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Abstract

Social media represents a rich source of up-
to-date information about events such as in-
cidents. The sheer amount of available infor-
mation makes machine learning approaches a
necessity for further processing. This learn-
ing problem is often concerned with region-
ally restricted datasets such as data from only
one city. Because social media data such
as tweets varies considerably across differ-
ent cities, the training of efficient models re-
quires labeling data from each city of inter-
est, which is costly and time consuming.

In this study, we investigate which features
are most suitable for training generalizable
models, i.e., models that show good per-
formance across different datasets. We re-
implemented the most popular features from
the state of the art in addition to other novel
approaches, and evaluated them on data from
ten different cities. We show that many so-
phisticated features are not necessarily valu-
able for training a generalized model and
are outperformed by classic features such as
plain word-n-grams and character-n-grams.

1 Introduction

Incident information contained in social media has
proven to frequently include information not cap-
tured by standard emergency channels (e.g. 911
calls, bystander reports). Therefore, stakeholders
like emergency management and city administra-
tion can highly benefit from social media. Due to
its unstructured and unfocused nature, automatic

filtering of social media content is a necessity for
further analysis. A standard approach for this fil-
tering is automatic classification using a trained
machine learning model (Agarwal et al., 2012;
Schulz et al., 2013; Schulz et al., 2015b).

A problem for the classification approach is that
language, style and named entities used in social
media highly vary across different regions. Con-
sider the following two tweets as examples: “RT:
@People 0noe friday afternoon in heavy traffic,
car crash on I-90, right lane closed” and “Road
blocked due to traffic collision on I-495”. Both
tweets comprise entities that might refer to the
same thing with different wording, either on a se-
mantically low (“accident” and “car collision”) or
more abstract level (“I90” and “I-495”). With
simple syntactical text similarity approaches using
standard bag of words features, it is not easily pos-
sible to make use of this semantic similarity, even
though it is highly valuable for classification.

These limitations impose constraints on the
dataset, because tokens are likely to be related to
the location where the text was created or con-
tain location- or incident-sensitive topics. Models
trained using spatially and temporally restricted
data from one region are bound by the specific as-
pects of language and style expressed in the train-
ing data, thus, model reuse is not easily possible.

In this paper, we focus on the creation of gener-
alized models. Such models avoid the use of fea-
tures that — overfitting like — are only useful for
a specific region. Generalized models are intended
to work in different regions, even if training data
originates only from one ore few regions. This can
ensure high classification rates even in areas where
only few training samples are available. Finally, in
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times of increasing growth of cities and the merg-
ing with surrounding towns to large metropolitan
areas, they allow to cope with the latent transitions
in token use.

To create generalized models for incident type
classification (and social media classification in
general) the most important step is an appropri-
ate feature generation. Therefore, in this paper
we investigate the suitability of standard and novel
features and different machine learning algorithms
for the creation of generalized classification mod-
els for incident type classification. We conduct
intensive feature engineering and evaluation. For
this purpose, we have collected and labeled 10
datasets with high regional variation. To the best
of our knowledge, this is the first investigation of
the challenges of heterogeneous datasets in this
domain, and of the suitability of state of the art
classification and feature extraction techniques.

In summary, our contributions are: 1) Investi-
gation of features and feature groups for general-
ized social media/incident type classification mod-
els. 2) Identification of the best feature combina-
tions and classifiers for a generalized model. For
an evaluation (qualitative and inferential statistics)
of ten tweet datasets with high regional variation
we get an overall F-measure of > 83%. 3) The
evaluation shows that features extending a plain n-
gram-based approach are not necessarily valuable
for training a generalized model as these provide
little improvement.

Following this introduction, we give an
overview of related work in Section 2. In Sec-
tion 3, we provide a description of our datasets
followed by a comprehensive evaluation in Sec-
tion 4. We close with our conclusion and future
work in Section 5.

2 Related Work

A review of existing work on the classification
of social media content shows which features,
feature groups and algorithms are generally used
(see table 1). Furthermore, the number of classes
and the dominating approaches unfold. We re-
port the ratios of labeled tweets for the individual
approaches; however, we omit performance mea-
sures as these are directly related to the respective
datasets used for evaluation.

