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Abstract

Accurate dependency parsing requires
large treebanks, which are only available
for a few languages. We propose a method
that takes advantage of shared structure
across languages to build a mature parser
using less training data. We propose
a model for learning a shared “univer-
sal” parser that operates over an inter-
lingual continuous representation of lan-
guage, along with language-specific map-
ping components. Compared with super-
vised learning, our methods give a con-
sistent 8-10% improvement across several
treebanks in low-resource simulations.

1 Introduction

Dependency parsing is an important task for Nat-
ural Language Processing (NLP) with application
to text classification (Özgür and Güngör, 2010),
relation extraction (Bunescu and Mooney, 2005),
question answering (Cui et al., 2005), statistical
machine translation (Xu et al., 2009), and sen-
timent analysis (Socher et al., 2013). A mature
parser normally requires a large treebank for train-
ing, yet such resources are rarely available and
are costly to build. Ideally, we would be able to
construct a high quality parser with less training
data, thereby enabling accurate parsing for low-
resource languages.

In this paper we formalize the dependency pars-
ing task for a low-resource language as a domain
adaptation task, in which a target resource-poor
language treebank is treated as in-domain, while
a much larger treebank in a high-resource lan-
guage forms the out-of-domain data. In this way,
we can apply well-understood domain adaptation
techniques to the dependency parsing task. How-
ever, a crucial requirement for domain adaptation
is that the in-domain and out-of-domain data have

compatible representations. In applying our ap-
proach to data from several languages, we must
learn such a cross-lingual representation. Here
we frame this representation learning as part of a
neural network training. The underlying hypoth-
esis for the joint learning is that there are some
shared-structures across languages that we can ex-
ploit. This hypothesis is motivated by the excellent
results of the cross-lingual application of unlexi-
calised parsing (McDonald et al., 2011), whereby
a delexicalized parser constructed on one language
is applied directly to another language.

Our approach works by jointly training a neu-
ral network dependency parser to model the syn-
tax in both a source and target language. Many of
the parameters of the source and target language
parsers are shared, except for a small handful of
language-specific parameters. In this way, the in-
formation can flow back and forth between lan-
guages, allowing for the learning of a compatible
cross-lingual syntactic representation, while also
allowing the parsers to mutually correct one an-
other’s errors. We include some language-specific
components, in order to better model the lexicon
of each language and allow learning of the syntac-
tic idiosyncrasies of each language. Our experi-
ments show that this outperforms a purely super-
vised setting, on both small and large data condi-
tions, with a gain as high as 10% for small train-
ing sets. Our proposed joint training method also
out-performs the conventional cascade approach
where the parameters between source and target
languages are related together through a regular-
ization term (Duong et al., 2015).

Our model is flexible, allowing easy incorpora-
tion of peripheral information. For example, as-
suming the presence of a small bilingual dictio-
nary is befitting of a low-resource setting, as this
is prototypically one of the first artifacts gener-
ated by field linguists. We incorporate a bilin-
gual dictionary as a set of soft constraints on the
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model, such that it learns similar representations
for each word and its translation(s). For example,
the representation of house in English should be
close to haus in German. We empirically show
that adding a bilingual dictionary improves parser
performance, particularly when target data is lim-
ited.

The final contribution of the paper concerns
the learned word embeddings. We demonstrate
that these encode meaningful syntactic phenom-
ena, both in terms of the observable clusters and
through a verb classification task. The code for
this paper is published as an open source project.1

2 Related Work

This work is motivated by the idea of delexical-
ized parsing, in which a parser is built without
any lexical features and trained on a treebank for
a resource-rich source language (Zeman et al.,
2008). It is then applied directly to parse sentences
in the target resource-poor languages. Delexical-
ized parsing relies on the fact that identical part-of-
speech (POS) inventories are highly informative of
dependency relations, and that there exists shared
dependency structures across languages.

