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Abstract

There are two main types of word repre-
sentations: low-dimensional embeddings
and high-dimensional distributional vec-
tors, in which each dimension corresponds
to a context word. In this paper, we ini-
tialize an embedding-learning model with
distributional vectors. Evaluation on word
similarity shows that this initialization sig-
nificantly increases the quality of embed-
dings for rare words.

1 Introduction

Standard neural network (NN) architectures for in-
ducing embeddings have an input layer that repre-
sents each word as a one-hot vector (e.g., Turian
et al. (2010), Collobert et al. (2011), Mikolov et
al. (2013)). There is no usable information avail-
able in this input-layer representation except for
the identity of the word. We call this standard ini-
tialization method one-hot initialization.

Distributional representations (e.g., Schütze
(1992), Lund and Burgess (1996), Sahlgren
(2008), Turney and Pantel (2010), Baroni and
Lenci (2010)) represent a word as a high-
dimensional vector in which each dimension cor-
responds to a context word. They have been suc-
cessfully used for a wide variety of tasks in natu-
ral language processing such as phrase similarity
(Mitchell and Lapata, 2010) and sentiment analy-
sis (Turney and Littman, 2003).

In this paper, we investigate distributional ini-
tialization: the use of distributional vectors as rep-
resentations of words at the input layer of NN ar-
chitectures for embedding learning to improve the
embeddings of rare words. It is difficult for one-
hot initialization to learn good embeddings from
only a few examples. In contrast, distributional
initialization provides an additional source of in-
formation – the global distribution of the word in

the corpus – that improves embeddings learned for
rare words. We will demonstrate this type of im-
provement in the experiments reported below.

In summary, we introduce the idea of dis-
tributional initialization for embedding learn-
ing, an alternative to one-hot initialization that
combines distributed representations (or embed-
dings) with distributional representations (or high-
dimensional vectors). We show that distributional
initialization significantly improves the quality of
embeddings learned for rare words.

We will first describe our methods in Section 2
and the experimental setup in Section 3. Section 4
presents and discusses experimental results. We
summarize related work in Section 5 and finish
with conclusion in Section 6 and discussion of fu-
ture work in Section 7.

2 Method

Weighting. We use two different weighting
schemes for distributional vectors. Let v1, . . . , vn

be the vocabulary of context words. In BINARY
weighting, entry 1 ≤ i ≤ n in the distributional
vector of target word w is set to 1 iff vi and w
cooccur at a distance of at most ten words in the
corpus and to 0 otherwise.

In PPMI weighting, entry 1 ≤ i ≤ n in the
distributional vector of target word w is set to the
PPMI (positive pointwise mutual information, in-
troduced by Niwa and Nitta (1994)) of w and vi.
We divide PPMI values by their maximum to en-
sure they are in [0, 1] because we will combine
one-hot vectors (whose values are 0/1) with PPMI
weights and it is important that they are on the
same scale.

We use two different distributional initializa-
tions, shown in Figure 1: separate (left) and mixed
(right). Combinations of these two initializations
with both BINARY and PPMI weighting will be
investigated in the experiments.

Recall that n is the dimensionality of the distri-
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Figure 1: One-hot vectors of frequent words and distributional vectors of rare words are separate in separate initialization (left)
and overlap in mixed initialization (right). This example is for BINARY weighting.

butional vectors. Let k be the number of words
with frequency > θ, where the frequency thresh-
old θ is a parameter.

In separate initialization, the input represen-
tation for a word is the concatenation of a k-
dimensional vector and an n-dimensional vec-
tor. For a word with frequency > θ, the k-
dimensional vector is a one-hot vector and the n-
dimensional vector is zero. For a word with fre-
quency ≤ θ, the k-dimensional vector is zero and
the n-dimensional vector is its distributional vec-
tor.

In mixed initialization, the input representation
for a word is an n-dimensional vector: a one-hot
vector for a word with frequency > θ and a distri-
butional vector for a word with frequency ≤ θ.

In summary, separate initialization uses sepa-
rate representation spaces for frequent words (one-
hot space) and rare words (distributional space).
Mixed initialization uses the same representation
space for all words; and rare words share weights
with the frequent words that they cooccur with.

3 Experimental setup

We use ukWaC+WaCkypedia (Baroni et al.,
2009), a corpus of 2.4 billion tokens and 6 million
word types. Based on (Turian et al., 2010), we
preprocess the corpus by removing sentences that
are less than 90% lowercase; lowercasing; replac-
ing URLs, email addresses and digits by special
tokens; tokenization (Schmid, 2000); replacing
words with frequency 1 with <unk>; and adding
end-of-sentence tokens. After preprocessing, the
size n of the context word vocabulary is 2.7 mil-
lion.

