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Abstract

The current state-of-the-art single-
document summarization method gen-
erates a summary by solving a Tree
Knapsack Problem (TKP), which is the
problem of finding the optimal rooted sub-
tree of the dependency-based discourse
tree (DEP-DT) of a document. We can
obtain a gold DEP-DT by transforming a
gold Rhetorical Structure Theory-based
discourse tree (RST-DT). However, there
is still a large difference between the
ROUGE scores of a system with a gold
DEP-DT and a system with a DEP-DT
obtained from an automatically parsed
RST-DT. To improve the ROUGE score,
we propose a novel discourse parser
that directly generates the DEP-DT. The
evaluation results showed that the TKP
with our parser outperformed that with
the state-of-the-art RST-DT parser, and
achieved almost equivalent ROUGE
scores to the TKP with the gold DEP-DT.

1 Introduction

Discourse structures of documents are believed
to be highly beneficial for generating informa-
tive and coherent summaries. Several discourse-
based summarization methods have been devel-
oped, such as (Marcu, 1998; Daumé III and
Marcu, 2002; Hirao et al., 2013; Kikuchi et al.,
2014). Moreover, the current best ROUGE score
for the summarization benchmark data of the RST-
discourse Treebank (Carlson et al., 2002) has been
provided by (Hirao et al., 2013), whose method
also utilizes discourse trees. Thus, the discourse-
based summarization approach is one promising
way to obtain high-quality summaries.

One possible weakness of discourse-based sum-
marization techniques is that they rely greatly on

the accuracy of the discourse parser they use.
For example, the above discourse-based summa-
rization methods utilize discourse trees based on
the Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) for their discourse information.
Unfortunately, the current state-of-the-art RST
parser, as described in (Hernault et al., 2010),
is insufficient as an off-the-shelf discourse parser.
In fact, there is empirical evidence that the qual-
ity (i.e., ROUGE score) of summaries from auto-
parsed discourse trees is significantly degraded
compared with those generated from gold dis-
course trees (Marcu, 1998; Hirao et al., 2013).

From this background, the goal of this paper
is to develop an appropriate discourse parser for
discourse-based summarization. We first focus on
one of the best discourse-based single document
summarization methods as proposed in (Hirao et
al., 2013). Their method formulates a single doc-
ument summarization problem as a Tree Knap-
sack Problem (TKP) over a dependency-based dis-
course tree (DEP-DT). In their method, DEP-DTs
are automatically transformed from (auto-parsed)
RST-discourse trees (RST-DTs) by heuristic rules.
Instead, we develop a DEP-DT parser, that di-
rectly provides DEP-DTs for their state-of-the-art
discourse-based summarization method. We show
that summaries generated by our parser improve
the ROUGE scores to almost the same level as
those generated by gold DEP-DTs. We also inves-
tigate the way in which the parsing accuracy helps
to improve the ROUGE scores.

2 Single-Document Summarization as a
Tree Knapsack Problem

Hirao et al. (2013) formulated single-document
summarization as a TKP that is run on the DEP-
DT. They obtained a summary by trimming the
DEP-DT, i.e. the summary is a rooted subtree of
the DEP-DT.

Suppose that we have N EDUs in a document,
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Figure 1: Examples of RST-DT and DEP-DT. e1, · · · , e10 are EDUs. (a) Example of an RST-DT from
(Marcu, 1998). n1, · · · , n19 are the non-terminal nodes. (b) Example of the DEP-DT obtained from the
incorrect RST-DT that is made by swapping the Nucleus-Satellite relationship of the node n2 and the
node n3. (c) The correct DEP-DT obtained from the RST-DT in (a).

and the i-th EDU ei has li words. L is the maxi-
mum number of words allowed in a summary. In
the TKP, if we select ei, we need to select its par-
ent EDU in the DEP-DT. We denote parent(i) as
the index of the parent of ei in the DEP-DT. x is
an N -dimensional binary vector that represents a
summary, i.e. xi = 1 denotes that ei is included in
the summary. The TKP is defined as the following
ILP problem:

maximize
x

∑N
i=1 F (ei)xi

s.t.
∑N

i=1 lixi ≤ L

∀i : xparent(i) ≥ xi

∀i : xi ∈ {0, 1},

where F (ei) is the score of ei. We define F (ei) as
follows:

F (ei) =

∑
w∈W (ei)

tf(w,D)

Depth(ei)
,

where W (ei) is the set of words contained in ei.
tf(w, D) is the term frequency of word w in a doc-
ument D. Depth(ei) is the depth of ei in the DEP-
DT.

