
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1634–1642,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Fast and Accurate Misspelling Correction in Large Corpora

Octavian Popescu
Fondazione Bruno Kessler

Trento, Italy
popescu@fbk.eu

Ngoc Phuoc An Vo
University of Trento

Fondazione Bruno Kessler
Trento, Italy

ngoc@fbk.eu

Abstract

There are several NLP systems whose ac-
curacy depends crucially on finding mis-
spellings fast. However, the classical ap-
proach is based on a quadratic time algo-
rithm with 80% coverage. We present a
novel algorithm for misspelling detection,
which runs in constant time and improves
the coverage to more than 96%. We use
this algorithm together with a cross docu-
ment coreference system in order to find
proper name misspellings. The experi-
ments confirmed significant improvement
over the state of the art.

1 Introduction

The problem of finding the misspelled words in a
corpus is an important issue for many NLP sys-
tems which have to process large collections of
text documents, like news or tweets corpora, dig-
italized libraries etc. Any accurate systems, such
as the ones developed for cross document corefer-
ence, text similarity, semantic search or digital hu-
manities, should be able to handle the misspellings
in corpora. However, the issue is not easy and
the required processing time, memory or the de-
pendence on external resources grow fast with the
size of the analyzed corpus; consequently, most of
the existing algorithms are inefficient. In this pa-
per, we present a novel algorithm for misspelling
detection which overcomes the drawbacks of the
previous approaches and we show that this algo-
rithm is instrumental in improving the state of the
art of a cross document coreference system.

Many spelling errors in a corpus are acciden-
tal and usually just one or two letters in a word
are affected, like existnece vs. the dictionary form
existence. Such misspellings are rather a unique

phenomenon occurring randomly in a text. For an
automatic speller which has access to a dictionary,
finding and compiling a list of correct candidates
for the misspelled words like the one above is not
very difficult. However, not all misspellings are in
this category. To begin with, proper nouns, espe-
cially foreign proper names, are not present in the
dictionary and their misspelling may affect more
than one or two characters. Moreover, the mis-
spelling of proper names may not be random, for
example there might be different spellings of the
same Chinese or Russian name in English, the in-
correct ones occurring with some frequency. Also,
especially if the corpus contains documents writ-
ten by non native speakers, the number of char-
acters varying between the correct and the actual
written form may be more than two. In this case,
finding and compiling the list of correct candidates
is computationally challenging for traditional al-
gorithms, as the distance between the source string
and the words in the candidates list is high.

The Levenshtein distance has been used to com-
pile a list of correct form candidates for a mis-
spelled word. The Levenshtein distance between
two strings counts the number of changes needed
to transform one string into the other, where a
change is one of the basic edit operations: dele-
tion, insertion, substitution of a character and the
transposition of two characters. The Edit Dis-
tance algorithm, (ED) computes the similarity be-
tween two strings according to the Levenshtein
distance. Most of the random misspellings which
are produced by a native speaker are within one
or maximum two basic edit operations (Damerau,
1964). For this reason the ED algorithm is the
most common way to detect and correct the mis-
spellings. However, there is a major inconve-
nience associated with the use of ED, namely, ED

1634



runs in quadratic time considering the length of
the strings, O(n2). The computation time for more
than a few thousands pairs is up to several tens of
seconds, which is impracticably large for most of
large scale applications. By comparison, the num-
ber of proper names occurring in a medium sized
English news corpus is around 200, 000, which
means that there are some 200, 000, 000 pairs.

In order to cope with the need for a lower com-
putation time, on the basis of ED, a series of algo-
rithms have been developed that run in linear time
(Navaro 2001). Unfortunately, this improvement
is not enough for practical applications which in-
volve a large amount of data coming from large
corpora. The reason is two-fold: firstly, the linear
time is still too slow (Mihov and Schulz, 2004)
and secondly, the required memory depends both
on the strings’ length and on the number of differ-
ent characters between the source string and the
correct word, and may well exceed several GBs.
Another solution is to index the corpus using struc-
tures like trie trees, or large finite state automata.
However, this solution may require large amounts
of memory and is inefficient when the number of
characters that differ between the source string and
the candidate words is more than two characters
(Boytsov, 2011).

