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Abstract

Compared to tree grammars, graph gram-
mars have stronger generative capacity
over structures. Based on an edge re-
placement grammar, in this paper we pro-
pose to use a synchronous graph-to-string
grammar for statistical machine transla-
tion. The graph we use is directly con-
verted from a dependency tree by labelling
edges. We build our translation model
in the log-linear framework with stan-
dard features. Large-scale experiments
on Chinese–English and German–English
tasks show that our model is significantly
better than the state-of-the-art hierarchical
phrase-based (HPB) model and a recently
improved dependency tree-to-string model
on BLEU, METEOR and TER scores. Ex-
periments also suggest that our model has
better capability to perform long-distance
reordering and is more suitable for trans-
lating long sentences.

1 Introduction

Compared to trees, which have dominated the field
of natural language processing (NLP) for decades,
graphs are more general for modelling natural lan-
guages. The corresponding grammars for recog-
nizing and producing graphs are more flexible and
powerful than tree grammars. However, because
of their high complexity, graph grammars have not
been widely used in NLP.

Recently, along with progress on graph-based
meaning representation, hyperedge replacement
grammars (HRG) (Drewes et al., 1997) have been
revisited, explored and used for semantic-based
machine translation (Jones et al., 2012). How-
ever, the translation process is rather complex and
the resources it relies on, namely abstract meaning
corpora, are limited as well.

As most available syntactic resources and tools
are tree-based, in this paper we propose to con-
vert dependency trees, which are usually taken as
a kind of shallow semantic representation, to de-
pendency graphs by labelling edges. We then use
a synchronous version of edge replacement gram-
mar (ERG) (Section 2), a special case of HRG,
to translate these graphs. The resulting translation
model has the same order of magnitude in terms
of time complexity with the hierarchical phrase-
based model (HPB) (Chiang, 2005) under a certain
restriction (Section 3).

Compared to dependency tree-to-string models,
using ERG for graph-to-string translation brings
some benefits (Section 3). Thanks to the stronger
generative capacity of the grammar, our model
can naturally translate siblings in a tree struc-
ture, which are usually treated as non-syntactic
phrases and handled by other techniques (Huck et
al., 2014; Xie et al., 2014). Furthermore, com-
pared to the known treelet approach (Quirk et al.,
2005) and Dep2Str (Xie et al., 2011), our method
not only uses treelets but also has a full capacity
of reordering.

We define our translation model (Section 4) in
the log-linear framework (Och and Ney, 2002).
Large-scale experiments (Section 5) on Chinese–
English and German–English, two language pairs
that have a high degree of syntactic reordering,
show that our method significantly improves trans-
lation quality over both HPB and Dep2Str, as
measured by BLEU (Papineni et al., 2002), TER
(Snover et al., 2006) and METEOR (Denkowski
and Lavie, 2011). We also find that the rules in
our model are more suitable for long-distance re-
ordering and translating long sentences.

2 Edge Replacement Grammar

As a special case of HRG, ERG is also a context-
free rewriting grammar to recognize and produce
graphs. Following HRG, the graph we use in this
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Figure 1: An example of a derivation in an ERG. Dark circles are external nodes.

paper is connected, nodes ordered, acyclic and
has edge labels but no node labels (Chiang et al.,
2013). We provide some formal definitions on
ERG.

Definition 1. A connected, edge-labeled, ordered
graph is a tuple H = 〈V,E, φ〉, where

• V is a finite set of nodes.

• E ⊆ V 2 is a finite set of edges.

• φ : E → C assigns a label (drawn from C)
to each edge.

In ERG, the elementary unit is a graph frag-
ment, which is also the right-hand side of a pro-
duction in the grammar. Its definition is as follows.

Definition 2. A graph fragment is a tuple H =
〈V,E, φ,X〉, where 〈V,E, φ〉 is a graph and X ∈
(V ∪ V 2) is a list of distinct nodes. Following
Chiang et al. (2013), we call these external nodes.

The external nodes indicate how to integrate a
graph into another one during a derivation. Dif-
ferent to HRG, ERG limits the number of external
nodes to 2 at most to make sure hyperedges do not
exist during a derivation. Now we define the ERG.

