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Abstract

Open Relation Extraction (ORE) over-
comes the limitations of traditional IE
techniques, which train individual extrac-
tors for every single relation type. Sys-
tems such as ReVerb, PATTY, OLLIE, and
Exemplar have attracted much attention
on English ORE. However, few studies
have been reported on ORE for languages
beyond English. This paper presents a
syntax-based Chinese (Zh) ORE system,
ZORE, for extracting relations and seman-
tic patterns from Chinese text. ZORE
identifies relation candidates from auto-
matically parsed dependency trees, and
then extracts relations with their semantic
patterns iteratively through a novel double
propagation algorithm. Empirical results
on two data sets show the effectiveness of
the proposed system.

1 Introduction

Traditional Information Extraction (IE) system-
s train extractors for pre-specified relations (Kim
and Moldovan, 1993). This approach cannot scale
to the web, where target relations are not defined
in advance. Open Relation Extraction (ORE) at-
tempts to solve this problem by shallow-parsing-
based, syntax-based or semantic-role-based pat-
tern matching without pre-defined relation types,
and has achieved great success on open-domain
corpora ranging from news to Wikipedia (Banko
et al., 2007; Wu and Weld, 2010; Nakashole et
al., 2012; Etzioni et al., 2011; Moro and Nav-
igli, 2013). Many NLP and IR applications, in-
cluding selectional preference learning, common-
sense knowledge and entailment rule mining, have
benefited from ORE (Ritter et al., 2010). Howev-
er, most existing ORE systems focus on English,
and little research has been reported on other lan-
guages. In addition, existing ORE techniques are

mainly concerned with the extraction of textual re-
lations, without trying to give semantic analysis,
which is the advantage of traditional IE.

Our goal in this paper is to present a syntax-
based Chinese (Zh) ORE system, ZORE, which
extracts relations by using syntactic dependen-
cy patterns, while associating them with explic-
it semantic information. An example is shown
is Figure 1, where the relation (cnê (Oba-
ma)oÚ (President) , Pred[.� (graduate)],M
Ã (Harvard) {Æ� (Law School)) is extract-
ed from the given sentence “cnê (Obama) o
Ú (President) .� (graduate) u (from) MÃ
(Harvard) {Æ� (Law School)”, and general-
ized into the syntactic-semantic pattern {nsubj-
NR(Af) Pred[.� (graduate)] prep-u (from)
pobj-NN(Di)}. Here, Af and Di stand for human
and institution, respectively, according to a Chi-
nese taxonomy Extended Cilin (Che et al., 2010).

Rather than extracting binary relations and then
generalizing them into semantic patterns, which
most previous work does (Mausam et al., 2012;
Nakashole et al., 2012; Moro and Navigli, 2012;
Moro and Navigli, 2013), we develop a novel
method that extracts relations and patterns simul-
taneously. A double propagation algorithm is used
to make relation and pattern information reinforce
each other, so that negative effects from automatic
syntactic and semantic analysis errors can be miti-
gated. In this way, semantic pattern information is
leveraged to improve relation extraction.

We manually annotate two sets of data, from
news text and Wikipedia, respectively. Experi-
ments on both data sets show that the double prop-
agation algorithm gives better precision and recall
compared to the baseline. To our knowledge, we
are one of the first to report empirical results on
Chinese ORE. The ZORE system, together with
the two sets of test data we annotated, and the sets
of 5 million relations and 344K semantic patterns
extracted from news and Wikipedia, is freely re-
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Figure 1: A sample sentence analyzed by ZORE.

leased1.

2 Basic Definitions for Open Information
Extraction

ZORE is applied to web text to extract general re-
lations and their semantic types. Our definition
of relations follow previous work on ORE (Moro
and Navigli, 2013), but with language-specific ad-
justments. In this section, we use the sentence in
Figure 1 as an instance to describe the basic defi-
nitions for ZORE.

Definition 1 (predicate phrase) A predicate
phrase is a sequence of words that contains at least
one verb or copula, and governs one or more noun
phrases syntactically. For instance, a predicate
phrase for the sentence in Figure 1 is “.� (grad-
uate)”. Following Fader et al. (2011), Mausam et
al. (2012) and Nakashole et al. (2012), in case of
light verb constructions, the verb and its direct ob-
ject jointly serve as predicate phrase. We do not
include prepositions into the predicate phrases.

Definition 2 (argument) An argument is a base
noun phrase governed by a predicate phrase direct-
ly or indirectly with a preposition. For instance,
“cnê (Obama) oÚ (President)” and “MÃ
(Harvard) {Æ� (Law School)” are two argu-
ments of the predicate phrase “.� (graduate)”.