We focus specifically on misspellings for which
there is no dictionary containing the correct form
and/or for which the Levenshtein distance to the
correct word may be higher than two characters.
For this purpose, we developed a novel approach
to misspelling correction based on a non indexing
algorithm, which we call the prime mapping algo-
rithm, PM. PM runs in constant time, O(1), with
insignificant memory consumption. The running
time of the PM algorithm does not depend either
on the strings’ length or on the number of different
characters between the source string and the can-
didate word. It requires a static amount of mem-
ory, ranging from a few KBs to a maximum of a
few MBs, irrespective of the size of the corpus or
the number of pairs for which the misspelling rela-
tionship is tested. We run a series of experiments
using PM on various corpora in English and Ital-
ian. The results confirm that PM is practical for
large corpora. It successfully finds the candidate
words for misspellings even for large Levenshtein
distances, being more than 30 times faster than a
linear algorithm, and several hundred times faster
than ED. The running time difference is due to the
fact that PM maps the strings into numbers and

performs only one arithmetic operation in order to
decide whether the two strings may be in a mis-
spelling relationship. Instead of a quadratic num-
ber of characters comparisons, PM executes only
one arithmetic operation with integers.

We also report here the results obtained when
using PM inside a cross document coreference
system for proper nouns. Correcting a proper
name misspelling is actually a more complex task
than correcting a misspelled common word. Some
misspellings may not be random and in order to
cope with repetitive misspellings, as the ones re-
sulting from the transliteration of foreign names,
the PM is combined with a statistical learning al-
gorithm which estimates the probability of a cer-
tain type of misspelling considering the surround-
ing characters in the source string. Unlike with
common words, where a misspelling is obvious,
in the case of proper names, John vs. Jon for ex-
ample, it is unclear whether we are looking at two
different names or a misspelling. The string sim-
ilarity evidence is combined with contextual evi-
dence provided by a CDC system to disambiguate.

To evaluate the PM algorithm we use publicly
available misspelling annotated corpora contain-
ing documents created by both native and non-
native speakers. The PM within a CDC system for
proper names is evaluated using CRIPCO (Ben-
tivogli et al., 2008). The experiments confirm that
PM is a competitive algorithm and that the CDC
system gains in accuracy by using a module of
misspelling correction.

The rest of the paper is organized as follows. In
Section 2 we review the relevant literature. In Sec-
tion 3 we introduce the PM algorithm and com-
pare it against other algorithms. In Section 4 we
present the CDC system with misspelling correc-
tion for proper names. In Section 5 we present the
results obtained on English and Italian corpora.

2 Related Work

In a seminal paper (Damerau, 1964) introduced
the ED algorithm. The rationale for this algorithm
was the empirical observation that about 80% of
the misspelled words produced by native speakers
have distance 1 to the correct word. ED cannot be
extended to increase the accuracy, because for k =
2, k being the maximal admissible distance to the
correct word, the running time is too high. Most of
the techniques developed further use ED together
with indexing methods and/or parallel processing.

In (San Segundo et al., 2001) an M-best can-

1635



didate HMM recognizer for 10,000 Spanish city
names is built for speech documents. An N-gram
language model is incorporated to minimize the
search spaces. A 90% recognition rate is reported.
The model is not easily generalizable to the situ-
ation in which the names are unknown - as it is
the case with the personal proper names in a large
corpus. The N-gram model is memory demanding
and for 200,000 different names the dimension of
the requested memory is impracticably big.

The problem related to personal proper names
was discussed in (Allan and Raghavan, 2002).
However, the paper addresses only the problem of
clustering together the names which ”sound alike”
and no cross document coreference check was car-
ried out. The technique to find similar names
is based on a noisy channel model. The condi-
tional probabilities for each two names to be sim-
ilarly spelled are computed. The time complex-
ity is quadratic, which renders this technique un-
feasible for big data. In fact, the results are re-
ported for a 100 word set. A different approach
comes from considering search queries databases
(Bassil and Alwani, 2012). These techniques are
similar to the model based on the noisy channel,
as they compute the conditional probabilities of
misspellings based on their frequencies in similar
queries. Unfortunately, large numbers of queries
for proper names are not available. A similar tech-
nique, but using morphological features, was pre-
sented in (Veronis, 1988). The method can man-
age complex combinations of typographical and
phonographic errors.