Definition 3. An edge replacement grammar is a
tuple 〈N,T, P, S〉, where

• N and T are disjoint finite sets of non-
terminal symbols and terminal symbols, re-
spectively.

• P is a finite set of productions of the form
A→ R, where A ∈ N and R is a graph frag-
ment, where edge-labels are from N

⋃
T .

• S ∈ N is the start symbol.

Figure 1 shows an example of a derivation in an
ERG to produce a graph. Starting from the start
symbol S, when a rule (A → R) is applied to an
edge e, the edge is replaced by the graph fragment
R. Just like in HRG, the ordering of nodes Ve in e
and external nodes XR in R implies the mapping
from Ve to XR (Chiang et al., 2013).

3 Graph-to-String Grammar

In SMT, we need a synchronous grammar to si-
multaneously parse an input graph and produce
translations. The graph we use in this paper is
from a dependency structure which is capable of
modelling long-distance relations in a sentence.

3.1 The Grammar
Before defining the synchronous grammar, we
firstly define a dependency graph which is a spe-
cial case of a graph.
Definition 4. A dependency graph is a tuple
〈V,E, φ,∆〉, where 〈V,E, φ〉 is a graph and ∆ is
a restriction: edges are ordered.

A dependency graph is directly derived from
a dependency tree by labeling edges with words,
as shown in Figure 2. Although in general graph
edges are unordered, in Definition 4 we keep word
order by ordering edges, because the word order is
an important piece of information for translation.

Similar to the graph fragment, a dependency-
graph fragment is defined as below.
Definition 5. A dependency-graph fragment is a
tuple 〈V,E, φ,∆, X〉, where 〈V,E, φ,∆〉 is a de-
pendency graph,X ∈ (V ∪V 2) is a list of external
nodes.
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Figure 2: An example of deriving a dependency
graph from a dependency tree by labelling edges
with words.

In this paper, we define a synchronous ERG
over dependency graphs as a dependency graph-
to-string grammar, which can be used for MT.

Definition 6. A dependency graph-to-string
grammar (DGSG) is a tuple 〈N,T, T ′, P, S〉,
where

• N is a finite set of non-terminal symbols.

• T and T ′ are finite sets of terminal symbols.

• S ∈ N is the start symbol.

• P is a finite set of productions of the form
〈A→ R,A′ → R′,∼〉, where A,A′ ∈ N , R
is a dependency-graph fragment over N

⋃
T

andR′ is a string overN
⋃
T ′. ∼ is a one-to-

one mapping between non-terminal symbols
in R and R′.

Figure 3 shows a derivation simultaneously pro-
ducing a Chinese dependency graph and an En-
glish string using a DGSG. Each time a rule is ap-
plied, the dependency-graph fragment in the rule
replaces an edge in the source graph, and the string
in the rule replaces a non-terminal in the target
string.

Proposition 1. DGSG has stronger generative ca-
pacity over graph-string pairs than both SCFG and
synchronous tree substitution grammar (STSG).

Proof. STSG has stronger generative capacity
over structures than SCFG (Chiang, 2012).1

Any STSG can easily be converted into a DGSG
by labelling edges in tree structures.

1The following STSG generates a trivial example of a
tree-string pair that no SCFG can generate, as SCFG must
always have an equal number of non-terminal symbols.

X
|
ε

:

X
|
X
|
ε

The following DGSG generates a trivial exam-
ple of a graph-string pair, which no STSG can gen-
erate, as the left-head side has no head nodes while
STSG always requires one to form a tree.

c:a b

This proof is also verified in Figure 3 where
the third rule is used to translate a non-syntactic
phrase, which can be a problem for dependency
tree-to-string methods. In addition, the second
rule translates a treelet and the first rule encodes
reordering information inside. All these three
aspects are uniformly modeled in our grammar,
which makes it more powerful than other methods,
such as the treelet approach and the Dep2Str.