We evaluate on six word similarity judgment
data sets (number of pairs in parentheses): RG

(Rubenstein and Goodenough (1965), 65) MC
(Miller and Charles (1991), 30), MEN1 (Bruni et
al. (2012), 3000), WordSim3532 (Finkelstein et al.
(2001), 353), Stanford Rare Word3 (Luong et al.
(2013), 2034) and SimLex-9994 (Hill et al. (2014),
999). We exclude from the evaluation the 16 pairs
in RW that contain a word that does not occur in
our corpus.

Our goal in this paper is to investigate the ef-
fect of using distributional initialization vs. one-
hot initialization on the quality of embeddings of
rare words.

However, except for RW, the six data sets con-
tain only a single word with frequency ≤100, all
other words are more frequent.

To address this issue, we artificially make all
words in the six data sets rare. We do this by
keeping only θ randomly chosen occurrences in
the corpus (for words with frequency >θ) and re-
placing all other occurrences with a different to-
ken (e.g., “fire” is replaced with “*fire*”). This
procedure – corpus downsampling – ensures that
all words in the six data sets are rare in the corpus
and that our setup directly evaluates the impact of
distributional initialization on rare words.

Note that we use θ for two different purposes:
(i) θ is the frequency threshold that determines
which words are classified as rare and which as
frequent in Figure 1 – changing θ corresponds to
moving the horizontal dashed line in separate and
mixed initialization up and down; (ii) θ is the pa-
rameter that determines how many occurrences of
a word are left in the corpus when we remove oc-

1
clic.cimec.unitn.it/˜elia.bruni/MEN

2
alfonseca.org/eng/research/wordsim353.html

3
www-nlp.stanford.edu/˜lmthang/morphoNLM/

4
cl.cam.ac.uk/˜fh295/simlex.html
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A B C D E F G H I J K L
RG MC MEN WS RW SL

θ mixed sep mixed sep mixed sep mixed sep mixed sep mixed sep
1

B
IN

A
RY

10 *56.54 47.06 35.96 32.10 *43.76*45.56 34.21*40.93 *24.81 20.85 *18.30*13.76
2 20 *59.08 45.31 *46.66 35.22 52.05*52.38 41.44 47.53 *29.48 26.93 *20.85*16.86
3 50 *63.20 51.07 *52.35 37.45 58.21 53.80 43.14 44.88 31.32 29.16 *24.19*22.45
4 100 68.33 52.50 61.70 35.94 61.69 55.23 48.25 44.89 33.29 30.22 *26.74 24.66
5

PP
M

I 10 *56.87*51.94 *37.31*46.52 *48.05*50.49 38.41*47.54 *25.53 23.12 *19.70*15.59
6 20 *59.08*50.32 *47.51*45.17 *54.88*56.42 43.31*53.19 *29.78*28.51 *21.84*19.23
7 50 *64.90*64.36 *55.27*56.75 60.51 61.04 45.76 55.55 32.05 30.25 *25.11*21.60
8 100 71.08 58.37 68.14 52.33 63.05 60.74 48.66 55.49 33.25 30.49 *27.13 22.60
9

on
e-

ho
t 10 38.93 16.67 40.70 35.17 20.69 8.97

10 20 42.17 25.21 50.21 43.74 26.58 13.62
11 50 56.01 42.35 60.22 54.10 32.16 20.01
12 100 67.47 61.33 65.14 59.87 35.19 24.06

Table 1: Spearman correlation coefficients ×100 between human and embedding-based similarity judgments, averaged over 5
runs. Distributional initialization correlations that are higher (resp. significantly higher) than corresponding one-hot correlations
are set in bold (resp. marked *).

currences to ensure that words from the evaluation
data sets are rare in the corpus.

We covary these two parameters in the experi-
ments below; e.g., we apply distributional initial-
ization with θ = 20 to a corpus constructed to have
θ = 20 occurrences of words from similarity data
sets. We do this to ensure that all evaluation words
are rare words for the purpose of distributional ini-
tialization and so we can exploit all pairs in the
evaluation data sets for evaluating the efficacy of
our method for rare words.

We modified word2vec5 (Mikolov et al., 2013)
to accommodate distributional initialization; to
support distributional vectors at the input layer,
we changed the implementation of activation func-
tions and backpropagation. We use the skipgram
model, hierarchical softmax, set the size of the
context window to 10 (10 words to the left and 10
to the right), min-count to 1 (train on all tokens),
embedding size to 100, sampling rate to 10−3 and
train models for one epoch.