Building a dependency parser for a resource-
poor language usually starts with the delexical-
ized parser and then uses other resources to refine
the model. McDonald et al. (2011) and Ma and
Xia (2014) exploited parallel data as the bridge
to transfer constraints from the source resource-
rich language to the target resource-poor lan-
guages. Täckström et al. (2012) also used par-
allel data to induce cross-lingual word clusters
which added as features for their delexicalized
parser. Durrett et al. (2012) constructed the set of
language-independent features and used a bilin-
gual dictionary as the bridge to transfer these fea-
tures from source to target language. Täckström
et al. (2013) additionally used high-level linguis-
tic features extracted from the World Atlas of Lan-
guage Structures (WALS) (Dryer and Haspelmath,
2013).

For low-resource languages, no large paral-
lel corpus is available. Some linguists are
dependency-annotating small amounts of field
data, e.g. for Karuk, a nearly-extinct language of
Northwest California (Garrett et al., 2013). Ac-
cordingly, we adopt a different resource require-

1http://github.com/longdt219/
universal_dependency_parser

ment: a small treebank in the target low-resource
language.

Domain adaptation or joint-training is a differ-
ent branch of research, and falls outside the scope
of this paper. Nevertheless, we would like to con-
trast our work with Senna (Collobert et al., 2011),
a neural network framework to perform a vari-
ety of NLP tasks such as part-of-speech (POS)
tagging, named entity recognition (NER), chunk-
ing, and so forth. Both approaches exploit com-
mon linguistic properties of the data through joint
learning. However, Collobert et al’s goal is to find
a single input representation that can work well
for many tasks. Our goal is different: we allow
the joint-training inputs to be different but con-
strain the parameter weights in the upper layer
to be identical. Consequently, our method ap-
plies to the task where inputs are different, pos-
sibly from different languages or domains. Their
method applies for different tasks in the same lan-
guage/domain where the inputs are fairly similar.

2.1 Supervised Neural Network Parser

This section describes the monolingual neural net-
work dependency parser structure of Chen and
Manning (2014). This parser achieves excellent
performance, and has a highly flexible formula-
tion allowing auxilliary inputs. The model is based
on a transition-based dependency parser (Nivre,
2006) formulated as a neural-network classifier to
decide which transition to apply to each parsing
state configuration.2 That is, for each configura-
tion, the selected list of words, POS tags and la-
bels from the Stack, Queue and Arcs are extracted.
Each word, POS and label is mapped into a low-
dimension vector representation using an embed-
ding matrix, which is then fed into a two-layer
neural network classifier to predict the next pars-
ing action. The set of parameters for the model is
E = {Eword, Epos, Earc} for the embedding layer,
W1 for the fully connected cubic hidden layer and
W2 for the softmax output layer. The model pre-
diction function is

P (Y |X = ~x,W1,W2, E) =

softmax
(
W2 × cube(W1 × Φ [~x,E])

)
(1)

2Our approach is focused on a technique for transfer
learning which can be more widely applied to other types
of dependency parser (and models, generally) regardless of
whether they are transition-based or graph-based.
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where cube is a non-linear activation function, Φ is
the embedding function that returns a vector rep-
resentation of parsing state x using an embedding
matrix E. We refer the reader to Chen and Man-
ning (2014) for a more detailed description.

3 A Joint Interlingual Model

We assume a small treebank in a target resource-
poor language, as well as a larger treebank in the
source language. Our objective is to learn a model
of both languages, subject to the constraint that
both models are similar overall, while allowing for
some limited language variability. Instead of just
training two different parsers on source and then
on target, we train them jointly, in order to learn
an interlingual parser. This allows the method to
take maximum advantage of the limited treebank
data available, resulting in highly accurate pre-
dicted parses.