3.2 Time Complexity and a Restriction

Given a dependency graph, training and decod-
ing time using DGSG depends on the number of
dependency-graph fragments. For example, for a
graph where the degree of a node is k, the number
of all possible fragments starting from the node is
O(2k). Therefore, the time complexity would be
exponential if we consider them all.

It is easy to find that the high complexity of
DGSG comes from the free combination of edges.
That means that a dependency-graph fragment can
cover discontinuous words of an input sentence.
However, this is not the convention in the field of
SMT.

For efficient training and decoding, we add a re-
striction to DGSG: each dependency-graph frag-
ment covers a continuous span of the source sen-
tence. This reduces the complexity from exponen-
tial time to cubic time.

3.3 Non-terminal Symbols

In this paper we build a dependency graph-to-
string model, so we only use one non-terminal
symbol X as in HPB on the target side. However,
on the source side we define non-terminal symbols
over Part-of-Speech (POS) tags, which can be eas-
ily obtained as a by-product of dependency pars-
ing.

We define the head of a dependency-graph frag-
ment H as a list of edges, the dependency head of
each of which is not in this fragment. Then the
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Figure 3: An example of a derivation in dependency graph-to-string grammar to produce a Chinese
dependency graph and an English string. Rules are included in dashed rectangles. Target strings are in
solid rectangles. External nodes are dark circles. This example is under the restriction in Section 3.2. In
addition to the start symbol S, non-terminal symbols for the source side are M and N , while the target
side only has one non-terminal X . The index in each non-terminal of a rule indicates the mapping.
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Figure 4: An example inducing a non-terminal
symbol (left side) for a dependency-graph frag-
ment (right side). Each edge is labeled by a word
associated with its POS tag. The head of this frag-
ment includes three edges which are in the rectan-
gle.

non-terminal symbol for H is defined as the join-
ing of POS tags of its head (Li et al., 2012). Figure
4 shows an example.

3.4 Rule Extraction
As well as the restriction defined in Section 3.2
making the grammar much smaller, it also results
in a similar way of extracting rules as in HPB. In-
spired by HPB, we define the rule set over initial
pairs.

Given a word-aligned dependency graph-string
pair P = 〈G, e,∼〉, let Gji stand for the sub-graph
(it may not be connected) covering words from po-
sition i to position j. Then a rule 〈Gji , ej

′
i′ 〉 is an

initial pair of P , iff:

1. Gji is a dependency-graph fragment. That
means it is a connected sub-graph and has at
most two external nodes, nodes which con-
nect with nodes outside or are the root.

2. It is consistent with the word alignment ∼
(Och and Ney, 2004).

The set of rules from P satisfies the following:

1. If 〈Gji , ej
′
i′ 〉 is an initial pair, then

〈N(Gji )→ Gji , X → ej
′
i′ 〉

is a rule, where N(G) defines the non-
terminal symbol for G.

2. If 〈N(R) → R,X → R′〉 is a rule of P and
〈Gji , ej

′
i′ 〉 is an initial pair such that Gji is a

sub-graph of R and R′ = r1e
j′
i′ r2, then

〈N(R)→ R\Gji k, X → r1Xkr2〉

is a rule of P , where \ means replacing Gji
in R with an edge labelled with N(Gji ) and

k is a unique index for a pair of non-terminal
symbols.

As in HPB, in addition to rules extracted from
the parallel corpus, we also use glue rules to com-
bine fragments and translations when no matched
rule can be found.

Furthermore, we can use the same rule extrac-
tion algorithm as that in HPB, except that we need
to check if a span of a source sentence indicates
a dependency-graph fragment, in which case we
keep the dependency structure and induce a non-
terminal for the fragment.

4 Model and Decoding

We define our model in the log-linear framework
over a derivation d, as in Equation (1):

P (d) ∝
∏
i

φi(d)λi (1)

where φi are features defined on derivations and
λi are feature weights. In our experiments, we use
9 features:

• translation probabilities P (s|t) and P (t|s),
where s is the source graph fragment and t
is the target string.

• lexical translation probabilities Plex(s|t) and
Plex(t|s).

• language model lm(e) over translation e.

• rule penalty exp(−1).

