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Abstract

We introduce a novel compositional lan-
guage model that works on Predicate-
Argument Structures (PASs). Our model
jointly learns word representations and
their composition functions using bag-
of-words and dependency-based con-
texts. Unlike previous word-sequence-
based models, our PAS-based model com-
poses arguments into predicates by using
the category information from the PAS.
This enables our model to capture long-
range dependencies between words and
to better handle constructs such as verb-
object and subject-verb-object relations.
We verify this experimentally using two
phrase similarity datasets and achieve re-
sults comparable to or higher than the pre-
vious best results. Our system achieves
these results without the need for pre-
trained word vectors and using a much
smaller training corpus; despite this, for
the subject-verb-object dataset our model
improves upon the state of the art by as
much as∼10% in relative performance.

1 Introduction

Studies on embedding single words in a vector
space have made notable successes in capturing
their syntactic and semantic properties (Turney
and Pantel, 2010). These embeddings have also
been found to be a useful component for Natural
Language Processing (NLP) systems; for exam-
ple, Turian et al. (2010) and Collobert et al. (2011)
demonstrated how low-dimensional word vectors
learned by Neural Network Language Models
(NNLMs) are beneficial for a wide range of NLP
tasks.

Recently, the main focus of research on vector
space representation is shifting from word repre-
sentations to phrase representations (Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011; Mitchell and Lapata, 2010; Socher et al.,
2012). Combining the ideas of NNLMs and se-
mantic composition, Tsubaki et al. (2013) intro-
duced a novel NNLM incorporating verb-object
dependencies. More recently, Levy and Goldberg
(2014) presented a NNLM that integrated syntac-
tic dependencies. However, to the best of our
knowledge, there is no previous work on integrat-
ing a variety of syntactic and semantic dependen-
cies into NNLMs in order to learncomposition
functionsas well as word representations. The fol-
lowing question thus arises naturally:

Can a variety of dependencies be used to
jointly learn both stand-alone word vectors
and their compositions, embedding them in
the same vector space?

In this work, we bridge the gap between
purely context-based (Levy and Goldberg, 2014;
Mikolov et al., 2013b; Mnih and Kavukcuoglu,
2013) and compositional (Tsubaki et al., 2013)
NNLMs by using the flexible set of categories
from Predicate-Argument-Structures (PASs).
More specifically, we propose a Compositional
Log-Bilinear Language Model using PASs (PAS-
CLBLM), an overview of which is shown in
Figure 1. The model is trained by maximizing
the accuracy of predicting target words from their
bag-of-words and dependency-based context,
which provides information about selectional
preference. As shown in Figure 1 (b), one of the
advantages of the PAS-CLBLM is that the model
can treat not only word vectors but also composed
vectors as contexts. Since the composed vectors
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Figure 1: An overview of the proposed model: PAS-CLBLM. (a) The PAS-LBLM predicts target words
from their bag-of-words and dependency-based context words. (b) The PAS-CLBLM predicts target
words using not only context words but also composed vector representations derived from another level
of predicate-argument structures. Underlined words are target words and we only depict the bag-of-
words vector for the PAS-CLBLM.

are treated as input to the language model in
the same way as word vectors, these composed
vectors are expected to become similar to word
vectors for words with similar meanings.

Our empirical results demonstrate that the pro-
posed model has the ability to learn meaning-
ful representations for adjective-noun, noun-noun,
and (subject-) verb-object dependencies. On three
tasks of measuring the semantic similarity be-
tween short phrases (adjective-noun, noun-noun,
and verb-object), the learned composed vectors
achieve scores (Spearman’s rank correlationρ)
comparable to or higher than those of previ-
ous models. On a task involving more complex
phrases (subject-verb-object), our learned com-
posed vectors achieve state-of-the-art performance
(ρ = 0.50) with a training corpus that is an order
of magnitude smaller than that used by previous
work (Tsubaki et al., 2013; Van de Cruys et al.,
2013). Moreover, the proposed model does not
require any pre-trained word vectors produced by
external models, but rather induces word vectors
jointly while training.

2 Related Work

There is a large body of work on how to represent
the meaning of a word in a vector space. Distri-
butional approaches assume that the meaning of
a word is determined by the contexts in which it
appears (Firth, 1957). The context of a word is of-
ten defined as the words appearing in a window
of fixed-length (bag-of-words) and a simple ap-
proach is to treat the co-occurrence statistics of a
word w as a vector representation forw (Mitchell

and Lapata, 2008; Mitchell and Lapata, 2010); al-
ternatively, dependencies between words can be
used to define contexts (Goyal et al., 2013; Erk
and Pad́o, 2008; Thater et al., 2010).

