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Abstract

Coherence is what makes a multi-sentence
text meaningful, both logically and syn-
tactically. To solve the challenge of or-
dering a set of sentences into coherent or-
der, existing approaches focus mostly on
defining and using sophisticated features
to capture the cross-sentence argumenta-
tion logic and syntactic relationships. But
both argumentation semantics and cross-
sentence syntax (such as coreference and
tense rules) are very hard to formalize. In
this paper, we introduce a neural network
model for the coherence task based on
distributed sentence representation. The
proposed approach learns a syntactico-
semantic representation for sentences au-
tomatically, using either recurrent or re-
cursive neural networks. The architecture
obviated the need for feature engineering,
and learns sentence representations, which
are to some extent able to capture the
‘rules’ governing coherent sentence struc-
ture. The proposed approach outperforms
existing baselines and generates the state-
of-art performance in standard coherence
evaluation tasks1.

1 Introduction

Coherence is a central aspect in natural language
processing of multi-sentence texts. It is essen-
tial in generating readable text that the text plan-
ner compute which ordering of clauses (or sen-
tences; we use them interchangeably in this paper)
is likely to support understanding and avoid con-
fusion. As Mann and Thompson (1988) define it,

A text is coherent when it can be ex-
plained what role each clause plays with
regard to the whole.

1Code available at stanford.edu/˜jiweil/ or by
request from the first author.

Several researchers in the 1980s and 1990s ad-
dressed the problem, the most influential of
which include: Rhetorical Structure Theory (RST;
(Mann and Thompson, 1988)), which defined
about 25 relations that govern clause interde-
pendencies and ordering and give rise to text
tree structures; the stepwise assembly of seman-
tic graphs to support adductive inference toward
the best explanation (Hobbs et al., 1988); Dis-
course Representation Theory (DRT; (Lascarides
and Asher, 1991)), a formal semantic model of
discourse contexts that constrain coreference and
quantification scoping; the model of intention-
oriented conversation blocks and their stack-based
queueing to model attention flow (Grosz and Sid-
ner, 1986), and more recently an inventory of a
hundred or so binary inter-clause relations and as-
sociated annotated corpus (Penn Discourse Tree-
bank. Work in text planning implemented some
of these models, especially operationalized RST
(Hovy, 1988) and explanation relations (Moore
and Paris, 1989) to govern the planning of coher-
ent paragraphs. Other computational work defined
so called schemas (McKeown, 1985), frames with
fixed sequences of clause types to achieve stereo-
typical communicative intentions.

Little of this work survives. Modern research
tries simply to order a collection of clauses or sen-
tences without giving an account of which order(s)
is/are coherent or what the overall text structure
is. The research focuses on identifying and defin-
ing a set of increasingly sophisticated features by
which algorithms can be trained to propose order-
ings. Features being explored include the clause
entities, organized into a grid (Lapata and Barzi-
lay, 2005; Barzilay and Lapata, 2008), coreference
clues to ordering (Elsner and Charniak, 2008),
named-entity categories (Eisner and Charniak,
2011), syntactic features (Louis and Nenkova,
2012), and others. Besides being time-intensive
(feature engineering usually requites considerable
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Figure 1: Illustrations of coherent (positive) vs not-coherent (negative) training examples.

effort and can depend greatly on upstream feature
extraction algorithms), it is not immediately ap-
parent which aspects of a clause or a coherent text
to consider when deciding on ordering. More im-
portantly, the features developed to date are still
incapable of fully specifying the acceptable order-
ing(s) within a context, let alone describe why they
are coherent.

Recently, deep architectures, have been applied
to various natural language processing tasks (see
Section 2). Such deep connectionist architectures
learn a dense, low-dimensional representation of
their problem in a hierarchical way that is capa-
ble of capturing both semantic and syntactic as-
pects of tokens (e.g., (Bengio et al., 2006)), en-
tities, N-grams (Wang and Manning, 2012), or
phrases (Socher et al., 2013). More recent re-
searches have begun looking at higher level dis-
tributed representations that transcend the token
level, such as sentence-level (Le and Mikolov,
2014) or even discourse-level (Kalchbrenner and
Blunsom, 2013) aspects. Just as words combine
to form meaningful sentences, can we take advan-
tage of distributional semantic representations to
explore the composition of sentences to form co-
herent meanings in paragraphs?