Classifiers based on Support Vector Machines
(SVM) or Naive Bayes (NB) clearly dominate in
terms of performance for incident type classifi-

cation. (Sakaki and Okazaki, 2010; Carvalho et
al., 2010; Agarwal et al., 2012; Robert Power,
2013; Schulz and Janssen, 2014) trained an
SVM, whereas (Agarwal et al., 2012; Imran et
al., 2013; Schulz and Janssen, 2014) also eval-
uated an NB classifier. In contrast to these
works, (Wanichayapong et al., 2011) followed
a dictionary-based approach using traffic-related
keywords. (Li et al., 2012) do not provide any in-
formation about the classifier used.

Feature groups are mostly based on word-n-
grams, such as unigrams (Carvalho et al., 2010),
bigrams (Imran et al., 2013), or the combination
of unigrams and bigrams (Robert Power, 2013;
Karimi et al., 2013; Agarwal et al., 2012). (Schulz
and Janssen, 2014) combined unigrams, bigrams,
and trigrams. Also, based on the words present in
the text named entities such as locations, organi-
zations, or persons were used by (Agarwal et al.,
2012; Li et al., 2012; Schulz and Janssen, 2014).

Twitter-specific features were also used, includ-
ing the number of hashtags, @-mentions or web-
text features such as the presence of numbers
or URLs (Li et al., 2012; Agarwal et al., 2012;
Robert Power, 2013; Karimi et al., 2013; Imran et
al., 2013; Schulz and Janssen, 2014).

Keywords also play a crucial role in fea-
ture design. (Sakaki and Okazaki, 2010) used
earthquake-specific keywords, statistical features
(the number of words in a tweet and the position of
keywords), and word context features (the words
before and after the earthquake-related keyword).
(Wanichayapong et al., 2011) used traffic-related
keywords in combination with location-related
keywords. Furthermore, Li et al. (2012) itera-
tively refined a keyword-based search for retriev-
ing a higher number of incident-related tweets.

Two approaches rely on more specific feature
groups. The approach of (Schulz and Janssen,
2014) is the only one that uses TF-IDF scores.
(Imran et al., 2013) use Kipper et al.’s (2006) ex-
tension of the Verbnet ontology for verbs.

The related approaches mostly use word-n-
grams and a variety of Twitter-specific features.
Datasets are spatially and temporally restricted
and limited to a small number, complicating gen-
eralizability.

3 Data Collection and Processing

We are interested in generalizable models for dif-
ferent regions, user-generated content has been
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Table 1: Overview of related approaches for incident type classification. (NEs = Named Entities)

Approach Classifier #Classes #Tweets N-Grams #NEs #URLs TF-IDF Twitter Other
(Sakaki and Okazaki, 2010) SVM 2 597 x Context

(Carvalho et al., 2010) SVM 2 3,300 x
(Wanichayapong et al., 2011) Keyw. 2 1,249

(Agarwal et al., 2012) NB, SVM 2 1,400 x x x
(Li et al., 2012) Undefined 2 Undef. x x

(Robert Power, 2013) Keyw., SVM 2 794 x x
(Karimi et al., 2013) SVM 6 5,747 x x
(Imran et al., 2013) NB 3 1,233 x x x Verbnet

(Schulz and Janssen, 2014) SVM, NB 4 2,000 x x x x x

created in. For this purpose, we created 10 datasets
with more than 20k labeled tweets to train and
test models with respect to their generalization.
In the following, we describe how this data was
collected, preprocessed, and which features were
generated.

3.1 Data Collection

We focus on tweets as suitable example for un-
structured textual information shared in social me-
dia. The classification of incident-related tweets
represents a challenge that is relevant for many
cities. We use a complex four-class classification
problem, where new tweets can be assigned to the
classes “crash”, “fire”, “shooting”, and a neutral
class “not incident related”. This goes beyond re-
lated work with a focus on two-class classification.
Our classes were identified as the most common
incident types in Seattle using the Fire Calls data
set (http://seattle.data.gov), an official incident in-
formation source.