Training a monolingual parser as de-
scribed in section 2.1 requires optimizing
the simple cross-entropy learning objec-
tive, L = −∑|D|

i=1 logP (Y = ~y(i)|X = ~x(i)),
where P (Y |X) is given by equation 1 and
D = {~x(i), ~y(i)}ni=1 is the training data. Joint
training of a parser over the source and target
languages can be achieved by simply adding two
such cross-entropy objectives, i.e.,

Ljoint = −
|Ds|∑
i=1

logP (Ys = ~y(i)
s |Xs = ~x(i)

s )

−
|Dt|∑
i=1

logP (Yt = ~y
(i)
t |Xt = ~x

(i)
t ) , (2)

where the training data, D = Ds ∪Dt, comprises
data in both the source and target language. How-
ever training the model according to equation 2
will result in two independent parsers. To enforce
similarity between the two parsers, we adopt pa-
rameter sharing: the neural network parameters,
W1 and W2, are identical in both parsers. Thereby

P (Yα|Xα = ~x) = P (Y |X = ~x,W1,W2, Eα) ,

where the subscript α ∈ {s, t} denotes the source
or target language. We allow the embedding
matrix Eα to differ in order to accommodate
language-specific features, in terms of the repre-
sentations of lexical types, Ewords , part-of-speech,
E

pos
s and dependency arc labels Earc

s . This reflects

the fact that different languages have different lex-
icon, parts-of-speech often exhibit different roles,
and dependency edges serve different functions,
e.g. in Korean a static verb can serve as an adjec-
tive (Kim, 2001). During training, the language-
specific errors are back propagated through dif-
ferent branches according to the language, guid-
ing learning towards an interlingual representa-
tion that informs parsing decisions in both lan-
guages. The set of parameters for the model is
W1,W2, Es, Et where Es, Et are the embedding
matrices for the source and target languages.

Generally speaking, we can understand the
model as building the universal dependency parser
that parses the universal language. Specifically,
the model is the combination of two parts: the
universal part (W1,W2) that is shared between the
languages, and the conversion part (Es, Et) that
maps a language-specific representation into the
universal language. Naturally, we could stack sev-
eral non-linear layers in the conversion compo-
nents such that the model can better transform the
input into the universal representation; we leave
this exploration for future work. Currently, our
cross-lingual word embeddings are meaningful for
a pair of source and target languages. However,
our model can easily be used for joint training over
k > 2 languages. We also leave this avenue of en-
quiry for future work

One concern from equation 2 is that when the
source language treebank Ds is much bigger than
the target language treebank Dt, it is likely to
dominate, and consequently, learning will mainly
focus on optimizing the source language parser.
We adjust for this disparity by balancing the two
datasets,Ds andDt, during training. When select-
ing mini-batches for online gradient updates, we
select an equal number of classification instances
from the source and target languages. Thus, for
each step |Ds| = |Dt|, effectively reweighting the
cross-entropy components in (2) to ensure parity
between the languages.

The other concern is over-fitting, especially
when we only have a small treebank in the tar-
get language. As suggested by Chen and Man-
ning (2014), we apply drop-out, a form of reg-
ularization for both source and target language.
That is, we randomly drop some of the activa-
tion units from both hidden layer and input layer.
Following Srivastava et al. (2014), we randomly
dropout 20% of the input layer and 50% of the hid-
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den layer. Empirically, we observe a substantial
improvement applying dropout to the model over
MLE or l2 regularization.

3.1 Incorporating a Dictionary
Our model is flexible, enabling us to freely add
additional components. In this section, we assume
the presence of a bilingual dictionary between the
source and target language. We seek to incorpo-
rate this dictionary as a part of model learning, to
encode the intuition that if two lexical items are
translations of one another, the parser should treat
them similarly.3 Recall that the mapping layer
is the combination of word, pos and arc embed-
dings, i.e., Eα = {Eword

α , E
pos
α , Earc

α }. We can
easily add bilingual dictionary constraints to the
model in the form of regularization to minimize
the l2 distance between word representations, i.e.,∑

〈i,j〉∈D ‖Eword(i)
s − Eword(j)

t ‖2F , where D com-
prises translation pairs, word(i) and word(j).