It has been noted in many works dedicated to
error correction, see among others (Mihov and
Schulz, 2004), that the ED algorithm is imprac-
ticably slow when the number of pairs is large. A
solution is to build a large tries tree. While this
solution improves the searching time drastically,
the memory consumption may be large. Automata
indexing was used in (Oflazer, 1996). While the
memory consumption is much less than for the
tries tree approaches, it is still high. For Turk-
ish, the author reported 28,825 states and 118,352
transitions labeled with surface symbols. The re-
covery error rate is 80%. In (Boytsov, 2011) a
review of indexing methods is given. Testing on
5,000 strings for k=1,2,3 is reported and the paper
shows the problem the systems run into for bigger
values of k. In (Huldén, 2009) a solution employ-
ing approximations via an A* strategy with finite
automata is presented. The method is much faster

for k bigger than the one presented in (Chodorow
and Leacock, 2000). However, the usage of A*
for proper names may be less accurate than the
one reported in the paper, because unlike the com-
mon words in a given language, the names may
have unpredictable forms, especially the foreign
names. The results reported show how the time
and memory vary for indexing methods according
to the length of the words for k=1,2,3.

A method that uses mapping from strings to
numbers is presented in (Reynaert, 2004). This
method uses sum of exponentials. The value of
the exponential was empirically found. However,
the mapping is only approximative. Our mapping
is precise and does not use exponential operations
which are time consuming.

The study in (Navarro, 2001) is focused on non
indexing approximate string search methods, in
particular on the simple ED distance. The non-
indexing methods may reach linear running time,
but it is not always the case that they are scalable
to big data. In (Nagata et al., 2006) a study on the
type of errors produced by non-native speakers of
English is carried out, but the long distance mis-
spellings are not considered.

3 Prime Mapping Misspeling Algorithm

The algorithms based on the Levenshtein dis-
tance use the dynamic programming technique to
build a table of character to character comparisons.
We present here a novel approach to misspelling
which does not build this table, skipping the need
to compare characters. In a nutshell, the prime
mapping algorithm, PM, replaces the characters
compare operations to a unique arithmetic oper-
ation.This can be done by associating to any letter
of the alphabet a unique prime number. For ex-
ample we can associate 2 to a, 3 to b, 5 to c ...
97 to z. Any string will be mapped into a unique
number which is the product of the prime numbers
corresponding to its letters. For example the name
abba is mapped to 2 · 3 · 3 · 2 = 36. By computing
the ratio between any two words we can detect the
different letters with just one operation. For exam-
ple, the difference between abba and aba is 36/12
= 3, which corresponds uniquely to b because the
product/ratio of prime numbers is unique.

Unlike the ED algorithm, the prime mapping
does not find the number of edit operations needed
to transform one string into another. In fact, two
words that have just one letter in the mutual dif-
ference set may be quite distinct: all the strings

1636



aba, aab, baa differ by one letter when compared
with abba. In order to be in a misspelling relation-
ship, the two strings should also have a common
part, like prefix or middle, or suffix. The com-
plete Prime Mapping (PM) algorithm consists of
two successive steps: (1) find all the candidate
words that differ from the target word by at most
k characters and (2) check weather the target word
and the candidate word have a common part, suf-
fix, prefix or middle part. Both steps above are
executed in constant time, therefore they do not
depend either on the length of the strings or on k,
the maximal number of different characters. Nor-
mally, k = 3, because the probability of a mis-
spelled word having more than three distinct let-
ters is insignificant, but unlike in the case of ED,
the choice of k has no influence on the running
time. The first step takes an integer ratio and a
hash table key check, both being O(1). The sec-
ond step checks if the first k letters at the begin-
ning or at the end of the word are the same, and it
requires 2k character comparisons, which is also
an O(1) process, as k is fixed. The pseudo code
and detailed description of the PM algorithm are
given below.