As ground truth data, we collected several city-
specific datasets using the Twitter Search API.
These datasets were collected in a 15 km ra-
dius around the city centres of Boston (USA),
Brisbane (AUS), Chicago (USA), Dublin (IRE),
London (UK), Memphis (USA), New York City
(USA), San Francisco (USA), Seattle (USA), Syd-
ney (AUS).

We selected these cities because of their huge
regional distance, which allows us to evaluate our
approaches with respect not only to geographi-
cal, but also to cultural variations. Also, for all
cities, sufficiently many English tweets can be re-
trieved. We chose 15 km as radius to collect a rep-
resentative data sample even from cities with large
metropolitan areas. Despite the limitations of the
Twitter Search API with respect to the number of
geotagged tweets, we assume that our sample is,
although by definition incomplete, highly relevant

to our experiments.
We collected all available Tweets during lim-

ited time periods, resulting in three initial sets of
tweets: 7.5M tweets collected from November,
2012 to February, 2013 for Memphis and Seattle
(SET CITY 1); 2.5M tweets collected from Jan-
uary, 2014 to March, 2014 for New York City,
Chicago, and San Francisco (SET CITY 2); 5M
tweets collected from July, 2014 to August, 2014
for Boston, Brisbane, Dublin, London, and Syd-
ney (SET CITY 3).

For the manual labeling process, we had to se-
lect a subset of our original tweet set which in-
cluded our classes of interest for model training
and testing. Generating subsets is required be-
cause manual labeling of social media data is very
expensive, especially if multiple annotators are
involved. To generate subsets we used the ap-
proach of (Schulz et al., 2013) of extracting mi-
croposts using incident-related keywords. As a
result, more than 200 keywords were identified
for each class. Based on these incident-related
keywords, we were able to accurately and effi-
ciently filter the datasets. After applying keyword-
filtering, we randomly selected 5.000 microposts
for each city. Though one might assume that
this pre-filtering leads to a biased dataset, (Schulz
and Janssen, 2014) showed that keyword sampling
does not influence the classification process as the
performance of a keyword-based classifier is no-
tably worse compared to supervised classifiers.

In the next step, we removed all redundant
tweets as well as those with no textual con-
tent from the resulting sets as a couple of
tweets contain keywords that are part of hash-
tags or @-mentions, but have no useful textual
content. The tweets were then labeled manu-
ally by five annotators using the CrowdFlower
(http://www.crowdflower.com/) platform. We re-
trieved the manual labels and selected those for
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Table 2: Class distributions for all datasets.

Dataset Classes
Crash Fire Shooting No

Boston 347 188 28 2257
Sydney 587 189 39 2208

Brisbane 497 164 12 1915
Chicago 129 81 4 1270
Dublin 131 33 21 2630
London 283 95 29 2475

Memphis 23 30 27 721
NYC 129 239 45 1446
SF 161 82 61 1176

Seattle 204 153 139 390

which all coders agreed to at least 75%. In the case
of disagreement, the tweets were removed. This
resulted in ten datasets with regional diversity to
be used for evaluation.

Table 2 lists the class distributions for each
dataset. The distributions vary considerably, al-
lowing us to evaluate with typical city-specific
samples. Also, the “crash” class seems to be
the most prominent incident type, whereas “shoot-
ings” are less frequent. One reason for this is that
“shootings” do not occur as frequent as other inci-
dents, whereas another less obvious reason might
be that people tend to report more about specific
incident types and that there is not necessarily a
correlation between the real-world incidents and
those mentioned in tweets. Although the data sets
have been filtered based on keywords, the “no in-
cident” class remains the largest class.

One of the key questions that motivates our
work is to which extent the used words vary in
each dataset as an effect of the spatial and cultural
context. We thus analysed how similar all datasets
are by calculating the intersection of tokens. We
found that after preprocessing, between 14% and
23% tokens are shared between the datasets. We
do not assume that every unique token is a city-
specific token, but the large number of tweets in
our evaluations gives a first indication that there is
a diversity in the samples that either requires the
training of several individual- or one generalizing
model which is the focus of this paper.