In contrast to distributional representations,
NNLMs represent words in a low-dimensional
vector space (Bengio et al., 2003; Collobert et al.,
2011). Recently, Mikolov et al. (2013b) and Mnih
and Kavukcuoglu (2013) proposed highly scalable
models to learn high-dimensional word vectors.
Levy and Goldberg (2014) extended the model of
Mikolov et al. (2013b) by treating syntactic depen-
dencies as contexts.

Mitchell and Lapata (2008) investigated a vari-
ety of compositional operators to combine word
vectors into phrasal representations. Among these
operators, simple element-wise addition and mul-
tiplication are now widely used to represent short
phrases (Mitchell and Lapata, 2010; Blacoe and
Lapata, 2012). The obvious limitation with these
simple approaches is that information about word
order and syntactic relations is lost.

To incorporate syntactic information into com-
position functions, a variety of compositional
models have been proposed. These include recur-
sive neural networks using phrase-structure trees
(Socher et al., 2012; Socher et al., 2013b) and
models in which words have a specific form of
parameters according to their syntactic roles and
composition functions are syntactically dependent
on the relations of input words (Baroni and Zam-
parelli, 2010; Grefenstette and Sadrzadeh, 2011;
Hashimoto et al., 2013; Hermann and Blunsom,
2013; Socher et al., 2013a).

More recently, syntactic dependency-based
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compositional models have been proposed (Pa-
perno et al., 2014; Socher et al., 2014; Tsub-
aki et al., 2013). One of the advantages of these
models is that they are less restricted by word or-
der. Among these, Tsubaki et al. (2013) intro-
duced a novel compositional NNLM mainly fo-
cusing on verb-object dependencies and achieved
state-of-the-art performance for the task of mea-
suring the semantic similarity between subject-
verb-object phrases.

3 PAS-CLBLM: A Compositional
Log-Bilinear Language Model Using
Predicate-Argument Structures

In some recent studies on representing words as
vectors, word vectors are learned by solving word
prediction tasks (Mikolov et al., 2013a; Mnih and
Kavukcuoglu, 2013). More specifically, given tar-
get words and their context words, the basic idea
is to train classifiers to discriminate between each
target word and artificially induced negative tar-
get words. The feature vector of the classifiers are
calculated using the context word vectors whose
values are optimized during training. As a result,
vectors of words in similar contexts become simi-
lar to each other.

Following these studies, we propose a novel
model to jointly learn representations for words
and their compositions by training word predic-
tion classifiers using PASs. In this section, we
first describe the predicate-argument structures as
they serve as the basis of our model. We then
introduce a Log-Bilinear Language Model us-
ing Predicate-Argument Structures (PAS-LBLM)
to learn word representations using both bag-of-
words and dependency-based contexts. Finally,
we propose integrating compositions of words into
the model. Figure 1 (b) shows the overview of the
proposed model.

3.1 Predicate-Argument Structures

Due to advances in deep parsing technologies,
syntactic parsers that can produce predicate-
argument structures are becoming accurate and
fast enough to be used for practical applications.
In this work, we use the probabilistic HPSG
parserEnju (Miyao and Tsujii, 2008) to obtain the
predicate-argument structures of individual sen-
tences. In its grammar, each word in a sentence
is treated as a predicate of a certain category with
zero or more arguments. Table 1 shows some ex-

Category predicate arg1 arg2

adj arg1 heavy rain
nounarg1 car accident
verb arg12 cause rain accident
preparg12 at eat restaurant

Table 1: Examples of predicates of different cate-
gories from the grammar of the Enju parser.arg1
andarg2denote the first and second arguments.

amples of predicates of different categories.1 For
example, a predicate of the categoryverb arg12
expresses a verb with two arguments. A graph can
be constructed by connecting words in predicate-
argument structures in a sentence; in general, these
graphs are acyclic.

One of the merits of using predicate-argument
structures is that they can capture dependencies
between more than two words, while standard syn-
tactic dependency structures are limited to depen-
dencies between two words. For example, one of
the predicates in the phrase “heavy rain caused car
accidents” is the verb “cause”, and it has two ar-
guments (“rain” and “accident”). Furthermore, ex-
actly the same predicate-argument structure (pred-
icate: cause, first argument: rain, second argu-
ment: accident) is extracted from the passive form
of the above phrase: “car accidents were caused
by heavy rain”. This is helpful when capturing
semantic dependencies between predicates and ar-
guments, and in extracting facts or relations de-
scribed in a sentence, such aswho did what to
whom.