Algorithm 1 Prime Mapping
Require: charList wordsList, primeList, k
Ensure: misspList
1: misspList← ∅
2: foreach α in charList: p(α)← pi, pi in primeList
3: foreach w in wordsList: p(w)←∏ p(α) , α in w
4: primeKTable←

(
n
k

)
of prime arithmetics

5: for w in wordsList do
6: for w’ in wordsList, w 6= w’ do
7: r← p(w)

p(w′)
8: if r in primeKTable then
9: if commonPart (w, w’) 6= ∅ then

10: misspList←misspList + (w, w’)
11: end if
12: end if
13: end for
14: end for

map letters to prime numbers. A helpful way
to assign primes to letters is according to their fre-
quency; on average, the numbers corresponding to
names are smaller and the operation gets less time.

compute a hash table with prime arithmetics
of K primes. In the hash table primeKTable we
record all the combinations that can result from di-
viding two products which have less than k primes:
1/pi, pi, pi/pj etc. If the ratio between two map-
pings is in the hash table, then the corresponding
words have all the letters in common, except for
at most k. The number of all the combination is

k letter difference #combination Memory
1 60 480B
2 435 8K
5 142,506 0.9MB
6 593, 775 3.8MB
10 30, 045, 015 180MB

Table 1: The PM algorithm memory needs

(n
k

)
. The memory consumption for different val-

ues for k is given in Table 1. The figures compare
extremely favorably with the ones of ED based ap-
proaches (gigs magnitude) . (line 7-8)

find misspelling candidates by ratio. By com-
puting the ratio and by checking the hash table, we
found the pairs which use the same letters, except
for at most k. The procedure commonpart checks
whether the two strings also have a common part
by looking at the start and end k. If this is the case,
the pair is in a misspelling relationship.

Figure 1: PM vs. the fastest ED type algorithm

The PM is much faster than ED. The fastest
variant of ED, which does not compare strings
having length difference bigger than 1, theoret-
ically finds only 80% of the misspellings. In
practice, only around 60% of the misspellings are
found because of proper names and words mis-
spelled by non-native speakers. The PM algorithm
considers all possible pairs, finds more than 99%
of misspellings and is 35 times faster. To obtain
the same coverage, the ED algorithm must run for
more than 100 days. The time comparison for mil-
lions of pairs is plotted in Figure 1. The experi-
ments were performed on an i5, 2.8 GHz proces-
sor.

There is an immediate improvement we can
bring to the basic variant of PM. The figures re-
ported above are obtained by doing the whole set
of possible pairs. By taking into account the fact
that two words differing by k+ 1 letters cannot be
k similar, we can organize the number represent-
ing the names into an array which reduced drasti-

1637



cally the number of comparisons. For example, all
the words containing the letters x, y, z cannot be
k = 2 similar with the words not containing any of
these letters. By dividing the mapping of a word to
the primes associated with the letters of an k-gram,
we know if the words containing the k-gram can
be misspelling candidates with at most k differ-
ence, and there is no more need to carry out all the
ratios. We arrange the mappings of all words into
an array such that on the first indexes we have the
words containing the less frequent k + 1 gram, on
the next indexes we have the words containing the
second less frequent k+1 gram and do not contain
the first k+ 1 gram, on the next indexes the words
containing the third less frequent k + 1 gram and
do not contain the first two k+1 gram, etc. In this
way, even the most frequent k + 1 gram has only
a few words assigned and consequently the num-
ber of direct comparisons is reduced to the mini-
mum. The mapping corresponding to a k+1 gram
are ordered in this array according to the length of
the words. The number of trigrams is theoretically
large, the k + 1 power of the size of the alpha-
bet. However, the number of actually occurring
k-trigrams is only a small fraction of it. For exam-
ple, for k = 2, the number of trigrams is a few hun-
dred, out of the 2, 700 possible ones. PM2gram
runs in almost a quarter of the time needed by the
basic PM. For the same set of names we obtained
the results reported in Table 2. The last column
indicates how many times the algorithm is slower
than the PM in its basic form.

algorithm time coverage times slower
basicED 132 days 99% 310
ED1 14 days 80% 35
PM 9 hours 99% 1
PM2gram 2 hours 42min 96% 0.26

Table 2: ED variants versus MP

4 Correcting Proper Names Misspellings

In this section we focus on a class of words which
do not occur in a priorly given dictionary and for
which the misspelled variants may not be random.
Proper names are representative for this class. For
example, the same Russian name occurs in corpus
as Berezovski, Berezovsky or Berezovschi because
of inaccurate transliteration. By convention, we
consider the most frequent form as the canonical
one, and all the other forms as misspelled variants.