3.2 Preprocessing and Feature Generation

To use our datasets for feature generation, i.e., for
deriving different feature groups that are used for
training a classification model, we had to convert
the texts into a structured representation by means
of preprocessing. Following this, we extracted

several features for training classification mod-
els. To evaluate the best feature groups for inci-
dent type classification, we re-implemented com-
monly used feature extraction approaches from the
state of the art. We further extended these feature
groups by additional ones that seemed promising
in this problem domain:

Preprocessing As a first step, the text was con-
verted to Unicode to preserve non-Unicode char-
acters. Specific URLs would not be useful for the
classification process, therefore we replaced them
with a common token “URL”. We then removed
stopwords and conducted tokenization. Every
token was then analysed and non-alphanumeric
characters were removed or replaced. Finally,
we applied lemmatization to normalize all tokens.
All preprocessing steps were performed by DKPro
TC (de Castilho and Gurevych, 2014), a popular
framework for text classification. After prepro-
cessing, we generated several features (see Table
3). In the following, we give a description of the
different feature groups.

Baseline Feature Sets As the most simple ap-
proach and as used in all related works, we repre-
sented tweets as a set of words and also as a set of
characters with varying lengths. As features, we
used a vector with the frequency of each n-gram.
Most importantly, we evaluated the powerset of all
different combinations of n-grams. For instance,
if a length of n = 2 was chosen, we evaluated the
three combinations (n = 1), (n = 1, 2), (n = 2).
Furthermore, as not all tokens are necessarily im-
portant for the classification process, we evaluated
several top-k selection strategies, i.e., taking only
the k most frequent n-grams into account. For this,
we tested k = 100, 1000, 5000 as well as the ap-
proach using all n-grams. We treat these features
as the baseline approach, and extend it by addi-
tional features, e.g. similarity, sentiment scores,
Twitter-specific features.

Sentiment Features Emoticons are widely used
to express emotions in textual content. Various
text classification approaches make use of these,
e.g. for sentiment analysis (Agarwal et al., 2011;
Go et al., 2009). For incident type classification,
they could also be useful as people link emotions
with ongoing incidents, thus, we re-implemented
three approaches for extracting sentiment features.
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Table 3: Overview of all feature groups implemented for comparison

Feature Group Description
Word-n-grams Each tweet is represented as a powerset of word-n-grams of length n = 1 to n = 3.
Char-n-grams Each tweet is represented as a powerset of char-n-grams of length n = 1 to n = 5.
POS EMO The Tweet NLP part-of-speech tagger (Owoputi et al., 2013) was used to identify emoticons. The ratio

of emoticons to all tokens is calculated.
DICT EMO An emoticon library that is based on the suggestions from Agarwal et al. (Agarwal et al., 2011) was

used comprising a set of 63 emoticons from Wikipedia. The number of positive and the number of
negative emoticons in a tweet is calculated.

AGG EMO One single sentiment score based on the second approach by aggregating the number of positive and
negative emoticons.

NER We used the Stanford Named Entity Recognizer (Finkel et al., 2005) and applied the three class model
to count the number of location, organization, and person mentions.

NR CHAR The number of characters in a tweet.
NR SENT The number of sentences in a tweet.
NR TOKEN The number of tokens in a tweet.
QUEST RT The proportion of question marks and sentences in a tweet.
EXCLA RT The proportion of exclamation marks and sentences in a tweet.
NR AT MN The number of @-mentions in a tweet.
NR HASHTAG The number of hashtags in a tweet.
NR URL The number of URLs present in a tweet.
NR SLANG The number of colloquial words (i.e., lol or ugh). Feature extraction is based on the Tweet NLP POS-

tags (Owoputi et al., 2013).
IS RT A boolean to indicate whether a tweet is a retweet.
NR CARD In conjunction with the named entities present in tweets, people tend to refer to street names (e.g.,I-95)

or the number of injured people (e.g.,2-people). Thus, we create a feature for the number of cardinal
numbers present in a tweet.

GREEDY ST Similarity scores following Greedy String Tiling (Wise, 1996) as a method to deal with shared sub-
strings that do not appear in the same order.