In this paper, we demonstrate that it is feasi-
ble to discover the coherent structure of a text
using distributed sentence representations learned
in a deep learning framework. Specifically, we
consider a WINDOW approach for sentences, as
shown in Figure 1, where positive examples are
windows of sentences selected from original arti-
cles generated by humans, and negatives examples
are generated by random replacements2. The se-
mantic representations for terms and sentences are
obtained through optimizing the neural network
framework based on these positive vs negative ex-

2Our approach is inspired by Collobert et al.’s idea (2011)
that a word and its context form a positive training sample
while a random word in that same context gives a negative
training sample, when training word embeddings in the deep
learning framework.

amples and the proposed model produces state-of-
art performance in multiple standard evaluations
for coherence models (Barzilay and Lee, 2004).

The rest of this paper is organized as follows:
We describe related work in Section 2, then de-
scribe how to obtain a distributed representation
for sentences in Section 3, and the window compo-
sition in Section 4. Experimental results are shown
in Section 5, followed by a conclusion.

2 Related Work

Coherence In addition to the early computa-
tional work discussed above, local coherence was
extensively studied within the modeling frame-
work of Centering Theory (Grosz et al., 1995;
Walker et al., 1998; Strube and Hahn, 1999; Poe-
sio et al., 2004), which provides principles to form
a coherence metric (Miltsakaki and Kukich, 2000;
Hasler, 2004). Centering approaches suffer from a
severe dependence on manually annotated input.

A recent popular approach is the entity grid
model introduced by Barzilay and Lapata (2008)
, in which sentences are represented by a vec-
tor of discourse entities along with their gram-
matical roles (e.g., subject or object). Proba-
bilities of transitions between adjacent sentences
are derived from entity features and then concate-
nated to a document vector representation, which
is used as input to machine learning classifiers
such as SVM. Many frameworks have extended
the entity approach, for example, by pre-grouping
entities based on semantic relatedness (Filippova
and Strube, 2007) or adding more useful types
of features such as coreference (Elsner and Char-
niak, 2008), named entities (Eisner and Charniak,
2011), and discourse relations (Lin et al., 2011).

Other systems include the global graph model
(Guinaudeau and Strube, 2013) which projects en-
tities into a global graph. Louis and Nenkova
(2012) introduced an HMM system in which the
coherence between adjacent sentences is modeled
by a hidden Markov framework captured by the

2040



Figure 2: Sentential compositionality obtained from (a) recurrent / (b) recursive neural network. The
bottom layer represents word vectors in the sentence. The top layer hs denotes the resulting sentence
vector.

transition rules of different topics.

Recurrent and Recursive Neural Networks In
the context of NLP, recurrent neural networks
view a sentence as a sequence of tokens and in-
corporate information from the past (i.e., preced-
ing tokens) (Schuster and Paliwal, 1997; Sutskever
et al., 2011) for acquisition of the current output.
At each step, the recurrent network takes as input
both the output of previous steps and the current
token, convolutes the inputs, and forwards the re-
sult to the next step. It has been successfully ap-
plied to tasks such as language modeling (Mikolov
et al., 2010) and spoken language understanding
(Mesnil et al., 2013). The advantage of recur-
rent network is that it does not depend on exter-
nal deeper structure (e.g., parse tree) and is easy to
implement. However, in the recurrent framework,
long-distance dependencies are difficult to capture
due to the vanishing gradient problem (Bengio et
al., 1994); two tokens may be structurally close to
each other, even though they are far away in word
sequence3.

Recursive neural networks comprise another
class of architecture, one that relies and operates
on structured inputs (e.g., parse trees). It com-
putes the representation for each parent based on
its children iteratively in a bottom-up fashion. A
series of variations have been proposed, each tai-
lored to different task-specific requirements, such
as Matrix-Vector RNN (Socher et al., 2012) that
represents every word as both a vector and a ma-
trix, or Recursive Neural Tensor Networks (Socher
et al., 2013) that allow the model to have greater

3For example, a verb and its corresponding direct object
can be far away in terms of tokens if many adjectives lies in
between, but they are adjacent in the parse tree (Irsoy and
Cardie, 2013).

interactions between the input vectors. Many tasks
have benefited from this recursive framework, in-
cluding parsing (Socher et al., 2011b), sentiment
analysis (Socher et al., 2013), and paraphrase de-
tection (Socher et al., 2011a).