Many times, the difference between a canonical
form and a misspelled variant follows a pattern: a

Pattern Context Example
dj→dji ovic djiukanovic djukanovic
k→kh aler kaler khaler, taler thaler
ki→ky ovsk berezovski berezovsky
n→ng chan chan-hee chang-hee
dl→del abd abdelkarim abdlkrim

Table 3: Name misspellings patterns

particular group of letters substitutes another one
in the context created by the other characters in
the name. A misspelling pattern specifies the con-
text, as prefix or suffix of a string, where a particu-
lar group of characters is a misspelling of another.
See Table 3 for examples of such patterns.

Finding and learning such patterns, along with
their probability of indicating a true misspelling,
bring an important gain to CDC systems both in
running time and in alleviating the data-sparseness
problem. The CDC system computes the prob-
ability of coreference for two mentions t and t’
using a similarity metrics into a vectorial space,
where vectors are made out of contextual features
occurring with t and t’ respectively (Grishman,
1994). However, the information extracted from
documents is often too sparse to decide on coref-
erence (Popescu, 2009). Coreference has a global
effect, as the CDC systems generally improve the
coverage creating new vectors by interpolating the
information resulting from the documents which
were coreferred (Hastie et al., 2005). This infor-
mation is used to find further coreferences that no
single pair of documents would allow. Thus, miss-
ing a coreference pair may result in losing the pos-
sibility of realizing further coreferences. However,
for two mentions matching a misspelling pattern
which is highly accurate, the threshold for contex-
tual evidence is lowered. Thus, correcting a mis-
spelling is not beneficial for a single mention only,
but for the accuracy of the whole.

The strategy we adopt for finding patterns is
to work in a bootstrapping manner, enlarging the
valid patterns list while maintaining a high accu-
racy of the coreference, over 90%. Initially, we
start with an empty base of patterns. Considering
only the very high precision threshold for coref-
erence, above 98% certainty, we obtain a set of
misspelling pairs. This set is used to extract pat-
terns of misspellings via a parameter estimation
found using the EM-algorithm. The pattern is con-
sidered valid only if it also has more than a given
number of occurrences. The recursion of the pre-
vious steps is carried out by lowering with an ε
the threshold for accuracy of coreference for pat-

1638



tern candidates. The details and the pseudo code
are given below.

Algorithm 2 Misspelling Pattern Extraction
Require: thCoref , ε, minO, thAcc
Require: thCDC
Ensure: pattList
1: pattList, candPattList← ∅
2: while there is a pair (t, t’) to test for coreference do
3: if (t, t’) matches p, p in pattList then
4: prob← corefProb(p)
5: else
6: use PM algorithm on pair (t, t’)
7: prob← thCoref
8: end if
9: if pair (t, t’) coref with prob then

10: candPattList← candPattList + (t, t’)
11: end if
12: extractPatterns from candPattList
13: for cp in new extracted patterns do
14: if #cp>minO and corefProb(cp)>thAcc then
15: pattList← pattList + (t, t’)
16: end if
17: end for
18: if prob>thCDC then
19: corefer (t, t’)
20: end if
21: end while
22: thCoref ← thCoref - ε
23: goto line 2

1. Compile a list of misspelling candidates
For each source string, t, try to match t against the
list of patterns (initially empty). If there is a pat-
tern matching (t, t’) then their prior probability of
coreference is the probability associated with that
pattern (line 4).

2. CDC coreference evidence For each pair (t
,t’) in the canonical candidates list use the CDC
system to compute the probability of coreference
between t and t’. If the probability of coreference
of t and t’ is higher than thCoref , the default
value is 98%, then consider t as a misspelling of t’
and put (t, t’) in a candidate pattern list (line 10).

3. Extract misspelling patterns Find patterns
in the candidate pattern list. Consider only pat-
terns with more than minO occurrences, whose
default value is 10, and which have the probability
of coreference higher than thAcc, whose default
value is 90% (line 15).

4. CDC and pattern evidence For each (t,t’)
pair matching a pattern and the CDC probabil-
ity of coreference more then thCDC, whose de-
fault value is 80%, then corefer t and t’ (line
21). The fact that the pair (t,t’) matches a pattern
of misspelling is considered supporting evidence
for coreference and in this way it plays a direct
role in enhancing the system coverage. Decrease

thCoref by ε,whose default is value 0.5, and re-
peat the process of finding patterns (goto line 2).