LEVENST The Levenshtein distance (Levenshtein, 1966) as an edit-distance metrics, i.e., the minimum number of
edit operations that transform one tweet into another.

TF IDF As the baseline relies on plain frequency-based weighting, we calculate the traditional TF-IDF scores
(Manning et al., 2009) for every tweet.

Named Entities: As shown in the state of the
art, named entities, i.e. entities that have been
assigned a name such as Seattle, are commonly
used in tweets. Named entities might be valuable,
as these are used frequently in incident-related
tweets. Thus, we also incorporated Named Entity
Recognition (NER) for feature extraction.

Stylistic Features: The style of a tweet could
be an additional indicator for incident relatedness.
For instance, a repetition of punctuations could
point at a person that is expressing emotions re-
sulting from an ongoing incident. Structured rep-
resentation might indicate high quality.

Twitter-specific features As shown in related
work, several Twitter-specific features seem to be
valuable for incident type classification such as the
number of @-mentions and hashtags.

Similarity Features The similarity of individual
tweets might be helpful to identify common top-
ics. We therefore implemented several similarity

scores1. The rationale behind this is to embrace
additional features that do not only take the raw
frequencies of words into account, but also which
words appear in which document.

To sum up, we re-implemented two approaches
that will serve as a baseline, and 18 additional fea-
ture groups to extend them. In the following sec-
tion, we will evaluate the usefulness of these ap-
proaches for training a generalizing model.

4 Evaluation

The goal of our evaluation is to determine which
features were most useful for creating a generaliz-
ing model. We first describe our method, includ-
ing the feature sets, the classification algorithms
used, and our sampling procedure. This is fol-
lowed by a results section in which we report dif-
ferences in performance by means of qualitative
and inferential statistics.
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4.1 Method
The indicators for well-performing features in re-
lated work allows us to perform a condensed
evaluation, compared to similar studies such as
(Hasanain et al., 2014).

Our approach comprises three steps: First, we
evaluated the baseline approaches, i.e., word- and
char-n-grams. Second, we combined each of the
remaining features with the best performing base-
line feature. Third, we again selected the best per-
forming combinations and evaluated their power
set. To evaluate the suitability of different features
for training generalizing models, we picked one
dataset from the 10 presented in Section 3.1 for
training, and tested on the remaining 9 datasets.
We did not evaluate different models on datasets
from only one city, as we were interested in gen-
eralizing models.

Selecting each city as training set resulted in 90
performance samples per model. The models were
formed by combining the feature sets described in
the previous section 3.2 or respectively, their com-
binations, with an SVM and NB classifier. We de-
cided for these classification algorithms since they
were the most successful in related work. Another
reason for the choice of NB is its good perfor-
mance in text classification tasks, as demonstrated
by Rennie et al. (2003). We relied on the Lib-
Linear implementation of an SVM because it has
been shown that for a large number of features
and a small number of instances, a linear kernel is
comparable to a non-linear one (Hsu et al., 2003).
As for SVMs parameter tuning is inevitable, we
evaluated the best settings for the slack variable
c whenever an SVM was used. For training and
testing, we used the reference implementations in
WEKA (Hall et al., 2009).

We calculated the F1-Measure for assessing
performance, because it is well established in text
classification, cannot be manipulated by the classi-
fication threshold parameter and allows to measure

1The respective similarity scores have been calculated on
the whole document corpus after preprocessing.

the overall performance of the approaches with
an emphasis on the individual classes (Jakowicz
and Shah, 2011). In Section 3.1, we demonstrated
that the proportion of data representing individ-
ual classes varies strongly. We therefore weighted
the F1-measure by this ratio and report the micro-
averaged results over all datasets F1. Given our
focus on training a generalizable model, we delib-
erately did not focus on the performance variation
in the individual datasets.

4.2 Results

In order to check whether our findings persist
at least across the two learning algorithms, we
did not aggregate the model performance samples
but analyzed them for each algorithm separately.
We therefore only have one independent variable,
our feature groups, that affects the model perfor-
mance. In order to keep p-value inflation low, we
only compared the ten best performing models for
each algorithm with respect to the F1-Measure.
Note that even if the difference in performance be-
tween these models appears small, there are thus
many worse models that were not explicitly listed.