Definition 3 (relation) A binary relation is a
triple that consists of the predicate phrase Pred
and its two arguments x and y. Accordingly, an
n-ary relation contains n arguments. For instance,
the sentence in Figure 1 contains the binary rela-
tion (cnê (Obama)oÚ (President), Pred[.
� (graduate)], MÃ (Harvard) {Æ� (Law
School)). In English, the two arguments of a bi-
nary relation are usually positioned on the left and
right of Pred, respectively. Hence, shallow pat-
terns are highly useful for English relation extrac-

1https://sourceforge.net/projects/zore/

tion (Banko et al., 2007). In Chinese, however, the
two arguments can be both on the left, both on the
right or one on the left and one on the right of the
predicate, and the resulting binary relation can be
either (x, y, Pred), (Pred, x, y) and (x, Pred, y), de-
pending on the sentence. This makes the detection
of relation phrases more complicated.

Definition 4 (syntactic pattern) A syntactic pat-
tern is the syntactic abstraction of a relation. A re-
lation can be generalized into the combination of
words, POS-tags and syntactic dependency labels
(Nakashole et al., 2012). For instance, the syntac-
tic pattern of the sentence in Figure 1 is {nsubj-
NR(A) Pred[.�] prep-u pobj-NN(A)}. It con-
sists of four sub-patterns. The first, nsubj-NR(A),
denotes that the current phrase acts as the sub-
ject of the predicate phrase with the POS-tag NR
(proper nouns). Here, “(A)” means that the phrase
is an argument of the extracted relation. The sec-
ond sub-pattern denotes that the predicate phrase
of the example is “.� (graduate)”. Note that
the words between the predicate and arguments
(e.g., prep-u) are included into the pattern direct-
ly (Nakashole et al., 2012; Mausam et al., 2012).

Definition 5 (semantic signature) The seman-
tic signature of a relation consists of the semantic
categories of the arguments. The semantic signa-
ture of Figure 1 is (Af, Di), where Af and Di de-
notes human and institute, respectively.

Definition 6 (semantic pattern) A semantic pat-
tern is the semantic abstraction of a relation. It
is the combination of a syntactic pattern and a
semantic signature. For instance, the syntactic
pattern {nsubj-NR(A) Pred[.�] prep-u pobj-
NN(A)}, combined with the semantic signature
(Af, Di), results in the semantic pattern {nsubj-
NR(Af) Pred[.�] prep-u pobj-NN(Di)}.
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Figure 2: Architecture of ZORE.

Figure 3: Parsing result of the example sentence
in Figure 1, in Stanford dependencies.

3 ZORE

The architecture of ZORE is shown in Figure 2. It
consists of three components. The first is a relation
candidate extractor, which consumes input tex-
t and performs sentence segmentation, word seg-
mentation, POS tagging, syntactic parsing, base
NP extraction, light verb structure (LVC) detection
and relation candidate extraction. The output is a
set of relation candidates. The second component
tags relations and extracts semantic patterns by a
double propagation algorithm. In the third compo-
nent, extracted patterns are grouped into synsets,
and relations are filtered by confidence scores.

3.1 Extracting Relation Candidates

3.1.1 Parsing and Base NP Extraction
ZORE analyzes the syntactic structures of input
texts by applying a pipeline of NLP tools. Each
sentence is segmented into a list of words by using
the Stanford segmenter (Chang et al., 2008), and
parsed by using ZPar (Zhang and Clark, 2011),
with POS tags and constituent structures by the
CTB standard (Xue et al., 2005). The result-
ing constituent trees are transformed into projec-
tive trees with Stanford dependencies by using the
Stanford parser (Chang et al., 2009). Figure 4
shows the parse tree of the sentence in Figure 1.

Next, base noun phrases (NPs) are extracted
from the dependency tree. Here a base NP is a
maximum phrase whose words can only have POS
from the first row of Table 1. The head word of a
base NP can be either a noun, a pronoun, a num-
ber or a measure word (the second row of Table
1). The dependency labels within a base NP can
only be from the third row of Table 1. Obviously,
a base NP does not contain other base NPs, and is
also not contained by any other base NP.