3 Tree Knapsack Problem with
Dependency-based Discourse Parser

3.1 Motivation

In (Hirao et al., 2013), they automatically ob-
tain the DEP-DT by transforming from the parsed
RST-DT. We simply followed their method for ob-

taining the DEP-DTs 1. The transformation algo-
rithm can be found in detail in (Hirao et al., 2013).
Figure 1(a) shows an example of the RST-DT. Ac-
cording to RST, a document is represented as a tree
whose terminal nodes correspond to elementary
discourse units (EDUs) and whose non-terminal
nodes indicate the role of the contiguous EDUs,
namely, ‘nucleus (N)’ or ‘satellite (S)’. Since a nu-
cleus is more important than a satellite in terms of
the writer’s purpose, a satellite is always a child of
a nucleus in the RST-DT. Some discourse relations
between a nucleus and a satellite or two nuclei are
defined.

Since the TKP of (Hirao et al., 2013) employs
a DEP-DT obtained from an automatically parsed
RST-DT, their method strongly relies on the ac-
curacy of the RST parser. For example, in Fig-
ure 1(a), if the RST-DT parser incorrectly sets
the node n2 as Satellite and the node n3 as Nu-
cleus, we obtain an incorrect DEP-DT in Figure
1(b) because the transformation algorithm uses
the Nucleus-Satellite relationships in the RST-DT.
The dependency relationships in Figure 1(b) are
quite different from that of the correct DEP-DT in
Figure 1(c). In this example, the parser failed to
determine the most salient EDU e2, that is the root
EDU of the gold DEP-DT. Thus, the summary ex-
tracted from this DEP-DT will have a low ROUGE
score.

The results motivated us to design a new dis-
course parser fully trained on the DEP-DTs and

1Li et al. also defined a similar transformation algorithm
(Li et al., 2014). In this paper, we follow the transformation
algorithm defined in (Hirao et al., 2013).
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Figure 2: (a) Overview of our proposed method. In the parser training phase, the parser is trained on
the DEP-DTs, and in the summarization phase, the document is directly parsed into the DEP-DT. (b)
Overview of (Hirao et al., 2013). In the parser training phase, the parser is trained on RST-DTs, and
in the summarization phase, the document is parsed into the RST-DT, and then transformed into the
DEP-DT.

that could directly generate the DEP-DT. Figure
2(a) shows an overview of the TKP combined with
our DEP-DT parser. In the parser training phase,
we transform RST-DTs into DEP-DTs, and di-
rectly train our parser with the DEP-DTs. In the
summarization phase, our method parses a raw
document directly into a DEP-DT, and generates
a summary with the TKP.

3.2 Description of Discourse Dependency
Parser

Our parser is based on the first-order Maximum
Spanning Tree (MST) algorithm (McDonald et al.,
2005b). Our parser extracts the features from the
EDU ei and the EDU ej . We use almost the fea-
tures as those shown in (Hernault et al., 2010).
Lexical N-gram features use the beginning (or
end) lexical N-grams (N ∈ {1, 2, 3}) in ei and
ej . We also include POS tags for the beginning
(or end) lexical N-grams (N ∈ {1, 2, 3}) in ei and
ej . Organizational features include the distance
between ei and ej . They also include the num-
ber of tokens, and features for identifying whether
or not ei and ej belong to the same sentence (or
paragraph). Soricut et al. (2003) introduced dom-
inance set features. They include syntactic labels
and the lexical heads of head and attachment nodes
along with their dominance relationship. We can-
not use the strong compositionality features and
rhetorical structure features described in (Her-
nault et al., 2010) because we have to know the
subtree structures in advance when using these
features.

To train the parser, we choose the Margin In-

fused Relaxed Algorithm (MIRA) (McDonald et
al., 2005a; Crammer et al., 2006). We denote
s(w,y) = wT fy as a score function given a
weight vector w and a DEP-DT y. L(y,y?) is
a loss function, and we define it as the number of
EDUs that have an incorrect parent EDU in a pre-
dicted DEP-DT y? = arg max

y
s(w,y). Then, we

solve the following optimization problem:

min
w

||w −w(t)||
s.t. s(w,y)− s(w,y?) ≥ L(y,y?),

(1)

where w(t) is a weight vector in the t-th iteration.