3.2 A Log-Bilinear Language Model Using
Predicate-Argument Structures

3.2.1 PAS-based Word Prediction

The PAS-LBLM predicts a target word given its
PAS-based context. We assume that each word
w in the vocabularyV is represented with ad-
dimensional vectorv(w). When a predicate of
categoryc is extracted from a sentence, the PAS-
LBLM computes the predictedd-dimensional vec-
tor p(wt) for the target wordwt from its context
wordsw1, w2, . . . , wm:

p(wt) = f

(
m∑

i=1

hc
i ⊙ v(wi)

)
, (1)

1The categories of the predicates in the Enju parser are
summarized athttp://kmcs.nii.ac.jp/ ˜ yusuke/
enju/enju-manual/enju-output-spec.html .
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where hc
i ∈ Rd×1 are category-specific weight

vectors and⊙ denotes element-wise multiplica-
tion. f is a non-linearity function; in this work
we definef astanh.

As an example following Figure 1 (a), when
the predicate “cause” is extracted with its first
and second arguments “rain” and “accident”, the
PAS-LBLM computesp(cause) ∈ Rd following
Eq. (1):

p(cause) = f(hverb arg12
arg1 ⊙ v(rain)+

hverb arg12
arg2 ⊙ v(accident)).

(2)

In Eq. (2), the predicate is treated as the target
word, and its arguments are treated as the con-
text words. In the same way, an argument can be
treated as a target word:

p(rain) = f(hverb arg12
verb ⊙ v(cause)+

hverb arg12
arg2 ⊙ v(accident)).

(3)

Relationship to previous work. If we omit the
the category-specific weight vectorshc

i in Eq. (1),
our model is similar to the CBOW model in
Mikolov et al. (2013a). CBOW predicts a tar-
get word given its surrounding bag-of-words con-
text, while our model uses its PAS-based context.
To incorporate the PAS information in our model
more efficiently, we use category-specific weight
vectors. Similarly, the vLBL model of Mnih and
Kavukcuoglu (2013) uses different weight vec-
tors depending on the position relative to the tar-
get word. As with previous neural network lan-
guage models (Collobert et al., 2011; Huang et al.,
2012), our model and vLBL can use weight ma-
trices rather than weight vectors. However, as dis-
cussed by Mnih and Teh (2012), using weight vec-
tors makes the training significantly faster than us-
ing weight matrices. Despite the simple formula-
tion of the element-wise operations, the category-
specific weight vectors efficiently propagate PAS-
based context information as explained next.

3.2.2 Training Word Vectors

To train the PAS-LBLM, we use a scoring function
to evaluate how well the target wordwt fits the
given context:

s(wt, p(wt)) = ṽ(wt)
Tp(wt), (4)

whereṽ(wt) ∈ Rd×1 is the scoring weight vector
for wt. Thus, the model parameters in the PAS-
LBLM are (V, Ṽ , H). V is the set of word vec-

torsv(w), andṼ is the set of scoring weight vec-
tors ṽ(w). H is the set of the predicate-category-
specific weight vectorshc

i .
Based on the objective in the model of Collobert

et al. (2011), the model parameters are learned by
minimizing the following hinge loss:

N∑
n=1

max(1− s(wt, p(wt)) + s(wn, p(wt)), 0),

(5)
where the negative samplewn is a randomly sam-
pled word other thanwt, and N is the number
of negative samples. In our experiments we set
N = 1. Following Mikolov et al. (2013b), nega-
tive samples were drawn from the distribution over
unigrams that we raise to the power0.75 and then
normalize to once again attain a probability distri-
bution. We minimize the loss function in Eq. (5)
using AdaGrad (Duchi et al., 2011). For further
training details, see Section 4.5.

Relationship to softmax regression models.
The model parameters can be learned by maximiz-
ing the log probability of the target wordwt based
on the softmax function:

p(wt|context) =
exp(s(wt, p(wt)))∑|V|
i=1 exp(s(wi, p(wt)))

. (6)

This is equivalent to a softmax regression model.
However, when the vocabularyV is large, com-
puting the softmax function in Eq. (6) is compu-
tationally expensive. If we do not need probabil-
ity distributions over words, we are not necessar-
ily restricted to using the probabilistic expressions.
Recently, several methods have been proposed to
efficiently learn word representations rather than
accurate language models (Collobert et al., 2011;
Mikolov et al., 2013b; Mnih and Kavukcuoglu,
2013), and our objective follows the work of Col-
lobert et al. (2011). Mikolov et al. (2013b) and
Mnih and Kavukcuoglu (2013) trained their mod-
els using word-dependent scoring weight vectors
which are the arguments of our scoring function
in Eq. (4). During development we also trained
our model using the negative sampling technique
of Mikolov et al. (2013b); however, we did not ob-
serve any significant performance difference.