3.1.2 Detecting Light Verb Constructions
In linguistics, a light verb is a verb that has little
semantic content of its own, and typically form-
s a predicate with a noun (Butt, 2003). Exam-
ple predicates by light verb constructions (LVC)
include “is a capital of” and “claim responsibil-
ity for”, where “is” and “claim” are light verbs.
Improper handling of LVC can cause a significan-
t problem by uninformative extractions (Etzioni et
al., 2011). For example, if “is” and “claim” are ex-
tracted as predicates, the resulting relations (such
as (Hamas, claimed, responsibility) from the sen-
tence “Hamas claimed responsibility for the Gaza
attack”) might not bare useful information. Re-
Verb (Etzioni et al., 2011) handles this problem by
hard syntactic constraints, taking the noun phrase
(e.g., responsibility) between a verb phrase (e.g.,
“claim”) and a preposition (e.g., “for”) as a part of
the predicate phrase rather than an argument, lead-
ing to the relation (Hamas, claimed responsibility
for, the Gaza attack).

In Chinese, LVCs are highly frequent and
should be handled properly in order to ensure that
the extracted relations are informative. Howev-
er, the syntactic constraints in ReVerb can not be
transferred to Chinese directly, because the word
orders of English and Chinese are quite different.
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Labels
Base NP modifier NN (common noun), M (measure word), CD (cardinal number), OD (ordinal number), PN (pronoun), NR

(proper noun), NT (temporal noun), JJ (other noun-modifier), or PU (punctuation)
Base NP head NN (common noun), M (measure word), CD (cardinal number), OD (ordinal number), PN (pronoun), NR

(proper noun), NT (temporal noun)
Labels in base NPs nn (noun compound modifier), conj (conjunct), nummod (number modifier), cc (coordinating conjunction),

clf (classifier modifier), det (determiner), ordmod (ordinal number modifier), punct (punctuation), dep (other
dependencies), or amod (adjectival modifier)

Labels from base
NPs to predicate
phrase

nsubj (nominal subject), conj (conjunct), dobj (direct object), advmod (adverbial modifier), prep (preposi-
tional modifier), pobj (prepositional object), lobj (localizer object), range (dative object that is a quantifier
phrase), tmod (temporal modifier), plmod (localizer modifier of a preposition), attr (attributive), loc (local-
izer), top (topic), xsubj (controlling subject), ba (“ba” construction), nsubjpass (nominal passive subject)

Table 1: Constraints on POS-tags and dependency labels. Labels in the top three rows are used for base
NP extraction, while labels in the last row for traversing from a base NP to the predicate phrase.

In Chinese, prepositions acting as the modifier of
a verb can be on both the left and right of the ver-
b. For instance, the sentence “cnê (Obama)o
Ú (President) u (from) MÃ (Harvard) {Æ�
(Law School).� (graduate)” is a paraphrase of
the sentence in Figure 1, with the preposition u
(from) on the left of the predicate phrase.

Chinese LVCs can be classified into two types,
which we refer to as dummy-LVCs and common
LVCs, respectively. For the first type, the predi-
cate is a dummy verb such as “?1 (do)” and “�
± (give)”, which has a noun phrase as its object.
Since dummy verbs in Chinese are a closed set, we
detect this type of LVCs (such as “?1 (do)¬!
(talk)”) by finding the dummy verb from a lexi-
con. For the second type of LVCs, the predicate is
a common verb, which has a nominalized structure
or a common noun as its object. For instance, “Ð
m (launch) N� (investigation)” belongs to this
type of construction.

Common LVCs are more difficult to detect than
dummy-LVCs. We detect common LVCs by the
context. Besides the NPs in the LVC itself, a com-
mon LVC typically governs two NPs, with the lat-
ter being connected to the predicate phrase by an
LVC-related preposition such as “é (for), éu
(for), �é (for), � (to), Ó (with), � (with), Ú
(with) ”. Based on the observation, a basic idea of
identifying common LVCs is to find verb-object
structures that frequently co-occur with a LVC-
related preposition in a large-scale corpus parsed
automatically. For a given verb-object v, let fv and
fp denote the frequency of v and the frequency of v
co-occurring with an LVC-related preposition, re-
spectively. We define the statistical strength of v
to be an LVC as the ratio fp/fv. If the statistical
strength of v exceeds a threshold tlvc, we identify v
as a LVC. Table 2 illustrates some high-frequency

LVCs extracted by the method automatically.

3.1.3 Extracting Relation Candidates

ZORE tries to extract relation candidates from
sentences that contain two or more base NPs. Giv-
en two base NPs, we traverse the dependency tree
to obtain the shortest path that connects them. The
path can contain only dependency labels in the
fourth row of Table 1, and should contain at least
one of the labels from “nsubj” and “dobj” to en-
sure that a predicate phrase is included in the path.
If such a path is acquired, other base NPs governed
by the same predicate phrase are included into the
target relation, resulting in a n-ary relation candi-
dates with each base NP being an argument. Ac-
cording to the predicate phrase, relation candidates
can be classified into the following classes.