3.3 Redesign of Loss Function for Tree
Knapsack Problem

When we make a summary by solving a TKP, we
do not necessarily need a DEP-DT where all of the
parent-child relationships are correct. This is be-
cause we rarely select the EDUs around the leaves
in the DEP-DT. On the other hand, the parent-
child relationships around the root EDU in the
DEP-DT are important because we often select the
EDUs around the root EDU. Incorporating these
intuitions enables us to develop a DEP-DT parser
optimized for the TKP. To incorporate this infor-
mation, we define the following loss function:

LDepth(y,y?) =
∑

(i,r,j)∈y

[1− I(y?, i, j)]
Depth(ei)

, (2)

where I(y?, i, j) is an indicator function that
equals 1 if EDU ej is the parent of EDU ei in the
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DEP-DT y? and 0 otherwise. In Section 4, we re-
port results with the original loss function L(·, ·)
and with the modified loss function LDepth(·, ·).

4 Experimental Evaluation

4.1 Corpus

We used the RST-DT corpus (Carlson et al., 2002)
for our experimental evaluations. The corpus con-
sists of 385 Wall Street Journal articles with RST
annotation, and 30 of these documents also have
one human-made reference summary. We used
these 30 documents as the test documents for the
summarization evaluation, and used the remaining
355 RST annotated documents as the training data
for the parser. Note that we did not use the 30 test
documents for the summarization evaluation when
we trained the parser.

4.2 Summarization Evaluation

We compared the following three systems that dif-
fer in the way they obtain the DEP-DT.

TKP-GOLD Used a DEP-DT converted from a
gold RST-DT.

TKP-DIS-DEP Used a DEP-DT automatically
parsed by our discourse dependency-based
parser (DIS-DEP). Figure 2(a) shows an
overview of this system.

TKP-DIS-DEP-LOSS Used a DEP-DT automat-
ically parsed by our discourse dependency-
based parser (DIS-DEP). Figure 2(a) shows
an overview of this system. It is trained with
the loss function defined in equation (2).

TKP-HILDA Used a DEP-DT obtained by trans-
forming a RST-DT parsed by HILDA, a state-
of-the-art RST-DT parser (Hernault et al.,
2010). Figure 2(b) shows an overview of this
system.

Hirao et al. (2013) proved that TKP-HILDA
outperformed other methods including Marcu’s
method (Marcu, 1998), a simple knapsack model,
a maximum coverage model and LEAD method
that simply takes the first L tokens (L = summary
length). Thus, we only employed TKP-HILDA as
our baseline.

We follow the evaluation conditions described
in (Hirao et al., 2013). The number of tokens in
each summary is determined by the number in the

ROUGE-1 ROUGE-2
TKP-GOLD 0.321 0.112
TKP-DIS-DEP 0.319 0.109
TKP-DIS-DEP-LOSS 0.323 0.121
TKP-HILDA 0.284 0.093

Table 1: ROUGE Recall scores

human-annotated reference summary. The aver-
age length of the reference summaries corresponds
to about 10% of the words in the source document.
This is also the commonly used evaluation con-
dition for single-document summarization evalu-
ation on the RST-DT corpus. We employed the
recall of ROUGE-1, 2 as the evaluation measures.

Table 1 shows ROUGE scores on the RST-DT
corpus. We can see TKP-DIS-DEP and TKP-
DIS-DEP-LOSS outperformed TKP-HILDA, and
achieved almost the same ROUGE scores as TKP-
GOLD. Wilcoxon’s signed rank test in terms
of ROUGE rejected the null hypothesis, “there
is a difference between TKP-HILDA and TKP-
DIS-DEP (or TKP-DIS-DEP-LOSS)” (Wilcoxon,
1945). This would be because test documents are
relatively small.

We analyzed the differences between the pro-
posed systems (TKP-DIS-DEP and TKP-DIS-
DEP-LOSS) and TKP-HILDA. First, we evaluated
the overlaps between the EDUs in summaries gen-
erated by the system and the EDUs in summaries
generated by TKP-GOLD. To see the overlaps, we
calculated the average F-value using Recall and
Precision defined as follows: Recall = |Ss ∩
Sg|/|Sg|, Precision = |Ss ∩ Sg|/|Ss|, where Ss

is a set of EDUs in a summary generated by a sys-
tem, and Sg a set of EDUs in a summary generated
by TKP-GOLD. The first line in Table 2 shows the
results. TKP-DIS-DEP and TKP-DIS-DEP-LOSS
outperformed TKP-HILDA as regards the aver-
age F-values. The result revealed that TKP-DIS-
DEP and TKP-DIS-DEP-LOSS have more EDUs
in common with TKP-GOLD than TKP-HILDA.
This result is evidence that TKP-DIS-DEP and
TKP-DIS-DEP-LOSS outperformed TKP-HILDA
in terms of ROUGE score.