2.1 Distributed Representations

Both recurrent and recursive networks require a
vector representation of each input token. Dis-
tributed representations for words were first pro-
posed in (Rumelhart et al., 1988) and have been
successful for statistical language modeling (El-
man, 1990). Various deep learning architectures
have been explored to learn these embeddings in
an unsupervised manner from a large corpus (Ben-
gio et al., 2006; Collobert and Weston, 2008;
Mnih and Hinton, 2007; Mikolov et al., 2013),
which might have different generalization capabil-
ities and are able to capture the semantic mean-
ings depending on the specific task at hand. These
vector representations can to some extent cap-
ture interesting semantic relationships, such as
King−man ≈ Queue−woman (Mikolov et al.,
2010), and recently have been successfully used
in various NLP applications, including named en-
tity recognition, tagging, segmentation (Wang et
al., 2013), and machine translation (e.g.,(Collobert
and Weston, 2008; Zou et al., 2013)).

3 Sentence Model

In this section, we demonstrate the strategy
adopted to compute a vector for a sentence given
the sequence of its words and their embeddings.
We implemented two approaches, Recurrent and
Recursive neural networks, following the de-
scriptions in for example (Mikolov et al., 2010;
Sutskever et al., 2011; Socher et al., 2013). As
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the details of both approaches can be readily found
there, we make this section brief and omit the de-
tails for brevity.

Let s denote a sentence, comprised of a se-
quence of words s = {w1, w2, ..., wns}, where ns
denotes the number of words within sentence s.
Each word w is associated with a specific vector
embedding ew = {e1

w, e
2
w, ..., e

K
w }, where K de-

notes the dimension of the word embedding. We
wish to compute the vector representation for cur-
rent sentence hs = {h1

s, h
2
s, ..., h

K
s }.

Recurrent Sentence Representation (Recur-
rent) The recurrent network captures certain
general considerations regarding sentential com-
positionality. As shown in Figure 2 (a), for sen-
tence s, recurrent network successively takes word
wi at step i, combines its vector representation etw
with former input hi−1 from step i− 1, calculates
the resulting current embedding ht, and passes it
to the next step. The standard recurrent network
calculates ht as follows:

ht = f(VRecurrent·ht−1+WRecurrent·etw+bRecurrent)
(1)

where WRecurrent and VRecurrent are K ×K ma-
trixes. bRecurrent denotes K × 1 bias vector and
f = tanh is a standard element-wise nonlinearity.

Note that calculation for representation at time
t = 1 is given by:

h1 = f(VRecurrent·h0+WRecurrent·e1
w+bRecurrent)

(2)
where h0 denotes the global sentence starting vec-
tor.

Recursive Sentence Representation (Recursive)
Recursive sentence representation relies on the
structure of parse trees, where each leaf node of
the tree corresponds to a word from the original
sentence. It computes a representation for each
parent node based on its immediate children re-
cursively in a bottom-up fashion until reaching the
root of the tree. Concretely, for a given parent p
in the tree and its two children c1 (associated with
vector representation hc1) and c2 (associated with
vector representation hc2), standard recursive net-
works calculates hp for p as follows:

hp = f(WRecursive · [hc1 , hc2 ] + bRecursive) (3)

where [hc1 , hc2 ] denotes the concatenating vec-
tor for children vector representation hc1 and hc2 .

WRecursive is a K × 2K matrix and bRecursive is
the 1×K bias vector. f(·) is tanh function.

Recursive neural models compute parent vec-
tors iteratively until the root node’s representation
is obtained, and use the root embedding to repre-
sent the whole sentence, as shown in Figure 2 (b).

4 Coherence Model

The proposed coherence model adopts a window
approach (Collobert et al., 2011), in which we
train a three-layer neural network based on a slid-
ing windows of L sentences.

4.1 Sentence Convolution
We treat a window of sentences as a clique C and
associate each clique with a tag yC that takes the
value 1 if coherent, and 0 otherwise4. As shown in
Figure 1, cliques taken from original articles are
treated as coherent and those with sentences ran-
domly replaced are used as negative examples. .

The sentence convolution algorithm adopted in
this paper is defined by a three-layer neural net-
work, i.e., sentence-level input layer, hidden layer,
and overall output layer as shown in Figure 3. For-
mally, each clique C takes as input a (L×K)× 1
vector hC by concatenating the embeddings of
all its contained sentences, denoted as hC =
[hs1 , hs2 , ..., hsL ]. (Note that if we wish to clas-
sify the first and last sentences and include their
context, we require special beginning and ending
sentence vectors, which are defined as h<S> for
sstart and h</S> for send respectively.)