When the languages share the same POS tagset
and arc set,4 we can also add further constraints
such as their language-specific embeddings be
close together. This results a regularised training
objective,

Ldict = Ljoint−λ
( ∑
〈i,j〉∈D

‖Eword(i)
s −Eword(j)

t ‖2F

+ ‖Epos
s − Epos

t ‖2F + ‖Earc
s − Earc

t ‖2F
)
, (3)

where λ ∈ [0,∞] controls to what degree we
bind these words or pos tags or arc labels to-
gether, with high λ tying the parameters and small
λ allowing independent learning. We expect the
best value of λ to fall somewhere between these
extremes. Finally, we use a mini-batch size of
1000 instance pairs and adaptive learning rate
trainer, adagrad (Duchi et al., 2011) to build our
two separate models corresponding to equations 2
and 3.

4 Experiments

In this section, we compare our joint training ap-
proach with baseline methods of supervised learn-
ing in the target language, and cascaded learning
of source and target parsers.

3However, this is not always the case. For example, modal
or auxiliary verbs in English often have no translations in
different languages or map to words with different syntactic
functions.

4As was the case for our experiments.

4.1 Dataset
We experiment with the Universal Dependency
Treebank (UDT) V1.0 (Nivre et al., 2015), sim-
ulating low resource settings.5 This treebank has
many desirable properties for our model: the de-
pendency types (arc labels set) and coarse POS
tagset are the same across languages. This re-
moves the need for mapping the source and target
language tagsets to a common tagset. Moreover,
the dependency types are also common across
languages allowing evaluation of the labelled at-
tachment score (LAS). The treebank covers 10
languages,6 with some languages very highly
resourced—Czech, French and Spanish have 400k
tokens—and only modest amounts of data for
other languages—Hungarian and Irish have only
around 25k tokens. Cross-lingual models assume
English as the source language, for which we have
a large treebank, and only a small treebank of 3k
tokens exists in each target language, simulated by
subsampling the corpus.

4.2 Baseline Cascade Model
We compare our approach to a baseline inter-
lingual model based on the same parsing algo-
rithm as presented in section 2.1, but with cas-
caded training (Duong et al., 2015). This works
by first learning the source language parser, and
then training the target language parser using a
regularization term to minimise the distance be-
tween the parameters of the target parser and the
source parser (which is fixed). In this way, some
structural information from the source parser can
be used in the target parser, however it is likely
that the representation will be overly biased to-
wards the source language and consequently may
not prove as useful for modelling the target.

4.3 Monolingual Word Embeddings
While the Epos and Earc are randomly initialized,
we initialize both the source and target language
word embeddings Eword

s , Eword
t of our neural net-

work models with pre-trained embeddings. This is
an advantage since we can incorporate the mono-
lingual data which is often available, even for

5Evaluating on truly resource-poor languages would be
preferable to simulation. However for ease of training and
evaluation, which requires a small treebank in the target lan-
guage, we simulate the low-resource setting using a small part
of the UDT.

6Czech (cs), English (en), Finnish (fi), French (fr), Ger-
man (de), Hungarian (hu), Irish (ga), Italian (it), Spanish (es),
Swedish (sv).
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Figure 1: Sensitivity of regularization parameter λ
against the LAS measured on the Swedish devel-
opment set trained on 1000 (tokens).

resource-poor languages. We collect monolingual
data for each language from the Machine Trans-
lation Workshop (WMT) data,7 Europarl (Koehn,
2005) and EU Bookshop Corpus (Skadiņš et al.,
2014). The size of monolingual data also varies
significantly, with as much as 400 million tokens
for English and German, and as few as 4 mil-
lion tokens for Irish. We use the skip-gram model
(Mikolov et al., 2013b) to induce 50-dimensional
word embeddings.

4.4 Bilingual Dictionary

For the extended model as described in section 3.1,
we also need a bilingual dictionary. We extract
dictionaries from PanLex (Kamholz et al., 2014)
which currently covers around 1300 language va-
rieties and about 12 million expressions. This
dataset is growing and aims at covering all lan-
guages in the world and up to 350 million expres-
sions. The translations in PanLex come from var-
ious sources such as glossaries, dictionaries, au-
tomatic inference from other languages, etc. Nat-
urally, the bilingual dictionary size varies greatly
among resource-poor and resource-rich languages.