• word penalty exp(|e|).

• glue penalty exp(−1).

• unknown words penalty exp(u(g)), where
u(g) is the number of unknown words in a
source graph g.

Our decoder is based on the conventional chart
parsing CYK algorithm (Kasami, 1965; Younger,
1967; Cocke and Schwartz, 1970). It searches for
the best derivation d∗ among all possible deriva-
tions D, as in Equation (2):

d∗ = argmax
d∈D

P (d) (2)

For each span of an input graph, the decoder
checks if it is a dependency-graph fragment. Then
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ZH–EN
corpus #sent. #words(ZH) #words(EN)
train 1.5M+ 38M+ ∼45M
dev 878 22,655 26,905
MT04 1,597 43,719 52,705
MT05 1,082 29,880 35,326

DE–EN
corpus #sent. #words(DE) #words(EN)
train 2M+ 52M+ 55M+
dev 3,003 72,661 74,753
WMT12 3,003 72,603 72,988
WMT13 3,000 63,412 64,810

Table 1: Chinese–English (ZH–EN) and German–
English (DE–EN) corpora. For the English side of
dev and test sets, words counts are averaged across
all references.

for each fragment, the decoder finds rules to trans-
late it. The translation of a large span can be ob-
tained by combining translations from its sub-span
using rules which have non-terminals. Finally,
glue rules are used to make sure that at least one
translation is produced.

5 Experiment

We conduct experiments on Chinese–English and
German–English translation tasks.

5.1 Datasets

The Chinese–English training corpus is from
LDC, including LDC2002E18, LDC2003E07,
LDC2003E14, LDC2004T07, the Hansards por-
tion of LDC2004T08 and LDC2005T06. NIST
2002 is taken as a development set to tune weights,
and NIST 2004 (MT04) and NIST 2005 (MT05)
are two test sets to evaluate systems. Table 1 pro-
vides a summary of this corpus. The Stanford Chi-
nese word segmenter (Chang et al., 2008) is used
to segment Chinese sentences. The Stanford de-
pendency parser (Chang et al., 2009) parses a Chi-
nese sentence into a projective dependency tree
which is then converted to a dependency graph in
our model.

The German–English training corpus is from
WMT 2014, including Europarl V7 and News
Commentary. News-test 2011 is taken as a de-
velopment set, while News-test 2012 (WMT12)
and News-test 2013 (WMT13) are our test sets.
Table 1 provides a summary of this corpus. We

use mate-tools2 to perform morphological analysis
and parse German sentences (Bohnet, 2010). Then
MaltParser3 converts a parse result into a projec-
tive dependency tree (Nivre and Nilsson, 2005).

5.2 Settings

In this paper, we mainly compare our system
(DGST) with HPB in Moses (Koehn et al., 2007).
We implement our model in Moses and take
the same settings as Moses HPB in all experi-
ments. In addition, translation results from a re-
cently open-source dependency tree-to-string sys-
tem, Dep2Str4 (Li et al., 2014), which is imple-
mented in Moses and improves the dependency-
based model in Xie et al. (2011), are also reported.
All systems use the same sets of features defined
in Section 4.

In all experiments, word alignment is performed
by GIZA++ (Och and Ney, 2003) with the heuris-
tic function grow-diag-final-and. We use SRILM
(Stolcke, 2002) to train a 5-gram language model
on the Xinhua portion of the English Gigaword
corpus 5th edition with modified Kneser-Ney dis-
counting (Chen and Goodman, 1996). Minimum
Error Rate Training (MERT) (Och, 2003) is used
to tune weights.

To obtain more reliable results, in each experi-
ment, we run MERT three times and report aver-
age scores. These scores are calculated by three
widely used automatic metrics in case-insensitive
mode: BLEU, METEOR and TER.

5.3 Results

Table 2 shows the scores of all three metrics on all
systems. Similar to Li et al. (2014), in our experi-
ments Dep2Str has on average a comparable result
with Moses HPB in terms of BLEU and METEOR
scores. However, it obtains a significantly higher
(i.e. worse) TER score on the Chinese–English
task. This may suggest that translations produced
by Dep2Str need more post-editing effort (He et
al., 2010).