Let H denote the number of neurons in the hid-
den (second) layer. Then each of the hidden lay-
ers takes as input hC and performs the convolution
using a non-linear tanh function, parametrized by
Wsen and bsen. The concatenating output vector
for hidden layers, defined as qC , can therefore be
rewritten as:

qC = f(Wsen × hC + bsen) (4)

where Wsen is a H× (L×K) dimensional matrix
and bsen is a H × 1 dimensional bias vector.

4instead of a binary classification (correct/incorrect), an-
other commonly used approach is the contrastive approach
that minimizes the score function max(0, 1 − s + sc) (Col-
lobert et al., 2011; Smith and Eisner, 2005). s denotes the
score of a true (coherent) window and sc the score of a cor-
rupt (containing incoherence) one) in an attempt to make the
score of true windows larger and corrupt windows smaller.
We tried the contrastive one for both recurrent and recursive
networks but the binary approach constantly outperformed
the contrastive one in this task.
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Figure 3: An example of coherence model based on a window of sentences (clique).

The output layer takes as input qC and generates
a scalar using linear function UT qC +b. A sigmod
function is then adopted to project the value to a
[0,1] probability space, which can be interpreted
as the probability of whether one clique is coher-
ent or not. The execution at the output layer can
be summarized as:

p(yC = 1) = sigmod(UT qC + b) (5)

where U is anH×1 vector and b denotes the bias.

4.2 Training
In the proposed framework, suppose we have M
training samples, the cost function for recurrent
neural network with regularization on the training
set is given by:

J(Θ) =
1
M

∑
C∈trainset

{−yC log[p(yC = 1)]

− (1− yC) log[1− p(yC = 1)]}+
Q

2M

∑
θ∈Θ

θ2

(6)
where

Θ = [WRecurrent,Wsen, Usen]

The regularization part is paralyzed by Q to avoid
overfitting. A similar loss function is applied to
the recursive network with only minor parameter
altering that is excluded for brevity.

To minimize the objective J(Θ), we use the di-
agonal variant of AdaGrad (Duchi et al., 2011)
with minibatches, which is widely applied in deep
learning literature (e.g.,(Socher et al., 2011a; Pei
et al., 2014)). The learning rate in AdaGrad is
adapting differently for different parameters at dif-
ferent steps. Concretely, for parameter updates, let

giτ denote the subgradient at time step for param-
eter θi, which is obtained from backpropagation5,
the parameter update at time step t is given by:

θτ = θτ−1 − α∑τ
t=0

√
gi2τ

giτ (7)

where α denotes the learning rate and is set to 0.01
in our approach. Optimal performance is achieved
when batch size is set between 20 and 30.

4.3 Initialization

Elements in Wsen are initialized by randomly
drawing from the uniform distribution [−ε, ε],
where ε =

√
6√

H+K×L as suggested in (Collobert
et al., 2011). Wrecurrent, Vrecurrent, Wrecursive

and h0 are initialized by randomly sampling from
a uniform distribution U(−0.2, 0.2). All bias vec-
tors are initialized with 0. Hidden layer numberH
is set to 100.

Word embeddings {e} are borrowed from
Senna (Collobert et al., 2011; Collobert, 2011).
The dimension for these embeddings is 50.

5 Experiments

We evaluate the proposed coherence model on two
common evaluation approaches adopted in exist-
ing work (Barzilay and Lapata, 2008; Louis and
Nenkova, 2012; Elsner et al., 2007; Lin et al.,
2011): Sentence Ordering and Readability Assess-
ment.

5.1 Sentence Ordering

We follow (Barzilay and Lapata, 2008; Louis and
Nenkova, 2012; Elsner et al., 2007; Lin et al.,

5For more details on backpropagation through RNNs, see
Socher et al. (2010).
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2011) that all use pairs of articles, one containing
the original document order and the other a ran-
dom permutation of the sentences from the same
document. The pairwise approach is predicated
on the assumption that the original article is al-
ways more coherent than a random permutation;
this assumption has been verified in Lin et al.’s
work (2011).