4.5 Regularization Parameter Tuning

Joint training with a dictionary (see equation 3)
includes a regularization sensitivity parameter λ.
This parameter controls to what extent we should
bind the source words and their target translation,
common POS tags and arcs together. In this sec-
tion we measure the sensitivity of our approach
with respect to this parameter. In a real world sce-

7http://www.statmt.org/wmt14/

nario, getting development data to tune this param-
eter is difficult. Thus, we want a parameter that
can work well cross-lingually. To simulate this,
we only tune the parameter on one language and
apply it directly to different languages. We trained
on a small Swedish treebank with 1k tokens, test-
ing several different values of λ. We evaluated on
the Swedish development dataset. Figure 1 shows
the labelled attachment score (LAS) for different
λ. It’s clearly visible that λ = 0.0001 gives the
maximum LAS on the development set. Thus, we
use this value for all the experiments involving a
dictionary hereafter.

4.6 Results

For our initial experiments we assume that we
have only a small target treebank with 3000 to-
kens (around 200 sentences). Ideally the much
larger source language (English) treebank should
be able to improve parser performance versus sim-
ple supervised learning on such a small collection.
We apply the joint model (equation 2) and joint
model with the dictionary constraints (equation 3)
for each target language,

The results are reported in Table 1. The su-
pervised neural network dependency parser per-
formed worst, as expected, and the baseline cas-
cade model consistently outperformed the super-
vised model on all languages by an average mar-
gin of 5.6% (absolute).8 The joint model also
consistently out-performed both baselines giving
a further 1.9% average improvement over the cas-
cade. This was despite the fact that the cascaded
model had the benefit of tuning for the regulariza-
tion parameters on a development corpus, while
the joint model had no parameter tuning. Note that
the improvement varies substantially across lan-
guages, and is largest for Czech but is only minor
for Swedish. The joint model with the bilingual
dictionary outperforms the joint model, however,
the improvement is modest (0.7%). Nevertheless,
this model gives substantial improvements com-
pared with the cascaded and the supervised model
(2.6% and 8.2%).

5 Analysis

5.1 Learning Curve

In section 4.6, we used a 3k token treebank in the
target language. What if we have more or less

8We use absolute percentage comparisons herein.
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cs de es fi fr ga hu it sv µ

Supervised 43.1 47.3 60.3 46.4 56.2 59.4 48.4 65.4 52.6 53.2
Baseline Cascaded 49.6 59.2 66.4 49.5 63.2 59.5 50.5 69.9 61.4 58.8
Joint 55.2 61.2 69.1 51.4 65.3 60.6 51.2 71.2 61.4 60.7
Joint + Dict 55.7 61.8 70.5 51.5 67.2 61.1 51.0 71.3 62.5 61.4

Table 1: Labelled attachment score (LAS) for each model type trained on 3000 tokens for each target
language (columns). All bar the supervised model also use a large English treebank.
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Figure 2: Learning curve for Joint model, Joint
+ Dict model, Baseline cascaded and Supervised
model: the x-axis is the size of data (number of
tokens); the y-axis is the average LAS measured
on 9 languages (except English).

target language data? Figure 2 shows the learn-
ing curve with respect to various models on differ-
ent data sizes averaged over all target languages.
For small datasets of 1k training tokens, the cas-
caded model, joint model and joint + dict model
performed similarly well, out-performing the su-
pervised model by about 10% (absolute). With
more training data, we see interesting changes
to the relative performance of the different mod-
els. While the baseline cascade model still out-
performs the supervised model, the improvement
is diminishing, and by 15k, the difference is only
2.9%. On the other hand, compared with the su-
pervised model, the joint and joint + dict models
perform consistently well at all sizes, maintaining
an 8% lead at 15k. This shows the superiority of
joint training compared with single language train-
ing.