Common and dummy LVC relations. In this
type of relations, the predicate phrase of the path
is an LVC (e.g., a light verb and a nominal ob-
ject). The two base NPs can be the subject or
prepositional object of the light verb. For instance,
in the sentence “¿&Z (Houdini) é (to) ·�
(my)¯� (career)k (have)é� (big)K� (in-
fluence)”, “k (have)”and “K� (influence)” are
combined into a common LVC and taken as the
predicate phrase, resulting the relation (¿&Z
(Houdini), Pred[k (have)K� (influence)],·�
(my)¯� (career)). In the corresponding English
sentence, the predicate phrase “be a big influence
in” is also an LVC structure.

Verb relations. In this type of relations, a verb
acts as the predicate phrase. For instance, the rela-
tion (cnê (Obama)oÚ (President), Pred[.
� (graduate)], MÃ (Harvard) {Æ� (Law
School)) extracted from the sentence in Figure 1
is a typical verb relation.

Relative-clause relations. In an relative-clause
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Verb Noun
?1 (do) (*) u1 (distribution),©Û (analysis),Â8 (collection),?U (modification),�¯ (visit),?v (punishment)
k (have) (*) K�(effect),�z (contribution),,� (interest),�Ï (help),@£ (understanding),Ï" (expectation)
�) (generate) (**) K� (effect),,� (interest),~¦(doubt),ÀÂ (shock),Ða (good feeling),�ê (fear)
E¤ (cause) (**) K� (effect),»�(destruction),ú³ (harm),%� (threat),Øå (pressure),Z6 (distraction)
L« (express) (**) ÷¿ (satisfaction),�H (welcome),� (respect),úb (worry),H� (mourning),a� (gratitude)
Ðm (launch) (**) N� (investigation),ôÂ (attack),ô³ (offensive),1µ (criticism),1� (negotiation),�z (lawsuit)

Table 2: Instances of dummy-LVCs (*) and common LVCs (**). A verb in the left column is combined
with a noun in the right column to form an LVC, which serves as the predicate phrase.

relation, the head word is a noun, modified by
an relative clause, but acting as an argument of
the predicate of the relative clause semantically.
The sentence “.� (graduate) u (from) MÃ
(Harvard) {Æ� (Law School) � (de, an aux-
iliary word) cnê (Obama) oÚ (president)”
is a paraphrase of the sentence in Figure 1, with
the same predicate phrase and arguments. How-
ever, the relation extracted from this phrase is an
relative-clause relation (Pred[.� (graduate)],
MÃ (Harvard) {Æ� (Law School), cnê
(Obama) oÚ (president)), which belongs to the
same pattern synset as the relation of Figure 1.

3.2 Semantic Tagging by Double Propagation

The basic idea of our approach is to identify rela-
tions and patterns iteratively through semantical-
ly tagging the head words of arguments in rela-
tion candidates. Given a set of relation candidates
and a semantic taxonomy, the propagation consist-
s of three steps. In Step 1, monosemic arguments
in candidate relations are tagged with a seman-
tic category, such as Af and Di, to obtain seman-
tic patterns. In Step 2 and Step 3, untagged am-
biguous and unknown words are tagged by perfect
matching and partial matching, respectively. In the
end of each step, semantic patterns are generalized
from extracted and tagged relations, and then used
to help relation tagging in the next step. Because
of the two-way information exchange, we call this
method double propagation. The method can also
be treated as similar to bootstrapping (Yangarber
et al., 2000; Qiu et al., 2009).

3.2.1 Step 1: Tagging Monosemic Arguments
Each argument in a relation candidate is a base N-
P. Since base NPs are endocentric, we can take the
semantic category of the head word of a base NP
as the semantic category of the base NP. In a tax-
onomy, each word is associated with one or more
semantic categories. In this step, however, only
monosemic words are tagged, while both ambigu-

ous words and unknown words are left untagged.
Most named entities are not included in the

taxonomy. However, after POS-tagging, most of
them are detected as NR (proper noun). As a re-
sult, they are taken as ambiguous words that can
be person names, organization names or location
names. The named entities that are not included in
the taxonomy are tagged in Steps 2 and 3.