For four values of the frequency threshold,
θ ∈ {10, 20, 50, 100},6 we train word2vec models

5
code.google.com/p/word2vec

6A reviewer asks whether the value of θ should depend on
the size of the training corpus. Our intuition is that it is in-
dependent of corpus size. If a certain amount of information
– corresponding to a certain number of contexts – is required
to learn a meaningful representation of a word, then it should
not matter whether that given number of contexts occurs in a
small corpus or in a large corpus. However, if the contexts
themselves contain many rare words (which is more likely in
a small corpus), then corpus size could be an important vari-

with one-hot initialization and with the four com-
binations of weighting (BINARY, PPMI) and dis-
tributional initialization (mixed, separate), a total
of 4× (1 + 2× 2) = 20 models. For each train-
ing run, we perform corpus downsampling and ini-
tialize the parameters of the models randomly. To
get a reliable assessment of performance, we train
5 instances of each model and report averages of
the 5 runs. One model takes ∼3 hours to train on
23 CPU cores, 2.30GHz.

4 Experimental results and discussion

Table 1 shows experimental results, averaged over
5 runs. The evaluation measure is Spearman
correlation ×100 between human and machine-
generated pair similarity judgments.

Frequency threshold θ. The main result is that
for θ ∈ {10, 20} distributional initialization is
better than one-hot initialization (see bold num-
bers): compare lines 1&5 with line 9; and lines
2&6 with line 10. This is true for both mixed and
separate initialization, with the exception of WS,
for which mixed (column G) is better in only 1
(line 5) of 4 cases.

Looking only at results for θ ∈ {10, 20}, 18 of
24 improvements are significant7 for mixed initial-
ization and 16 of 24 improvements are significant
for separate initialization (lines 1&5 vs 9 and lines

able to take into account.
7Two-sample t-test, two-tailed, assuming equal variance,

p < .05
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2&6 vs 10).
For θ ∈ {50, 100}, mixed initialization does

well for RG, MC and SL, but the gap between
mixed and one-hot initializations is generally
smaller for these larger values of θ; e.g., the dif-
ference is larger than 9 for θ = 10 (A1&A5 vs
A/B9, C1&C5 vs C/D9, K1&K5 vs K/L9) and less
than 9 for θ = 100 (A4&A8 vs A/B12, C4&C8
vs C/D12, K4&K8 vs K/L12) for these three data
sets.

Recall that each value of θ effectively results in
a different training corpus – a training corpus in
which the number of occurrences of the words in
the evaluation data sets has been reduced to ≤ θ
(cf. Section 3).

Our results indicate that distributional initializa-
tion is beneficial for very rare words – those that
occur no more than 20 times in the corpus. Our
results for medium rare words – those that occur
between 50 and 100 times – are less clear: either
there are no improvements or improvements are
small.

Thus, our recommendation is to use θ = 20.
Scalability. The time complexity of the ba-

sic version of word2vec is O(ECWD log V )
(Mikolov et al., 2013) where E is the number
of epochs, C is the corpus size, W is the con-
text window size, D is the number of dimensions
of the embedding space, and V is the vocabu-
lary size. Distributional initialization adds a term
I , the average number of entries in the distribu-
tional vectors, so that time complexity increases to
O(IECWD log V ). For rare words, I is small, so
that there is no big difference in efficiency between
one-hot initialization and distributional initializa-
tion of word2vec. However, for frequent words
I would be large, so that distributional initializa-
tion may not be scalable in that case. So even if
our experiments had shown that distributional ini-
tialization helps for both rare and frequent words,
scalability would be an argument for only using it
for rare words.

Binary vs. PPMI. PPMI weighting is almost al-
ways better than BINARY, with three exceptions
(I8, L7, L8) where the difference between the two
is small and not significant. The probable explana-
tion is that the PPMI weights in [0, 1] convey de-
tailed, graded information about the strength of as-
sociation between two words, taking into account
their base frequencies. In contrast, the BINARY
weights in {0, 1} only indicate if there was any in-

stance of cooccurrence at all – without considering
frequency of cooccurrence and without normaliz-
ing for base frequencies.

Mixed vs. Separate. Mixed initialization is less
variable and more predictable than separate initial-
ization: performance for mixed initialization al-
ways goes up as θ increases, e.g., 56.54→ 59.08
→ 63.20→ 68.33 (column A, lines 1–4). In con-
trast, separate initialization performance often de-
creases, e.g., from 47.06 to 45.31 (column B, lines
1–2) when θ is increased. Since more informa-
tion (more occurrences of the words that simi-
larity judgments are computed for) should gener-
ally not have a negative effect on performance, the
only explanation is that separate is more variable
than mixed and that this variability sometimes re-
sults in decreased performance. Figure 1 explains
this difference between the two initializations: in
mixed initialization (right panel), rare words are
tied to frequent words, so their representations are
smoothed by representations learned for frequent
words. In separate initialization (left panel), no
such links to frequent words exist, resulting in
higher variability.