To extract the pattern from a given list of pairs,
procedure extractPatterns at line 12 above, we
generate all the suffixes and prefixes of the strings.
We compute the probability that a group of char-
acters represents a spelling error, given a certain
suffix and/or prefix. We use the EM algorithm to
compute these probabilities. For a pair (P, S) of
a prefix and a suffix, the tuples (p(P)=p, p(S)=s,
π) are the quantities to be estimated via EM, with
π being the coreference probability. A corefer-
ence event is directly observable, without know-
ing, however, which prefix or suffix contribute to
the coreference. The EM equations are given be-
low, where X is the observed data; Z are the hid-
den variable, p and s respectively; θ the parame-
ters (p,s, π); Q(θ,θ(t)) the expected log likelihood
at iteration t.

E− step µ
(t)
i

µ
(t)
i = E[zi|xi, θ(t)]

= p(xi|zi,θ
(t)) p(zi=P |θ(t))

p(xi|θ(t))

= π(t)[p(t)]xi [(1−p(t)](1−xi)

π(t)[p(t)]xi [(1−p(t)](1−xi)+(1−π(t))[s(t)]xi [(1−s(t)](1−xi)

(1)
M− step θ(t+1)

∂Q(θ|θt)

∂π
= 0 π(t+1) =

∑
i
µ
(t)
i

n

∂Q(θ|θt)

∂p
= 0 p(t+1) =

∑
i
µ
(t)
i
xi∑

i
µ
(t)
i

∂Q(θ|θt)

∂s
= 0 s(t+1) =

∑
i
(1−µ(t)

i
)xi∑

i
(1−µ(t)

i
)

(2)

5 Experiments

We performed a set of experiments on different
corpora in order to evaluate: (1) the performances
of the PM algorithm for misspelling detection, (2)
the accuracy of proper name misspelling pattern
acquisition from large corpora, and (3) the im-
provements of a CDC system, employing a cor-
rection module for proper name misspellings.

In Section 5.1 the accuracy of the PM algorithm
is tested on various corpora containing annotated
misspellings of English words. In particular, we
were interested to see the results when the edit dis-
tance between the misspelled pair is bigger than 3,
because handling bigger values for k is crucial for
finding misspelling errors produced by non-native
speakers. The evaluation is directly relevant for
the correction of the spelling of foreign names.

1639



In Section 5.2 the proper name misspelling pat-
terns were extracted from two large news cor-
pora. One corpus is part of the English Gigawords,
LDC2009T13 (Parker et al., 2009) and the sec-
ond corpus is Adige500k in Italian (Magnini et al.,
2006). We use a Named Entity Recognizer which
has an accuracy above 90% for proper names. We
evaluated the accuracy of the patterns by random
sampling.

In Section 5.3 the accuracy of the CDC system
with the correction module for proper name mis-
spellings was tested against a gold standard.

5.1 PM Evaluation

We consider the following publicly available En-
glish corpora containing the annotation of the mis-
spelled words: Birkbeck, Aspell, Holbrook, Wiki-
pidia. Birkbeck is a heterogeneous collection of
documents, so in the experiments below we re-
fer to each document separately. In particular we
distinguish between misspellings of native speak-
ers vs. misspelling of non-native speakers. Fig-
ure 2 shows that there are two types of corpora.
For the first type, the misspellings found within
two characters are between 80% and 100% of
the whole number of misspellings. For the sec-
ond type, less than 50% of the misspellings are
within two characters.The second category is rep-
resented by the misspellings of non native speak-
ers. The misspellings are far from the correct
forms and they represent chunks of phonetically
similar phonemes, like boiz vs. boys. The situa-
tion of the foreign name misspellings is likely to
be similar to the misspellings found in the sec-
ond type of corpora. For those cases, handling
a k value bigger than 2 is crucial. Not only the

Figure 2: k = 1, 2

non-indexing methods, but also indexing ones are
rather inefficient for k values bigger than 2 for
large corpora. The PM algorithm does not have
this drawback, and we tested the coverage of the
errors we found for values of k ranging from 3 to
10. In Figure 3 we plot the distributions for the

Figure 3: Foreign Misspellings

corpora which are problematic for k=2. Values of
k are plotted on the OX axis, and the percentage of
the misspellings within the respective k on the OY
axis. The results showed PM is also able to find
the phonemically similar misspellings. We can see
that for k bigger than 9 the number of misspellings
is not significant.