By contrast, on all test sets, measured by all
metrics, our system is significantly better than
Moses HPB. On the Chinese–English task, our
system achieves an average gain of 1.25 (abso-
lute, 3.6% relative) BLEU score and 0.55 (abso-
lute, 1.7% relative) METEOR score while also ob-

2http://code.google.com/p/mate-tools/
3http://www.maltparser.org/
4http://computing.dcu.ie/˜liangyouli/

dep2str.zip
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Metric System
ZH–EN DE–EN

MT04 MT05 WMT12 WMT13

BLEU ↑
Moses HPB 35.6 33.8 20.2 22.7
Dep2Str 35.4 33.9 20.3 22.8
DGST 36.6 35.3 20.7 23.3

METEOR ↑
Moses HPB 31.6 31.9 28.6 29.7
Dep2Str 31.8 31.9 28.5 29.5∗

DGST 32.1 32.5 28.7 29.8

TER ↓
Moses HPB 57.0 58.3 63.2 59.5
Dep2Str 58.2∗ 59.6∗ 63.1 59.6
DGST 56.1 57.0 62.6 59.0

Table 2: Metric scores for all systems on Chinese–English (ZH–EN) and German–English (DE–EN) cor-
pus. Each score is the average score over three MERT runs. Bold figures mean a system is significantly
better than Moses HPB at p ≤ 0.01. Moses HPB is significantly better than systems with ∗ at p ≤ 0.01.

Length
Percentage

MT04 MT05 WMT12 WMT13
(0, 10] 7.6% 8.6% 15.0% 19.2%
(10, 20] 28.2% 26.0% 31.4% 37.2%
(20, 30] 28.2% 26.5% 26.3% 24.5%
(30, 40] 20.2% 23.8% 14.4% 12.0%
(40,∞) 15.7% 15.2% 12.9% 7.2%

Table 3: Statistics of sentence length on four test
sets.

taining a reduction of 1.1 (absolute, 1.91% rela-
tive) TER score on average.

On the German–English task, our system
achieves an average gain of 0.55 (absolute, 2.56%
relative) BLEU score and 0.1 (absolute, 0.35% rel-
ative) METEOR score and also obtains a reduction
of 0.55 (absolute, 0.89% relative) TER score on
average.

5.4 Analysis

As shown in Table 2, compared to Moses HPB
and Dep2Str, our system achieves higher transla-
tion quality as measured by three automatic met-
rics. In this section, we investigate whether de-
pendency structures bring benefits as expected on
long-distance reordering. Table 3 provides the
statistics on sentence length of our four test sets.

In both HPB and our model, the length range
of a reordering performed on an input sentence is
related to the use of glue grammars which bring
two benefits during decoding. When no matched
rule is found in the models, glue grammars are ap-
plied to make sure a translation is produced. In ad-
dition, because of the generalization capability of

rules, which typically are learned under a length
limitation, using them on long sentences could
cause translation quality to deteriorate. Therefore,
when the length of a phrase is greater than a cer-
tain value, glue grammars are also applied. There-
fore, our experiment of analysis is based on the
length limitation that a rule can cover (max. phrase
length) during decoding.

We set this max. phrase length to different val-
ues, including 10, 20 (default), 30, 40 and 50.
Figure 5 gives the BLEU scores on all test sets.
We find that on all different values, our system
achieves higher BLEU scores than Moses HPB.
In addition, when the max. phrase length be-
comes larger, Moses HPB shows a declining trend
in most cases, especially on the German–English
task (WMT12 and WMT13). However, our sys-
tem is less sensitive to this value. We hypothesize
that this is because rules from dependency graphs
have better generalization for translating longer
phrases and are more suitable for translating long
sentences.

5.5 Case Study

On a manual check, we find that translations pro-
duced by our system are more fluent than those of
both Moses HPB and Dep2Str. Figure 6 gives an
example comparing translations produced by three
systems on the Chinese–English task.