After this step, all the arguments in some re-
lation candidates have been tagged with semantic
categories. We refer to these relation candidates as
tagged relation candidates, and the remaining re-
lation candidates as untagged relation candidates.
Tagged relation candidate are generalized into se-
mantic patterns, consisting of syntactic patterns
and semantic signatures, as illustrated in Figure 1
and Section 2. We call the set of resulting seman-
tic patterns SetSemPat.

3.2.2 Step 2: Tagging by Perfect Pattern
Matching

In this step, the arguments in the untagged relation
candidates are tagged by semantic pattern match-
ing. Given an untagged relation candidate r, we
acquire a set of possible semantic categories for
each argument with an ambiguous head word. For
the arguments with unknown head words, we ac-
quire a set of possible semantic categories accord-
ing to their characters. Qiu et al. (2011) demon-
strate that 98% Chinese words have at least one
synonym, which shares at least one character. For
Chinese nouns, the set of synonyms usually shares
the last one or two characters. According to this,
our strategy for acquiring possible semantic cate-
gories for an unknown word is as follows.

Given an unknown word wu, if we find a known
word wk that shares the last two character with wu,
the semantic categories of wk will be used as the
possible semantic categories of wu. Otherwise, if
we find a known word wk that share the last one
character with wu, the semantic categories of wk

will be used as the possible categories of wu.
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We then acquire possible semantic signatures of
untagged relation candidates, of which all the ar-
guments are tagged with possible semantic cate-
gories. As in Step 1, we generalize relation r in-
to a syntactic pattern patsyn, and then combine
patsyn with each possible semantic signature of
r to generate possible semantic patterns. In case
one or more possible semantic patterns of r ex-
ist in SetSemPat, if the highest frequency of these
patterns is above a threshold tsem, the correspond-
ing pattern will be taken as the semantic pattern
of r, from which we infer the semantic signature
for r and then the semantic category for the head
word of each argument of r. After this step, the
frequency of each semantic pattern in SetSemPat

is updated according to the newly tagged relation
candidates.

3.2.3 Step 3: Tagging by Partial Pattern
Matching

In this step, we tag the ambiguous and unknown
words by partial matching rather than perfec-
t matching of the whole semantic pattern. This
can be treated as a back-off of the last step.

We first split n-ary semantic patterns in
SetSemPat into binary semantic patterns, and cal-
culate their frequencies. Second, we split each
untagged relation candidate r into several binary
sub-relations and then search for the correspond-
ing semantic patterns as in Step 2 — for each bi-
nary sub-relation, we obtain a binary semantic sig-
nature with the highest frequency. By combining
the binary semantic signatures, we obtain one n-
ary semantic signature for r, based on which all
the unknown and ambiguous words can be tagged
with a semantic categories. If all the arguments
of a relation candidate r are tagged, r is treated as
tagged. Finally, according to the newly tagged re-
lations, statistics in SetSemPat are updated.

3.3 Grouping Patterns into Synsets

In this step, we group semantic patterns from
SetSemPat into pattern synsets, based on a
single-pass clustering process (Papka and Allan,
1998). Given two semantic patterns SemPati and
SemPatj , we refer to their corresponding syntac-
tic pattern, semantic signature and predicate phras-
es as SynPati and SynPatj , SemSigi and SemSigj ,
Predi and Predj , respectively. Not taking the pred-
icate phrase into account, SynPati and SynPatj are
identical, and we call them loosely identical (≈).

The algorithm in Figure 4 is used to group

Figure 4: Algorithm for pattern synset grouping.

Type Feature Weight
Base r covers all words in c 0.96
Base There are commas within r -0.47
Base LENGTH(r)<10 words 0.35
Base 10 words[LENGTH(r)<20 words 0.11
Base 20 words[LENGTH(r) -1.06
Base COUNT(arguments)=2 0.14
Base COUNT(arguments)=3 0.33
Base COUNT(arguments)=4 -0.60
Base COUNT(arguments)> 4 -0.46
SemPat Being tagged in Step 3 0.87
SemPat Being tagged before Step 3 0.75
SemPat 50[SIZE(SemPat) and untagged -0.05
SemPat 50[SIZE(SemPat) and tagged 0.65
SemPat 10[SIZE(SemPat)<50 and untagged -0.16
SemPat 10[SIZE(SemPat)<50 and tagged 0.39
SemPat 5[SIZE(SemPat)<10 and untagged -0.22
SemPat 5[SIZE(SemPat)<10 and tagged 0.36
SemPat SIZE(SemPat) <5 and untagged -0.92
SemPat SIZE(SemPat) <5 and tagged -0.64

Table 3: Features of the logistic regression classi-
fier with weights trained on Wiki-500 dataset.

patterns, where ARGCOUNT(SynPatj) denotes the
number of arguments in SemPati, SEMCAT(arg1)
indicates the semantic category of the first ar-
gument, and ISSYNONYM (Predi, Predj) return-
s whether two predicates are synonyms. In
similarity-based single-pass clustering, the topic
excursion problem is common (Papka and Allan,
1998). But since our similarity measure is sym-
metric, we do not suffer from this problem.