To understand this pattern of performance dif-
ferences for the cascade versus the joint model,
one needs to consider the cascade model formu-
lation. In this approach, the target language pa-
rameters are tied (softly) with the source language

parameters through regularization. This is a bene-
fit for small datasets, providing a smoothing func-
tion to limit overtraining. However, when we
have more training data, these constraints limit
the capacity of the model to describe the target
data. This is compounded by the problem that
the source representation may not be appropriate
for modelling the target language, and there is no
way to correct for this. In contrast the joint model
learns a mutually compatible representation auto-
matically during joint training.

The performance results for the joint model
with and without the dictionary are similar over-
all. Only on small datasets (1k, 3k), is the dif-
ference notable. From 5k tokens, the bilingual
dictionary doesn’t confer additional information,
presumably as there is sufficient data for learning
syntactic word representations. Moreover, trans-
lation entries exist between syntactically related
word types as well as semantically related pairs,
with the latter potentially limiting the beneficial
effect of the dictionary.

When training on all the target language data,
the supervised model does well, surpassing the
cascade model. Surprisingly, the joint models out-
perform slightly, yielding a 0.4% improvement.
This is an interesting observation suggesting that
our method has potential for use not only for low
resource problems, but also high resource settings.

5.2 Different Tagsets

In the above experiments, we used the universal
POS tagset for all the languages in the corpus.
However, for some languages,9 the UDT also pro-
vides language specific POS tags. We use this data
to test the relative performance of the model using
a universal tagset cf. language specific tagsets. In
this experiment, we applied the same joint model
(see §3) but with a language specific tagset instead
of UPOS for these languages. We expect the joint

9en, cs, fi, ga, it and sv.
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Figure 3: Learning curve for joint model using the
UPOS tagset or language specific POS tagset: the
x-axis is the size of data (number of tokens); the y-
axis is the average LAS measured on 5 languages
(except English).

model to automatically learn to project the differ-
ent tagsets into a common space, i.e., implicitly
learn a tagset mapping between languages. Fig-
ure 3 shows the learning curve comparing the joint
model with the two types of POS tagsets. For the
small dataset, it is clear that the data is insuffi-
cient for the model to learn a good tagset map-
ping, especially for a morphologically rich lan-
guage like Czech. However, with more data, the
model is better able to learn the tagset mapping as
part of joint training. Beyond 15k tokens, the joint
model using the language specific POS tagset out-
performs UPOS. Clearly there is some information
lost in the UPOS tagset, although the UPOS map-
ping simultanously provides implicit linguistic su-
pervision. This explains why the UPOS might be
useful in small data scenarios, but detrimental at
scale. Using all the target data (“All”) the language
specific POS provides a 1% (absolute) gain over
UPOS.

5.3 Universal Representation

As described in section 3, we can consider our
joint model as the combination of two parts: a uni-
versal parser and a language-specific embedding
Es or Et that converts the source and target lan-
guage into the universal representation. We now
seek to analyse qualitatively this universal repre-
sentation through visualization. For this purpose
we use a joint model of English and French, using
all the available French treebank (more than 350k

NOUN PROPN ADV DET ADJ ADP VERB NUM

`

      English
      French

Figure 4: Universal Language visualization ac-
cording to language and POS. (This should be
viewed in colour.)

tokens) as well as a bilingual dictionary.10 Fig-
ure 4 shows the t-SNE (Van Der Maaten, 2014)
projection of the 50 dimensional word embed-
dings in both languages. We can see that English
and French are mixed nicely together. The colour-
ing denotes the POS tag, showing clearly that the
words with similar POS tags are grouped together
regardless of languages. This is partially under-
standable since word embeddings for dependency
parsing need to convey the dependency context
rather than surrounding words, as in most distri-
butional embedding models. Words having similar
dependency relation should be grouped together as
they are treated similarly by the parser.