Because of its lower variability, our experiments
suggest that mixed initialiation is a better choice
than separate initialization.

One-hot vs. Distributional initialization. Our
experiments show that distributional representa-
tion is helpful for rare words. It is difficult for
one-hot initialization to learn good embeddings
for such words, based on only a small number of
contexts in the corpus. In such cases, distribu-
tional initialization makes the learning task easier
since in addition to the contexts of the rare word,
the learner now also has access to the global dis-
tribution of the rare word and can take advantage
of weight sharing with other words that have sim-
ilar distributional representations to smooth em-
beddings systematically.

Thus, distributional initialization is a form of
smoothing: the embedding of a rare word is tied to
the embeddings of other words via the links shown
in Figure 1: the 1s in the lower “rare words” part
of the illustrations for separate and mixed initial-
ization. As is true for smoothing in general, pa-
rameter estimates for frequent events benefit less
from smoothing or can even deteriorate. In con-
trast, smoothing is essential for rare events. Where
the boundary lies between rare and frequent events
depends on the specifics of the problem and the
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smoothing method used and is usually an empiri-
cal question. Our results indicate that that bound-
ary lies somewhere between 20 and 50 in our set-
ting.8

Variance of results. Table 1 shows averages of
five runs. The variance of results was quite high
for low-performing models. For higher perform-
ing models – those with values ≥ 40 – the ra-
tio of standard deviation divided by mean ranged
from .005 to .29. The median was .044. While
the variance from run to run is quite high for low-
performing models and for a few high-performing
models, the significance test takes this into ac-
count, so that the relatively high variability does
not undermine our results.

In summary, we have shown that distributional
initialization improves the quality of word embed-
dings for rare words. Our recommendation is to
use mixed initialization with PPMI weighting and
the value θ = 20 of the frequency threshold.

5 Related work

An alternative to using distributional information
for initialization is to use syntactic and semantic
information for initialization. Approaches along
these lines include Botha and Blunsom (2014)
who represent a word as a sum of embedding vec-
tors of its morphemes. Cui et al. (2014) use a
weighted average of vectors of morphologically
similar words. Bian et al. (2014) extend a word’s
vector with vectors of entity categories and POS
tags. This line of work also is partially motivated
by improving the embeddings of rare words. Dis-
tributional information on the one hand and syn-
tactic/semantic information on the other hand are
likely to be complementary, so that a combination
of our approach with this prior work is promising.

Le et al. (2010) propose three schemes to ad-
dress word embedding initialization. Reinitializa-
tion and iterative reinitialization use vectors from
prediction space to initialize the context space dur-
ing training. This approach is both more complex
and less efficient than ours. One-vector initializa-
tion initializes all word embeddings with the same

8A reviewer asks: “If a word is rare, its distributional vec-
tor should also be sparse and less informative, which does not
guarantee to be a good starting point.” This is true and it sug-
gests that it may not be possible to learn a very high-quality
representation for a rare word. But this it not our goal. Our
goal is simply to learn a better representation than the one
that is learned by standard word2vec. Our explanation for
our positive experimental results is that distributional initial-
ization implements a form of smoothing.

random vector to keep rare words close to each
other. This approach is also less efficient than ours
since the initial embedding is much denser than in
our approach.

6 Conclusion

We have introduced distributional initialization of
neural network architectures for learning better
embeddings for rare words. Experimental results
on a word similarity judgment task demonstrate
that embeddings of rare words learned with dis-
tributional initialization perform better than em-
beddings learned with traditional one-hot initial-
ization.

7 Future work

Our work is the first exploration of the utility
of distributional representations as initialization
for embedding learning algorithms like word2vec.
There are a number of research questions we
would like to investigate in the future.

First, we showed that distributional represen-
tation is beneficial for words with very low fre-
quency. It was not beneficial in our experiments
for more frequent words. A more extensive analy-
sis of the factors that are responsible for the posi-
tive effect of distributional representation is in or-
der.

Second, to simplify our experimental setup and
make the number of runs mangeable, we used the
parameter θ both for corpus processing (only θ oc-
currences of a particular word were left in the cor-
pus) and as the separator between rare words that
are distributionally initialized and frequent words
that are not. It remains to be investigated whether
there are interactions between these two properties
of our model, e.g., a high rare-frequent separator
may work well for words whose corpus frequency
is much smaller than the separator.

Third, while we have shown that distributional
initialization improves the quality of representa-
tions of rare words, we did not investigate whether
distributional initialization for rare words has any
adverse effect on the quality of representations of
frequent words for which one-hot initialization is
applied. Since rare and frequent words are linked
in the mixed model, this possibility cannot be dis-
missed and we plan to investigate it in future work.
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