3.4 Computing the Confidence for Relations

Without filtering, the extraction algorithm in the
previous sections may yield false relations. Fol-
lowing previous ORE systems, we make a balance
between recall and precision by using a confidence
threshold (Fader et al., 2011). A logistic regres-
sion classifier is used to give a confidence score
to each relation, with features shown in Table 3.
In the table, c, r, arguments and SemPat denote
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Dataset Source #Sen #Rel
Wiki-500 Chinese Wikipedia 500 561
Sina-500 Sina News 500 707

Table 4: Annotated relation datasets.

clause, relation, arguments in a relation, and se-
mantic pattern, respectively. LENGTH(r), COUN-
T(arguments) and SIZE(SemPat) indicate the num-
ber of words in r, the number of arguments in
r, and the number of relations that belong to the
same semantic pattern SemPat as r. Because se-
mantic patterns from the double propagation al-
gorithm are used as features in the classifier, they
participate in relation extraction also. Their effect
on relation extraction can directly demonstrate the
effectiveness of double propagation.

4 Experiments

4.1 Experimental Setup
We run ZORE on two difference corpora: the Chi-
nese edition of Wikipedia (Wiki), which contain-
s 4.3 million sentences (as of March 29, 2014),
and a corpus from the Sina News archive (Sina
News), which includes 6.1 million sentences from
January 2013 to May 2013. The sentences that do
not end with punctuations are filtered. The Chi-
nese taxonomy Extended Cilin2 (Cilin) (Che et al.,
2010) is used to give semantic categories for each
word. Cilin contains 77,492 Chinese words, or-
ganized into a five-level hierarchy. There are 12
categories in the top level, 94 in the second and
1492 in the third. In this paper, the second level
is used for semantic categories. We create two test
sets, containing 500 sentences from Wiki and 500
sentences from Sina News, respectively (see Table
4), annotated by two independent annotators us-
ing the annotation strategy of Fader et al. (2011).
The thresholds tlvc and tsem for pattern matching
are set as 0.4 and 5, tuned on 100 sentences from
Wiki-500 dataset, respectively.

4.2 Evaluation of Relation Extraction
First, we compare ZORE with a baseline system
to illustrate the effectiveness of the double prop-
agation algorithm. The baseline system does not
have the double propagation tagging component
in Figure 2, using the logistic regression classifier
in Section 3.4.1 with the 9 base features to filter
extracted relation candidates. It is similar to the
architecture of ReVerb (Fader et al., 2011). We

2http://ir.hit.edu.cn/demo/ltp/Sharing Plan.htm

Figure 5: Performance on Wiki.

Figure 6: Performance on Sina News.

measure the precision and recall of the extracted
relations. An extracted relation is considered cor-
rect only when the predicate phrase and all the ar-
guments match the the gold set. On each data set,
we perform 5-fold cross-validation test and take
the average as the final precision and recall.

Figures 5 and 6 show the comparison of the two
systems on Wiki and Sina News, respectively. On
Wiki, ZORE has higher precision than the baseline
at all levels of recall. When the recall is 0.3, the
precision of ZORE is 0.77, 0.11 higher than the
baseline. The result on Sina News is similar. The
second column of Table 3 shows the weights of all
features trained on the Wiki data set, which indi-
cates that the semantic pattern features can give a
positive effect on relation filtering.