We first find a case of long-distance relation,
i.e. the subject-verb-object (SVO) structure in the
source sentence. In this example, this relation im-
plies a long-distance reordering, which moves the
translation of the object to the front of its mod-
ifiers, as shown in the given reference. Com-
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a rule can cover during decoding is set to different values.
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Ref: The two sides welcomed the decision by the Iraqi Interim Governing Council to establish a special court to try the murderers.

HPB:  the two sides welcomed the 

interim iraqi authority on establishing 

a special court, trial of the murderer.

Dep2Str: the two sides welcomed the 

decision on the Establishment of a 

special court, justice murderers of the 

provisional governing council of iraq.

DGST: the two sides welcomed the decision 

of the iraqi interim governing council on the 

establishment of a special court, justice 

murderers.

Figure 6: An example of comparing translations produced by three systems on the Chinese–English
task. The source sentence is parsed into a dependency structure. Each source word is annotated by a
corresponding English word (or phrase).
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Figure 7: An example of inducing a dependency structure in Figure 6 to ”X的(of) X” structure in our
system by using treelets and non-syntactic phrases. í denotes one or more steps. All non-terminals are
simply represented by X.
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pared to Moses HPB, both Dep2Str and our sys-
tem, which rely on dependency structures, are ca-
pable of dealing with this. This also suggests that
dependency structures are useful for long-distance
reordering.

Furthermore, compared to Dep2Str, our system
produces a better translation for the ”X 的(of)
X” expression, which is not explicitly represented
in the dependency structure and thus results in a
wrong translation in Dep2Str. After looking into
the details of the translation process, we find that
our system induces the dependency structure to the
”X 的(of) X” structure by handling both treelets
and non-syntactic phrases. Figure 7 shows the pro-
cess of this induction.

6 Related Work

Dependency structures have been used in SMT for
a few years. Because of its better inter-lingual
phrasal cohesion properties (Fox, 2002), it is be-
lieved to be beneficial to translation.

Researchers have tried to use dependency struc-
tures on both target and source sides. Shen et
al. (2010) propose a string-to-dependency model
by using dependency fragments of neighbouring
words on the target side, which makes the model
easier to include a dependency-based language
model.

Menezes and Quirk (2005) and Quirk et al.
(2005) propose the treelet approach which uses de-
pendency structures on the source side. Xiong et
al. (2007) extend this approach by allowing gaps
in rules. However, their methods need a sepa-
rate reordering model to decide the position of
translated words (insertion problem). To avoid
this problem, Xie et al. (2011) propose to use
full head-dependent structures of a dependency
tree and build a new dependency-to-string model.
However, this model has difficulties in handling
non-syntactic phrasal rules and ignores treelets.
Meng et al. (2013) and Xie et al. (2014) further
augment this model by incorporating constituent
phrases and integrating fix/float structures (Shen
et al., 2010), respectively, to allow phrasal rules.
Li et al. (2014) extend this model by decomposing
head-dependent structures into treelets.

Different from these methods, by labelling
edges and using the ERG, our model considers the
three aspects in a unified way: treelet, reordering
and non-syntactic phrase. In addition, the ERG
also naturally provides a decision on what kind of

treelets and phrases should be used.

7 Conclusion

In this paper, we present a dependency graph-to-
string grammar based on a graph grammar, which
we call edge replacement grammar. This gram-
mar can simultaneously produce a pair of depen-
dency graph and string. With a restriction of us-
ing contiguous edges, our translation model built
using this grammar can decode an input depen-
dency graph, which is directly converted from a
dependency tree, in cubic time using the CYK al-
gorithm.

Experiments on Chinese–English and German–
English tasks show that our model is significantly
better than the hierarchical phrase-based model
and a recent dependency tree-to-string model
(Dep2Str) in Moses. We also find that the rules
used in our model are more suitable for long-
distance reordering and translating long sentences.

Although experiments show significant im-
provements over baselines, our model has limita-
tions that can be avenues for future work. The re-
striction used in this paper reduces the time com-
plexity but at the same time reduces the generative
capacity of graph grammars. Without allowing hy-
peredges or only using at most two external nodes
reduces the phrase coverage in our model as well.
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