figure 4: % distribution of aligned word pair types;
nne: non-named entity, ne: named entity, c: content
word, f : function word, p: punctuation mark.

MSR EDB++
Pair Type P % R % F1 % P % R % F1 %

{nne-c, nne-c} 95.7 84.3 89.7 92.2 89.2 90.7
{nne-c, nne-f} 100.0 2.7 5.3 61.4 7.7 13.6
{nne-c, ne-c} 89.2 66.7 76.3 71.9 43.4 54.1
{nne-f, nne-f} 90.7 86.0 88.3 93.4 86.5 89.8
{nne-p, nne-p} 99.4 99.2 99.3 93.0 91.5 92.2
{ne-c, ne-c} 96.2 97.8 97.0 90.9 94.2 92.6

Table 7: Performance on different word pair types.

the stage 1 alignment probabilities harms overall
performance the most by causing a large drop in
precision. Exclusion of the maximum-weighted
bipartite matching feature results in worse recall
and overall performance. The lexical similarity
feature improves overall results only on the MSR
test set but increases recall on both test sets.

5.3 Error Analysis

We examine the aligner’s performance on different
word pair types. Figure 4 shows the % distribution
of word pair types with at least 20 aligned instances
in at least one test set. These six types account for
more than 99% of all alignments in both test sets.

Table 7 shows the results. We ignore punctua-
tion mark pairs in the following discussion. Per-
formance is worst on the two rarest types: {nne-c,
nne-f} and {nne-c, ne-c}, due primarily to very
low recall. A relatively low availability of posi-
tive examples in the training sets (in the hundreds,
in contrast to thousands of examples for each of
the other three types) is a primary factor affect-
ing classifier performance on these two pair types.
The {nne-c, nne-f} pairs, nonetheless, are intrin-
sically the most difficult type for a word aligner
because they occur frequently as part of phrasal
alignments. On {nne-c, ne-c} pairs, errors also oc-
cur due to failure in recognition of certain named
entity types (e.g., acronyms and multiword named
entities) and the aligner’s lack of world knowledge
(e.g., in daughter↔ Chelsea).
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Low recall remains the primary issue, albeit to a
much lesser extent, for {nne-c, nne-c} and {nne-f,
nne-f} pairs. For the former, two major sources
of error are: (1) inability to utilize contextual ev-
idence outside the local neighborhood examined
by the aligner, and (2) failure to address one-to-
many alignments. Low recall for the latter follows
naturally, as function word alignment is heavily
dependent on related content word alignment. On
{ne-c, ne-c} pairs the aligner performs the best, but
still suffers from the two above issues.

6 Related Work

We mentioned major standalone monolingual align-
ers and briefly discussed their working principles
in Section 2. There are, however, at least two ad-
ditional groups of related work which can inform
future research on monolingual alignment. First,
alignment is often performed in the context of ex-
trinsic tasks, e.g., textual entailment recognition
(Wang and Manning, 2010), question answering
(Heilman and Smith, 2010), discourse generation
(Roth and Frank, 2012) and redundancy detection
(Thadani and McKeown, 2008). Such systems may
contain useful design elements yet to be utilized by
standalone aligners. Second, a large body of work
exists in the bilingual alignment literature (Och and
Ney, 2003; Blunsom and Cohn, 2006; Chang et al.,
2014), elements of which (such as the machine
learning models) can be useful for monolingual
aligners (see (Yao et al., 2013a) for an example).

7 Conclusions and Future Work

We present a two-stage classification framework
for monolingual alignment that demonstrates top
results in intrinsic and extrinsic evaluation experi-
ments. While our work focuses primarily on word
alignment, given a mechanism to compute phrasal
similarity, the notion of cooperating words can be
exploited to extend our model for phrasal align-
ment. Another important future direction is the con-
struction of a robust representation of context, as
our model currently utilizes contextual information
only within a local neighborhood of a predefined
size and therefore fails to utilize long-distance se-
mantic relationships between words. Incorporating
a single background model which is trained on all
word pair types might also improve performance,
especially on types that are rare in the training data.
Finally, studying the explicit requirements of dif-
ferent extrinsic tasks can shed light on the design

of a robust aligner.
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