Our samples generally do not fulfill the assump-
tions of normality and sphericity required by para-
metric tests for comparing more than two groups.
Under the violation of these assumptions, non-
parametric tests have more power and are less
prone to outliers (Demsar, 2006). We therefore
relied exclusively on the non-parametric tests sug-
gested in literature: Friedman’s test was used as
non-parametric alternative to a repeated-measures
one-way ANOVA, and Nemenyi’s test2 was used
post-hoc as a replacement for Tukey’s test.

In contrast to its parametric counterpart, Fried-
man’s test is based on a ranking of the models in-
duced by the performance measure, and therefore
only relies implicitly on the latter. Each model is
ranked from best to worst, with mean ranks being

2We chose Nemenyi’s test because it is widely accepted
in the machine learning community. A discussion of alterna-
tives can be found in Herrera et al. (Herrera, 2008).

Feature Group words(1000,1,2) words(1000,1,3) words(ALL,1,1) words(5000,1,1) words(100,1,1) words(100,1,2) words(100,1,3) words(5000,1,3) words(1000,1,1) words(5000,1,1)

F1 82.10 82.00 82.86 82.87 80.62 80.66 80.76 81.15 82.71 81.28

(a) LibLinear

Feature Group words(1000,1,2) words(1000,1,3) words(1000,1,1) words(5000,1,2) chars(5000,2,3) chars(5000,2,4) chars(1000,2,4) chars(1000,2,5) chars(1000,2,3) chars(5000,2,5)

F1 80.10 79.56 80.10 78.09 78.01 80.27 80.22 79.73 79.86 80.48

(b) NaiveBayes

Table 4: Average F1-Measure F1 for the ten best performing baseline feature groups
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used in case of ties. The Friedman statistic is cal-
culated by dividing the sum of squares of the mean
ranks by the sum of squares error. For sufficiently
many samples, the statistic follows a χ2 distribu-
tion with k− 1 degrees of freedom. The q statistic
used in Nemenyi’s test is similar to the one used
by Tukey, but uses rank differences. It utilises the
previous ranking from the Frieman test to calcu-
late and relate the average ranks of two models,
for each available pair. Two models are consid-
ered significantly different, if their difference in
mean ranks exceeds a critical value, which varies
for different significance levels. For a detailed de-
scription and examples of these tests, see (Jakow-
icz and Shah, 2011).

We illustrated the ranks and significant differ-
ences between the feature groups by means of
the critical difference (CD) diagram. Introduced
by Demsar (2006), this diagram lists the feature
groups ordered by their rank, where lower rank
numbers indicate higher performance. Feature
groups are connected with bars if they are not sig-
nificantly different, given α = 0.05.

In the following, we will use shortcuts like
words(1000,1,2) to denote the 1000 most frequent
uni- and bigrams. The same applies for char-n-
grams. Abbreviations can be found in Table 3.

4.2.1 Evaluation using LibLinear Classifier
We first evaluated which of our 20 baseline fea-
ture sets, as described in Section 3, lead to the best
classification performance over different datasets.
Notably, the ten best-performing approaches were
all combinations of word-n-grams. Table 4
contains the average F-Measures for these ap-
proaches. The Friedman test indicated strong sig-
nificant differences between the performances of
these groups (χ2

r(9) = 112.467, p < 0.001, α =
0.01). The subsequent Nemenyi test indicated
strong significant pairwise differences between the
performances of the models (α = 0.01), with p-
values listed in Table 2 in the supplementary.

Figure 1 illustrates the differences by means of
a CD diagram: the approaches of using simple un-
igrams of the most frequent 5000 and all words
provide the best results, i.e. they have the lowest
rank. They are not significantly different from the
1000 most frequent word-uni and bigrams. Never-
theless, they are significantly better than all other
baseline approaches.