Some of the learned cross-lingual word-
embeddings are shown in Table 2, which includes
the five nearest neighbours to selected English
words according to the monolingual word embed-
ding (section 4.3) and our cross-lingual depen-
dency word embeddings, trained using PanLex.
The monolingual sets appear to be strongly char-
acterised by distributional similarity. The cross-
lingual embeddings display greater semantic sim-
ilarity, while being more variable morphosyntacti-
cally. In many cases, the top five words of English
and French are translations of each other, but with
varying inflectional endings in the French forms.
For example, “buy” vs “vendez” or “invest” vs “in-

10We also visualized the cross-lingual word embeddings
without the dictionary, however the results were rather odd.
Although we saw coherent POS clusters, the two languages
were largely disjoint. We speculate that many components of
the embeddings are use for only one language, and these out-
number the shared components, and thus more careful pro-
jection is needed for meaningful visualisation.
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Words Mono
Cross lingual embedding

En Fr

sell

buy buy revendre
eat invest vendez
produce integrate acheter
compete guide achètent
burn eat investir

playing

serving sailing jouait
acting play navigue
paying moving jouent
pursuing faces pièce
running ran jouer

hard

difficult crazy dur
harder strange dures
easy beautiful hard
magnificent friendly fou
painful difficult folles

initially

originally originally réellement
previously previously déjà
officially officially récemment
basically actually dernièrement
already already surroı̂t

university

teachers school universitaire
student education université
teacher student école
student medicine scolaire
training participant school

mobile

wireless computers mobile
goods Web mobiles
online Internet ordinateurs
freight computer Web
broadband web internet

Table 2: Examples of 5 nearest neighbours with
the target English word using the original mono-
lingual word embedding and our cross-lingual de-
pendency based word embedding.

vestir”. This is a direct consequence of incorpo-
rating the bilingual lexicon. Moreover, the top five
closest words of both English and French mostly
have the same part of speech. This is consistent
with the finding in Figure 4.

Levin (1993) has shown that there is a strong
connection between a verb’s meaning and its syn-
tactic behaviour. We compare the English side
of our cross-lingual dependency based word em-
beddings with various other pre-trained monolin-
gual English word embeddings and our mono-
lingual embedding (section 4.3) on Verb-143
dataset (Baker et al., 2014). This dataset con-
tains 143 pairs of verbs that are manually given
score from 1 to 10 according to the meaning sim-
ilarity. Table 3 shows the Pearson correlation

Correlation

Senna (Collobert et al., 2011) 0.36
Skip-gram (Mikolov et al., 2013a) 0.27
RNN (Mikolov et al., 2011) 0.31
Our monolingual embedding 0.39
Our crosslingual embedding 0.44

Table 3: Compare the English side of our cross-
lingual embeddings with various other embed-
dings evaluated on Verb-143 dataset (Baker et al.,
2014). We directly use the pre-trained models
from corresponding papers.

with human judgment for our embeddings and
other pre-trained embeddings. As expected, our
cross-lingual embeddings out-perform others em-
beddings on this dataset. This is partly because the
syntactic behaviour is well encoded in our word
embeddings through dependency relation.

Our embeddings encode not just cross-lingual
correspondences, but also capture dependency re-
lations which we expect might be beneficial for
other NLP tasks based on dependency parsing,
e.g., cross-lingual semantic role labelling where
long-distance relationship can be captured by
word embedding.

6 Conclusion

In this paper, we present a training method for
building a dependency parser for a resource-
poor language using a larger treebank in a high-
resource language. Our approach takes advantage
of the shared structure among languages to learn
a universal parser and language-specific mappings
to the lexicon, parts of speech and dependency
arcs. Compared with supervised learning, our
joint model gives a consistent 8-10% improvement
over several different datasets in simulation low-
resource scenarios. Interestingly, some small but
consistent gains are still realised by joint cross-
lingual training even on large complete treebanks.
This suggests that our approach has utility not just
in low resource settings. Our joint model is flexi-
ble, allowing the incorporation of a bilingual dic-
tionary, which results in small improvements par-
ticularly for tiny training scenarios.

As the side-effect of training our joint model,
we obtain cross-lingual word embeddings special-
ized for dependency parsing. We expect these em-
beddings to be beneficial to other syntatic and se-
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mantic tasks. In future work, we plan to extend
joint training to several languages, and further ex-
plore the idea of learning and exploiting cross-
lingual embeddings.
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