Second, we compare the intermediate results at
Steps 1, 2, and 3 in Section 3.2, respectively. The
precision, recall and F1 of the three steps with d-
ifferent numbers of Wiki sentences (from 10K to
5M sentences) are shown in Table 5. This figure
shows that Step 2 achieves higher precision than
Step 1 at all levels of recall, indicating that the
word sense tagging method in step 2 is useful for
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Sentences Step 1 Step 2 Step 3
P R F1 P R F1 P R F1

10K 0.947 0.032 0.062 0.960 0.043 0.082 0.933 0.075 0.139
50K 0.894 0.075 0.138 0.922 0.105 0.189 0.907 0.139 0.241
100K 0.897 0.093 0.169 0.924 0.130 0.228 0.909 0.160 0.272
200K 0.901 0.114 0.202 0.926 0.157 0.268 0.892 0.191 0.315
500K 0.891 0.146 0.251 0.909 0.196 0.322 0.860 0.230 0.363
1M 0.860 0.164 0.275 0.885 0.219 0.351 0.842 0.248 0.383
2M 0.797 0.182 0.296 0.819 0.250 0.383 0.788 0.278 0.411
3M 0.784 0.187 0.302 0.802 0.253 0.385 0.778 0.282 0.414
4M 0.739 0.178 0.287 0.801 0.258 0.390 0.778 0.287 0.419
5M 0.779 0.189 0.304 0.798 0.260 0.392 0.768 0.289 0.420

Table 5: Accuracies on different numbers Wiki sentences.

a significant boost of recall, together with a lit-
tle improvement in precision. In particular, Step
2 can extract about 20% relations with relatively
high precision (about 90%). The result of Step 3
is better to that of Step 2 in terms of F1-measure,
with the highest F1-measure achieved by this step.

4.3 Evaluation of Patterns

ZORE acquires 122K and 222K patterns from Wi-
ki and Sina News, clustered into 59K and 118K
pattern synsets, respectively. The frequency distri-
bution of the Wiki patterns is shown in Figure 7,
which conforms to Zipf’s law.

To assess the accuracy of pattern extraction, we
rank the extracted patterns by the size, and eval-
uated the precision of the top 100 and a random
set of 100 pattern synsets. Two annotators were
shown a pattern synset with its semantic signature
and a few example relations, and then asked to
judge whether it indicates a valid semantic rela-
tion or not. The results are shown in Table 6. The
averaged precision is 92% for the top 100 set, and
85% for the random 100 set.

The patterns in a pattern synset can be taken
as paraphrases (Barzilay and Lee, 2003). We ob-
serve that two synonymous patterns might differ
in three aspects. First, two patterns can differ
by the predicates, which are synonyms. For in-
stance, the verbs “ú?, �, ?, Ñ?, �, �”
are synonyms, meaning “to hold the appointment
of”. Second, two patterns in the same synset can
belong to different syntactic patterns, and there-
fore are paraphrases in the syntactic level. For in-
stance, the semantic patterns of the two sentences
“.� (graduate)u (from)MÃ (Harvard){Æ
� (Law School)� (de, an auxiliary word)cn
ê (Obama)oÚ (president)” and “cnê (Oba-
ma)oÚ (president)l(from)MÃ (Harvard){
Æ� (Law School).� (graduate)” are both syn-
onymous to that of the sentence in Figure 1; al-

l the three patterns are found in the same synset
obtained by ZORE. Third, two patterns can dif-
fer only by the POS-tag. For instance, “cnê
(Obama) l(from) MÃ (Harvard) {Æ� (Law
School).� (graduate)” and “@� (That)Æ�
(attorney)l(from)MÃ (Harvard){Æ� (Law
School) .� (graduate)” are synonyms with d-
ifferent POS-tags for the first argument (i.e. N-
R and NN). According to the grouping algorithm
in Section 3.3, all the three types of paraphrases
are grouped in a pattern synset, which makes some
synsets very large. The largest synset contains 110
patterns, while the top 100 synsets contain more
than 20 patterns.

4.4 Error analysis

We analyze the incorrect extractions (precision
loss) and missed correct relations (recall loss) re-
turned by Step 2, running on 500K sentences. Ta-
ble 7 summarizes the types of correct relations that
are missed by ZORE. 40% missed relations are
due to the minimum frequency constraint on se-
mantic patterns, which is used for a balance be-
tween precision and recall. Another main source
of failure is the incorrect identification of the pred-
icate phrase due to parsing errors, which account
for 37% of the total errors. Other sources of fail-
ures include redundant arguments and segmenta-
tion errors. Most redundant arguments are related
to prepositions such as “Uì (according to)” and
“�â (on the basis of)”. For instance, in the sen-
tence “Uì (according to)ù� (the)*: (point
of view) § (,) �� (fundamental) ¯K (prob-
lem) ´ (is)”, an incorrect binary relation (ù�
(the)*: (point of view),�� (fundamental)¯
K (problem), Pred[´ (is)]) is extracted, because
the prepositional object “ù� (the) *: (point
of view)” is tagged as an argument of the predi-
cate phrase “´ (is)”.