This also applies to the char-n-gram ap-
proaches, that were not considered in this statisti-

CD

10 9 8 7 6 5 4 3 2 1

words(5000,1,1)

words(ALL,1,1)

words(1000,1,1)

words(1000,1,2)

words(1000,1,3)words(5000,1,2)

words(100,1,3)

words(100,1,2)

words(100,1,1)

words(5000,1,3)

Figure 1: CD diagram with the ranks of the ten
best performing baseline feature groups for Lib-
Linear. Feature groups are connected if they are
not significantly different (α = 0.05).

cal comparison due to their inferior performance.
It is important to note that the differences between
the worst word-n-gram approaches and the best
char-n-gram approaches could still be statistically
non-significant.

The best performing baseline approach for
LibLinear is using unigrams of the top 5000
words, i.e. words(5000,1,1), with F1 = 82.87.
We therefore picked this baseline feature group for
the second part of our evaluation. We added each
non-baseline feature individually to the selected
baseline approach and compared the performances
of these combinations and the non-extended base-
line group. Table 6 lists the averaged F-Measure.
When comparing the ten best-performing groups,
the Friedman test showed strong significant dif-
ferences between the performances of the models
(χ2

r(9) = 87.274, p < 0.001, α = 0.01). The
Nemenyi test partly showed strong significant dif-
ferences between the performances of the models
(for the corresponding p-values see Table 3 in the
supplementary). They are illustrated in the CD di-
agram in Figure 2. The tests indicate that adding
NER and NR AT MT to the baseline approach pro-
vides the best performances with F1 = 83.32 and
F1 = 83.03 respectively.

Finally, we evaluated the power set of these
feature groups, i.e. we compared the individual
groups and their combination. Table 5 contains
the corresponding averaged F-Measures. For the
resulting performance samples, the Friedman test
showed strong significant differences between the
models (χ2

r(3) = 72.014, p < 0.001, α = 0.01).
The Nemenyi test partly showed strong significant
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CD

10 9 8 7 6 5 4 3 2 1

NER

NR_AT_MN

NR_CARD

QUEST_RT

EXCLA_RTIS_RT

DICT_EMO

5000,1,1

NR_SLANG

POS_EMO

words(             )

Figure 2: CD diagram with the ranks of the
ten best performing feature groups for LibLinear,
comprising the baseline and the baseline with an
additional feature. Feature groups are connected
if they are not significantly different (α = 0.05).

Feature Group words(5000,1,1) +NER +NER+NR AT MN +NR AT MN

F1 82.87 83.32 83.48 83.03

Table 5: Average F1-Measure F1 for the power set
of best performing feature groups and LibLinear.

differences (α = 0.001), with p-values listed in
Table 4 in the supplementary and illustrated in Fig-
ure 3. The diagram shows that the combination
of NER and NR AT MN with the words(5000,1,1)
baseline outperforms all other models with respect
to F1 (F1 = 83.48), but does not differ sig-
nificantly from the plain NER approach (F1 =
83.32). This combination gives us the final and
best feature set for training a generalizing model
over our datasets. As can be seen, the plain n-gram
approach (F1 = 82.87) can be improved further
by 0.5%.

4.2.2 Evaluation using Naive Bayes Classifier
In this section, we repeat the previous steps for
the NB classifier. As baseline feature sets, we first
evaluated the word-n-gram and char-n-gram ap-
proaches. The averaged F-Measures can be found
in Table 4. The Friedman test showed strong sig-
nificant differences between the performances of
the models (χ2

r(9) = 110.293, p < 0.001, α =
0.01). The Nemenyi test partly showed strong sig-
nificant differences between the performances of
the models (for the corresponding p-values see Ta-
ble 1 in the supplementary). In contrast to the Li-
bLinear classifier, using the 5000 most frequent
combinations of two to five subsequent charac-
ters, i.e. chars(5000,2,5) provide the best F1 score
(F1 = 80.48). Thus, char-n-grams outperform the

CD

4 3 2 1

words(5000,1,1)

+NR_AT_MN

+NER+NR_AT_MN

+NER

Figure 3: CD diagram with the ranks of the
best baseline feature groups, complemented with
a combination of the best performing feature sets,
for LibLinear. Feature groups are connected if
they are not significantly different (α = 0.05).