We need to define the coherence score Sd for
a given document d, where d is comprised of a
series of sentences, d = {s1, s2, .., sNd

}, and Nd

denotes the number of sentences within d. Based
on our clique definition, document d is comprised
of Nd cliques. Taking window size L = 3 as ex-
ample, cliques generated from document d appear
as follows:

< sstart, s1, s2 >,< s1, s2, s3 >, ...,

< sNd−2, sNd−1, sNd
>,< sNd−1, sNd

, send >

The coherence score for a given document Sd is
the probability that all cliques within d are coher-
ent, which is given by:

Sd =
∏
C∈d

p(yC = 1) (8)

For document pair < d1, d2 > in our task, we
would say document d1 is more coherent than d2

if
Sd1 > Sd2 (9)

5.1.1 Dataset
We use two corpora that are widely employed
for coherence prediction (Barzilay and Lee, 2004;
Barzilay and Lapata, 2008; Elsner et al., 2007).
One contains reports on airplane accidents from
the National Transportation Safety Board and the
other contains reports about earthquakes from the
Associated Press. These articles are about 10
sentences long and usually exhibit clear sentence
structure. For preprocessing, we only lowercase
the capital letters to match with tokens in Senna
word embeddings. In the recursive network, sen-
tences are parsed using the Stanford Parser6 and
then transformed into binary trees. The accident
corpus ends up with a vocabulary size of 4758 and
an average of 10.6 sentences per document. The
earthquake corpus contains 3287 distinct terms
and an average of 11.5 sentences per document.

6http://nlp.stanford.edu/software/
lex-parser.shtml

For each of the two corpora, we have 100 arti-
cles for training and 100 (accidents) and 99 (earth-
quakes) for testing. A maximum of 20 random
permutations were generated for each test arti-
cle to create the pairwise data (total of 1986 test
pairs for the accident corpus and 1956 for earth-
quakes)7.

Positive cliques are taken from original training
documents. For easy training, rather than creating
negative examples by replacing centered sentences
randomly, the negative dataset contains cliques
where centered sentences are replaced only by
other sentences within the same document.

5.1.2 Training and Testing
Despite the numerous parameters in the deep
learning framework, we tune only two principal
ones for each setting: window size L (tried on
{3, 5, 7}) and regularization parameterQ (tried on
{0.01, 0.1, 0.25, 0.5, 1.0, 1.25, 2.0, 2.5, 5.0}). We
trained parameters using 10-fold cross-validation
on the training data. Concretely, in each setting,
90 documents were used for training and evalua-
tion was done on the remaining articles, following
(Louis and Nenkova, 2012). After tuning, the final
model was tested on the testing set.

5.1.3 Model Comparison
We report performance of recursive and recurrent
networks. We also report results from some popu-
lar approaches in the literature, including:

Entity Grid Model : Grid model (Barzilay and
Lapata, 2008) obtains the best performance when
coreference resolution, expressive syntactic infor-
mation, and salience-based features are incorpo-
rated. Entity grid models represent each sentence
as a column of a grid of features and apply ma-
chine learning methods (e.g., SVM) to identify the
coherent transitions based on entity features (for
details of entity models see (Barzilay and Lapata,
2008)). Results are directly taken from Barzilay
and Lapata’s paper (2008).

HMM : Hidden-Markov approach proposed by
Louis and Nenkova (2012) to model the state
(cluster) transition probability in the coherent con-
text using syntactic features. Sentences need to be
clustered in advance where the number of clus-
ters is tuned as a parameter. We directly take

7Permutations are downloaded from http:
//people.csail.mit.edu/regina/coherence/
CLsubmission/.
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Acci Earthquake Average
Recursive 0.864 0.976 0.920
Recurrent 0.840 0.951 0.895

Entity Grid 0.904 0.872 0.888
HMM 0.822 0.938 0.880

HMM+Entity 0.842 0.911 0.877
HMM+Content 0.742 0.953 0.848

Graph 0.846 0.635 0.740

Table 1: Comparison of Different Coherence
Frameworks. Reported baseline results are among
the best performance regarding each approach is
reprinted from prior work from (Barzilay and Lap-
ata, 2008; Louis and Nenkova, 2012; Guinaudeau
and Strube, 2013).

the results from Louis and Nenkova’s paper and
report the best results among different combi-
nations of parameter and feature settings8. We
also report performances of models from Louis
and Nenkova’s work that combine HMM and en-
tity/content models in a unified framework.

Graph Based Approach : Guinaudeau and
Strube (2013) extended the entity grid model to
a bipartite graph representing the text, where the
entity transition information needed for local co-
herence computation is embedded in the bipartite
graph. The Graph Based Approach outperforms
the original entity approach in some of feature set-
tings (Guinaudeau and Strube, 2013).