The PM algorithm performed very well, being
able to find the misspellings even for large k val-
ues. There were 47, 837 words in Aspell, Holbrrok
and Wikipedia, and 30, 671 in Birkbeck, and PM
found all the misspelling pairs in a running time of
25 minutes. This is a very competitive time, even
for indexing methods. For k above 8 the access to
the hash table containing the prime combinations
was slower, but not significantly so.

5.2 Pattern Extraction Evaluation

We extracted the set of names using a NER from
the two corpora, LDC2009T13 and Adige500k.
The set of proper names is rather large in both cor-
pora - 160, 869 names from the English corpus and
185, 508 from the Italian corpus. Apparently, the
quasi-similar names, which are considered as mis-
spelled name candidates, is very high. In Figure
4 we plot this data. The English Cand and Italian
Cand are absolute values, while the English True
and Italian True represent percentages. For exam-
ple, a name of length 5 is likely to have around 23
misspelling candidates, but only 17% of them are
likely to be true misspellings, the rest being differ-
ent names.

Figure 4: Candidates vs. True Misspellings

1640



The numbers are estimated considering samples
having the size between 30 and 50, for each name
length. The percentages change rapidly with the
length of the string. For names with the length
bigger than 11, the probability that a misspelling
candidate is a true misspelling is more than 98%.
This fact suggests a strategy for pattern extrac-
tion: start from the higher name length towards the
lower length names. The patterns found by the al-
gorithm described in Section 4 have between 900
and 20 occurrences. There are 12 patterns having
more than 400 occurrences, 20 having between 20
and 50 occurrences, see Fig. 5.

Figure 5: Distribution of the patterns:

5.3 CDC and Misspelling correction

The CRIPCO corpus (Bentivogli et al., 2008)
is a gold standard for CDC in Italian, contain-
ing pieces of news extracted from Adige500k.
There are 107 names, the majority being Ital-
ian names. We scrambled the names to cre-
ate misspelling candidates. For example the
name leonardo was scrambled like teonardo,
lionaldo, loenarod etc. We considered the top 15
frequency letters and maximum 4 letters for each
scrambling. We randomly selected 70% of the
original CRIPCO making no modifications, and
called this corpus CRwCR. 30% of the original
documents were assigned to the invented pseudo-
names, and we called this corpus CRwSC (cor-
rect documents with scrambled names). From
Adige500k we randomly chose 20, 000 documents
and assigned them to the scrambled names as
well, calling this corpus NCRwSC. From these
pieces we created a new corpus: 70% of the initial
CRIPCO documents with the original names, 30%
of the CRIPCO documents with scrambled names
and 20, 000 documents with the same scrambled
names. For the names occurring in CRwCR, the
scrambled names are valid name misspellings in
the CRwSC corpus, and invalid in NCRwSC.

As expected, the PM algorithm found all the

Figure 6: Proper Names CRIPCO Evaluation

misspelling candidates and some others as well.
We let the threshold confidence of coreference to
vary from 90% to 98%. The number in Figure
6 refers to the precision and recall for the name
misspellings in the CRIPCO corpus created via
random scrambling. We were also interested to
see how the pattern finding procedure works, but
scrambling randomly produced too many contexts.
Therefore, we chose to modify the names in a non
random way, by replacing the final o to ino, ex.
paolo goes to paolino, and modifying one letter in
the word for half of the occurrences, ex. paorino.
The idea is that ino is a very common suffix for
names in Italian. The system was able to learn the
pseudo alternatives created in the context ino. The
noise introduced was relatively low, see Fig. 6.

6 Conclusion and Further Research

In this paper we described a system able to correct
misspellings, including proper name misspellings,
fast and accurately. The algorithm introduced,
PM, overcomes the time/memory limitations of
the approaches based on the edit distance.

The system is built on a novel string compare
algorithm which runs in constant time indepen-
dently of the length of the names or the number of
different letters allowed, with no auxiliary mem-
ory request. As such, the algorithm is much faster
than any other non-indexing algorithms. Because
it is independent of k, it can be used even for large
k, where even the indexing methods have limita-
tions. We also used an EM based technique to find
misspelling patterns. The results obtained are very
accurate.