word-n-gram approaches with respect to F1.
The CD diagram in Figure 5 shows that using

either the 5000 most frequent char-n-grams with
a length of two to five and two to four respec-
tively, the 1000 most frequent word-n-grams with
a length of one and one to two respectively, and the
1000 most frequent char-n-grams with a length of
two to four do not differ significantly. However,
using either the 5000 most frequent char-n-grams
with a length of two to five and two to four respec-
tively significantly outperform all other baseline
approaches. As a subsequent step, we added each
single feature to chars(5000,2,5) as the best base-
line approach to find if these provide better per-
formance for the NB classifier. Table 6 contains
the corresponding averaged F-Measures. Though
the Friedman test indicated strong significant dif-
ferences between the performances of the mod-
els (χ2

r(9) = 22.209, p = 0.008, α = 0.01), the
subsequent Nemenyi test did not indicate signifi-
cant pairwise differences. We can therefore not re-
peat the third step of our evaluation, but infer that
for a NB classifier, the plain char-n-gram-based
approach is sufficient for training a generalizing
model for our dataset.

The results indicate that LibLinear provides a
better avg. performance (F1 = 83.32) when train-
ing a generalizing model, compared to the NB
classifier (F1 = 80.48).

5 Conclusion and Future Work

In this paper, we compared the performance of
different popular feature groups and classification
algorithms for the task of training a generaliz-
ing model for incident type classification. We
carefully selected the most popular feature groups
from related work, and separately evaluated them
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Feature Group words(5000,1,1) +DICT EMO +NER +NR CARD +NR AT MN +POS EMO +NR SLANG +EXCLA RT +QUEST RT +IS RT

F1 82.87 82.87 83.32 83.06 83.03 82.87 82.87 82.88 82.88 82.88

(a) LibLinear

Feature Group chars(5000,2,5) +DICT EMO +QUEST RT +NER +NR AT MN +NR HASHTAG +POS EMO +NR SLANG +NR SENT +EXCLA RT

F1 80.48 80.48 80.49 80.55 80.51 80.48 80.48 80.48 80.48 80.50

(b) NaiveBayes

Table 6: Average F1-Measure F1 for the ten best performing combinations of the best baseline and an
additional feature

CD

10 9 8 7 6 5 4 3 2 1

chars(5000,2,5)

chars(5000,2,4)

words(1000,1,2)

words(1000,1,1)

chars(1000,2,4)chars(1000,2,5)

words(1000,1,3)

chars(1000,2,3)

words(500,1,2)

chars(5000,2,3)

Figure 4: CD diagram with the ranks of the ten
best performing baseline feature groups for Naive
Bayes. Feature groups are connected if they are
not significantly different (α = 0.05).

Figure 5: Ranks of NB baseline feature groups.

for the LibLinear and NB classification algorithms
on ten spatially and temporally diverse datasets.
The resulting F1-measure samples indicate that
training a generalizing model, i.e., a model that
is applicable on previously unseen incident-related
data, is still a challenging task. We found that Li-
bLinear provides a better averaged performance
compared to the NB classifier. More surpris-
ingly, additional feature groups that are commonly
used in related work do not necessarily outperform
a plain n-gram-based approach. This highlights
the need for other novel approaches for training
generalizing classification models. Especially in
the domain of incident detection and emergency
management, our findings are important because
less time consuming techniques showed nearly the
same performance as sophisticated ones.

There are two main topics for our future work.
First, we will investigate the performance of mod-
els generated with biased datasets on unfiltered
datasets. This is relevant, if a technique like filter-
ing is used to include more relevant class examples

in a dataset than provided with an original sample
– a necessary step to realize a labeled dataset for
model learning of a rare-class task. Second, we
will work on using novel features for the creation
of generalized models. One example is the uti-
lization of the Semantic Web to generate abstract
features, utilizing a technique called Semantic Ab-
straction (Schulz et al., 2015a). Semantic Ab-
straction has shown to improve the generalization
of tweet classification by deriving features from
Linked Open Data and using location and tempo-
ral mentions.
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