Second, we evaluated the root accuracy (RA),
the rate at which a parser can find the root of DEP-
DTs. Since the root of a gold DEP-DT is the most
salient EDU in a document, it should be included
in the summary. The second line in Table 2 shows
that our methods succeeded in extracting the root
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TKP-DIS-DEP TKP-DIS-DEP-LOSS TKP-HILDA
Avg F-value 0.532? 0.532? 0.415
RA 0.933? 0.933? 0.733
Avg DAS 0.847? 0.843? 0.596

?: significantly better than TKP-HILDA (p < .05)

Table 2: Average F-value, Root Accuracy (RA), and average Dependency Accuracy in Summary (DAS).
Wilcoxon’s signed rank test in terms of average F-value, RA and DAS accepted the null hypothesis.

TKP-GOLD:
Elcotel Inc. expects fiscal second-quarter earnings to trail 1988 results. Elcotel, a telecommunications company, had net
income of $272,000, or five cents a share, in its year-earlier second quarter. The lower results, Mr. Pierce said. Elcotel will
also benefit from moving into other areas. Elcotel has also developed an automatic call processor. Automatic call processors
will provide that system for virtually any telephone, Mr. Pierce said, not just phones.

TKP-DIS-DEP, TKP-DIS-DEP-LOSS:
Elcotel Inc. expects fiscal second-quarter earnings to trail 1988 results. Elcotel, a telecommunications company, had net
income of $272,000, or five cents a share, in its year-earlier second quarter. George Pierce, chairman and chief executive officer,
said in an interview. Although Mr. Pierce expects that line of business to strengthen in the next year. Elcotel will also benefit
from moving into other areas. Elcotel has also developed an automatic call processor.

TKP-HILDA:
Elcotel Inc. expects fiscal second-quarter earnings to trail 1988 results. That several new products will lead to a “much
stronger” performance in its second half. George Pierce, chairman and chief executive officer, said in an interview. Mr.
Pierce said Elcotel should realize a minimum of $10 of recurring net earnings for each machine each month. Elcotel has also
developed an automatic call processor. Automatic call processors will provide that system for virtually any telephone.

Figure 3: Summaries of wsj 2317. The sentences shown in bold-face are the root EDUs in each DEP-DT
of the summary.

of DEP-DT with high accuracy.
Third, to evaluate the coherency of the gener-

ated summaries, we compared the average Depen-
dency Accuracy in Summary (DAS), which is de-
fined as follows:

DAS(S) =
1
|S|

∑
e∈S

δ(e),

δ(e) =
{

1 (if parent(e) ∈ S)
0 (otherwise),

where S is a set of EDUs contained in the sum-
mary and parent(e) returns the parent EDU of e
in the gold DEP-DT. DAS(S) measures the rate of
the correct parent-child relationships in S. When
DAS equals 1, the summary is a rooted subtree of
the gold DEP-DT. The third line in Table 2 shows
the results. The results demonstrate that the sum-
maries generated by TKP-DIS-DEP or TKP-DIS-
DEP-LOSS tend to preserve the upper level depen-
dency relationships between the EDUs within the
gold DEP-DT.

Figure 3 shows summaries of wsj 2317 gener-
ated by the three systems. The EDUs correspond-
ing to the root of the DEP-DT are used in each
system shown in boldface. We can see that the

root EDU in the gold DEP-DT is found in the
summaries generated by TKP-DIS-DEP and TKP-
DIS-DEP-LOSS, but not in the summary gener-
ated by TKP-HILDA.

5 Conclusion

In this paper, we proposed a novel dependency-
based discourse parser for single-document sum-
marization. The parser enables us to obtain the
DEP-DT without transforming the RST-DT. The
evaluation results showed that the TKP with our
parser outperformed that with the state-of-the-art
RST-DT parser, and achieved almost equivalent
ROUGE scores to the TKP with the gold DEP-DT.
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