The system makes a first selection of the docu-
ments, drastically reducing the human work load.
Another line of future research is to use the PM
algorithm in other NLP tasks, where finding the
pairs having some particular elements in common
is necessary: for example, comparing parsing trees
or dependency trees. We think that PM can be
used in other NLP tasks as well and we hope the
community can take advantage of it.

1641



References
James Allan and Hema Raghavan. 2002. Using Part-

of-Speech Patterns to Reduce Query Ambiguity. In
Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 307–314. ACM.

Youssef Bassil and Mohammad Alwani. 2012. OCR
Post-Processing Error Correction Algorithm Using
Google’s Online Spelling Suggestion. Journal of
Emerging Trends in Computing and Information Sci-
ences, ISSN 2079-8407, Vol. 3, No. 1.

Luisa Bentivogli, Christian Girardi, and Emanuele Pi-
anta. 2008. Creating a Gold Standard for Person
Cross-Document Coreference Resolution in Italian
News. In The Workshop Programme, page 19.

Leonid Boytsov. 2011. Indexing Methods for Approx-
imate Dictionary Searching: Comparative Analysis.
Journal of Experimental Algorithmics (JEA), 16:1–
1.

Martin Chodorow and Claudia Leacock. 2000. An Un-
supervised Method for Detecting Grammatical Er-
rors. In Proceedings of the 1st North American
chapter of the Association for Computational Lin-
guistics conference, pages 140–147. Association for
Computational Linguistics.

Fred J Damerau. 1964. A Technique for Computer
Detection and Correction of Spelling Errors. Com-
munications of the ACM, 7(3):171–176.

Ralph Grishman. 1994. Whither Written Language
Evaluation? In Proceedings of the workshop on Hu-
man Language Technology, pages 120–125. Associ-
ation for Computational Linguistics.

Trevor Hastie, Robert Tibshirani, Jerome Friedman,
and James Franklin. 2005. The Elements of Statis-
tical Learning: Data Mining, Inference and Predic-
tion. The Mathematical Intelligencer, 27(2):83–85.

Måns Huldén. 2009. Fast Approximate String
Matching with Finite Automata. Procesamiento del
lenguaje natural, 43:57–64.

Bernardo Magnini, Emanuele Pianta, Christian Girardi,
Matteo Negri, Lorenza Romano, Manuela Speranza,
Valentina Bartalesi Lenzi, and Rachele Sprugnoli.
2006. I-CAB: The Italian Content Annotation Bank.
In Proceedings of LREC, pages 963–968.

Stoyan Mihov and Klaus U Schulz. 2004. Fast Ap-
proximate Search in Large Dictionaries. Computa-
tional Linguistics, 30(4):451–477.

Ryo Nagata, Koichiro Morihiro, Atsuo Kawai, and
Naoki Isu. 2006. A Feedback-Augmented Method
for Detecting Errors in The Writing of Learners of
English. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics, pages 241–248. Association for
Computational Linguistics.

Gonzalo Navarro. 2001. A Guided Tour to Approx-
imate String Matching. ACM computing surveys
(CSUR), 33(1):31–88.

Kemal Oflazer. 1996. Error-tolerant Finite-state
Recognition with Applications to Morphological
Analysis and Spelling Correction. Computational
Linguistics, 22(1):73–89.

Robert Parker, Linguistic Data Consortium, et al.
2009. English Gigaword Fourth Edition. Linguistic
Data Consortium.

Octavian Popescu. 2009. Person Cross Document
Coreference with Name Perplexity Estimates. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume
2-Volume 2, pages 997–1006. Association for Com-
putational Linguistics.

Martin Reynaert. 2004. Text Induced Spelling Cor-
rection. In Proceedings of the 20th international
conference on Computational Linguistics, page 834.
Association for Computational Linguistics.

Rubén San Segundo, Javier Macı́as Guarasa, Javier
Ferreiros, P Martin, and José Manuel Pardo. 2001.
Detection of Recognition Errors and Out of the
Spelling Dictionary Names in a Spelled Name Rec-
ognizer for Spanish. In INTERSPEECH, pages
2553–2556.

Jean Veronis. 1988. Morphosyntactic Correction in
Natural Language Interfaces. In Proceedings of
the 12th conference on Computational linguistics-
Volume 2, pages 708–713. Association for Compu-
tational Linguistics.

1642