As can be seen in Table 1, the proposed frame-
works (both recurrent and recursive) obtain state-
of-art performance and outperform all existing
baselines by a large margin. One interpretation
is that the abstract sentence vector representations
computed by the deep learning framework is more
powerful in capturing exactly the relevant the se-
mantic/logical/syntactic features in coherent con-
texts than features or other representations devel-
oped by human feature engineering are.

Another good quality of the deep learning
framework is that it can be trained easily and
makes unnecessary the effort required of feature
engineering. In contrast, almost all existing base-
lines and other coherence methods require sophis-
ticated feature selection processes and greatly rely
on external feature extraction algorithm.

The recurrent network is easier to implement
than the recursive network and does not rely on
external resources (i.e., parse trees), but the recur-
sive network obtains better performance by build-

8The details for information about parameter and feature
of best setting can be found in (Louis and Nenkova, 2012).

ing the convolution on parse trees rather than sim-
ply piling up terms within the sentence, which is
in line with common expectation.

Both recurrent and recursive models obtain bet-
ter performance on the Earthquake than the Acci-
dent dataset. Scrutiny of the corpus reveals that
articles reporting earthquakes exhibit a more con-
sistent structure: earthquake outbreak, describing
the center and intensity of the earthquake, injuries
and rescue operations, etc., while accident articles
usually exhibit more diverse scenarios.

5.2 Readability Assessment

Barzilay and Lapata (2008) proposed a readability
assessment task for stylistic judgments about the
difficulty of reading a document. Their approach
combines a coherence system with Schwarm and
Ostendorf’s (2005) readability features to clas-
sify documents into two categories, more read-
able (coherent) documents and less readable ones.
The evaluation accesses the ability to differentiate
“easy to read” documents from difficult ones of
each model.

5.2.1 Dataset
Barzilay and Lapata’s (2008) data corpus is
from the Encyclopedia Britannica and the
Britannica Elementary, the latter being a new
version targeted at children. Both versions con-
tain 107 articles. The Encyclopedia Britannica
corpus contains an average of 83.1 sentences
per document and the Britannica Elementary
contains 36.6. The encyclopedia lemmas are
written by different authors and consequently
vary considerably in structure and vocabulary
choice. Early researchers assumed that the chil-
dren version (Britannica Elementary) is easier
to read, hence more coherent than documents in
Encyclopedia Britannica. This is a somewhat
questionable assumption that needs further inves-
tigation.

5.2.2 Training and Testing
Existing coherence approaches again apply a pair-
wise ranking strategy and the article associated
with the higher score is considered to be the more
readable. As the replacement strategy for gener-
ating negative example is apparently not well fit-
ted to this task, we adopted the following training
framework: we use all sliding windows of sen-
tences from coherent documents (documents from
Britannica Elementary) as positive examples,
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Approach Accuracy
Recurrent 0.803
Recursive 0.828

Graph Approach 0.786
Entity 0.509
S&O 0.786

Entity+S&O 0.888

Table 2: Comparison of Different Coherence
Frameworks on Readability Assessment. Re-
ported baselines results are are taken from (Barzi-
lay and Lapata, 2008; Guinaudeau and Strube,
2013). S&O: Schwarm and Ostendorf (2005).

and cliques from Encyclopedia Britannica as
negative examples, and again apply Eq. 6 for train-
ing and optimization. During testing, we turn to
Equations 8 and 9 for pairwise comparison. We
adopted five-fold cross-validation in the same way
as in (Barzilay and Lapata, 2008; Guinaudeau and
Strube, 2013) for fair comparison. Parameters
were tuned within each training set also using five-
fold cross-validation. Parameters to tune included
window size L and regularization parameter Q.

5.3 Results

We report results of the proposed approaches in
the work along with entity model (Barzilay and
Lapata, 2008) and graph based approach (Elsner
and Charniak, 2008) in Table 2. The tabs shows
that deep learning approaches again significantly
outperform Entry and Global Approach baselines
and are nearly comparable to the combination of
entity and S&O features. Again, the recursive
network outperforms the recurrent network in this
task.

6 Conclusion

In this paper, we apply two neural network
approaches to the sentence-ordering (coherence)
task, using compositional sentence representations
learned by recurrent and recursive composition.
The proposed approach obtains state-of-art per-
formance on the standard coherence evaluation
tasks.
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