Table 8 summarizes the major types of incor-
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Corpus Patterns Synsets Top100 Random100
Wiki 122,723 59,298 0.93 0.87
Sina 222,773 118,923 0.91 0.83

Table 6: Precision of pattern synsets.

40% Relations filtered by semantic pattern constraint
37% Could not identify correct predicates because of

preprocessing errors
12% Too many arguments because of parsing errors
11% Segmentation and POS tagging errors

Table 7: Relations missed by ZORE.

rect relations, 56% of which were caused by pars-
ing errors, and 34% of which were due to word
segmentation and POS tagging errors. Although
many errors have been filtered by ZORE, the
biggest source of errors is still syntactic analysis,
which is very important for high quality of ORE.

5 Related Work

English has been the major language on which
ORE research has been conducted. Previous
work on English ORE has evolved from shallow-
syntactic (Banko et al., 2007; Fader et al., 2011;
Merhav et al., 2012) to full-syntactic (Nakashole
et al., 2012; Mausam et al., 2012; Moro and Nav-
igli, 2013; Xu et al., 2013) and semantic (Johans-
son and Nugues, 2008) systems.

It has been shown that a full-syntactic system
based on dependency grammar can give signif-
icantly better results than shallow syntactic sys-
tems based on surface POS-patterns, yet enjoy
higher efficiency compared with semantic system-
s (Mesquita et al., 2013). Our investigation on
Chinese ORE takes root in full dependency syntax
and is hence able to identify patterns that involve
long-range dependencies. Considering the charac-
teristics of the Chinese language, such as the lack
of morphology and function words, and the high
segmentation and word sense ambiguities, we in-
corporate semantic ontology information into the
design of the system to improve the output quality
without sacrificing efficiency.

The state-of-the-art systems most closely relat-
ed to our approach are PATTY (Nakashole et al.,
2012) and the system of Moro and Navigli (2013).
Both, however, extract relations first, and then de-
fines patterns based on extracted relations. This
paper differs in that patterns and relations are ex-
tracted in a simultaneous process and so they can
improve each other. Previous studies show that
pattern generalization benefit from relation extrac-

56% Parsing errors
17% Segmentation errors
17% POS tagging errors
6% Redundant arguments
6% Other, including base NP extraction errors

Table 8: Incorrect extractions by ZORE.

Figure 7: The frequency distribution of patterns
extracted from Wiki. Size and Count denote the
number of relations that belong to a semantic pat-
tern and the logarithmic number of semantic pat-
terns that have the same size, respectively.

tion (Nakashole et al., 2012; Moro and Navigli,
2013), and relation extraction can benefit from
pattern generalization (Mausam et al., 2012). By
using double propagation, not only can we make
relation and pattern extraction benefit from each
other, but we can also tag relations and patterns
with semantic categories in a joint process.

There has been a line of research on Chinese re-
lation extraction, where both feature-based (Zhou
et al., 2005; Li et al., 2008) and kernel-based
(Zhang et al., 2006; Che et al., 2005) methods have
been applied. In addition, semantic ontologies
such as Extended Cilin have been shown useful
for Chinese relation extraction (Liu et al., 2013).
However, these studies have focused on tradition-
al IE, with pre-defined relations. In contrast, we
investigate ORE for Chinese, finding that seman-
tic ontologies useful for this task also. Tseng et al.
(2014) is the only previous research focusing on
Chinese ORE. Their system can be considered as
a pipeline of word segmentation, POS-tagging and
parsing, while our work gives semantic interpreta-
tion and explicitly deals with statistical errors in
parsing by a novel double propagation algorithm
between patterns and relations.
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6 Conclusion and Future Work

We presented a Chinese ORE system that inte-
grates relation extraction with semantic pattern
generalization by double propagation. Experimen-
tal results on two datasets demonstrated the ef-
fectiveness of the proposed algorithm. We make
the ZORE system, together with the large scale
relations and pattern synsets extracted by ZORE,
freely available at (https://sourceforge.
net/projects/zore/). Another version of
ZORE (ZORE-PMT), which is based on the de-
pendency tagset from PMT1.0 (Qiu et al., 2014),
is also provided.

Our error analysis demonstrates that the quali-
ty of syntactic parsing is crucial to the accuracy of
syntax-based Chinese ORE. Improvements to syn-
tactic analysis is likely to lead to improved ORE.
In addition, the idea of double propagation can be
generalized into information propagation between
relation extraction and syntactic analysis. We plan
to investigate the use of ORE in improving syntac-
tic analysis in future work.
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