Intuition behind the PAS-LBLM. Here we
briefly explain how each class of the model pa-
rameters of the PAS-LBLM contributes to learning
word representations at each stochastic gradient
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decent step. The category-specific weight vectors
provide the PAS information for context word vec-
tors which we would like to learn. During train-
ing, context word vectors having the same PAS-
based syntactic roles are updated similarly. The
word-dependent scoring weight vectors propagate
the information on which words should, or should
not, be predicted. In effect, context word vectors
making similar contributions to word predictions
are updated similarly. The non-linear functionf
provides context words with information on the
other context words in the same PAS. In this way,
word vectors are expected to be learned efficiently
by the PAS-LBLM.

3.3 Learning Composition Functions

As explained in Section 3.1, predicate-argument
structures inherently form graphs whose nodes are
words in a sentence. Using the graphs, we can in-
tegrate relationships between multiple predicate-
argument structures into our model.

When the context wordwi in Eq. (1), excluding
predicate words, has another predicate-argument
of categoryc′ as a dependency, we replacev(wi)
with the vector produced by the composition func-
tion for the predicate categoryc′. For example,
as shown in Figure 1 (b), when the first argument
“rain” of the predicate “cause” is also the argu-
ment of the predicate “heavy”, we first compute
thed-dimensional composed vector representation
for “heavy” and “rain”:

gc′(v(heavy), v(rain)), (7)

wherec′ is the categoryadj arg1, andgc′ is a func-
tion to combine input vectors for the predicate-
categoryc′. We can use any composition func-
tion that produces a representation of the same
dimensionality as its inputs, such as element-
wise addition/multiplication (Mitchell and Lap-
ata, 2008) or neural networks (Socher et al.,
2012). We then replacev(rain) in Eq. (2) with
gc′(v(heavy), v(rain)). When the second argu-
ment “accident” in Eq. (2) is also the argument
of the predicate “car”,v(accident) is replaced
with gc′′(v(car), v(accident)). c′′ is the predi-
cate categorynounarg1. These multiple relation-
ships of predicate-argument structures should pro-
vide richer context information. We refer to the
PAS-LBLM with composition functions as PAS-
CLBLM.

3.4 Bag-of-Words Sensitive PAS-CLBLM

Both the PAS-LBLM and PAS-CLBLM can take
meaningful relationships between words into ac-
count. However, at times, the number of context
words can be limited and the ability of other mod-
els to take ten or more words from a fixed con-
text in a bag-of-words (BoW) fashion could com-
pensate for this sparseness. Huang et al. (2012)
combined local and global contexts in their neural
network language models, and motivated by their
work, we integrate bag-of-words vectors into our
models. Concretely, we add an additional input
term to Eq. (1):

p(wt) = f

(
m∑

i=1

hc
i ⊙ v(wi) + hc

BoW ⊙ v(BoW)

)
,

(8)
wherehc

BoW ∈ Rd×1 are additional weight vec-
tors, andv(BoW) ∈ Rd×1 is the average of the
word vectors in the same sentence. To construct
the v(BoW) for each sentence, we average the
word vectors of nouns and verbs in the same sen-
tence, excluding the target and context words.

4 Experimental Settings

4.1 Training Corpus

We used the British National Corpus (BNC) as our
training corpus, extracted 6 million sentences from
the original BNC files, and parsed them using the
Enju parser described in Section 3.1.

4.2 Word Sense Disambiguation Using
Part-of-Speech Tags

In general, words can have multiple syntactic us-
ages. For example, the wordcausecan be a
noun or a verb depending on its context. Most
of the previous work on learning word vectors
ignores this ambiguity since word sense disam-
biguation could potentially be performed after the
word vectors have been trained (Huang et al.,
2012; Kartsaklis and Sadrzadeh, 2013). Some re-
cent work explicitly assigns an independent vec-
tor for each word usage according to its part-of-
speech (POS) tag (Hashimoto et al., 2013; Kart-
saklis and Sadrzadeh, 2013). Alternatively, Baroni
and Zamparelli (2010) assigned different forms of
parameters to adjectives and nouns.

In our experiments, we combined each word
with its corresponding POS tags. We used the
base-forms provided by the Enju parser rather than
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Figure 2: Two PAS-CLBLM training samples.

the surface-forms, and used the first two charac-
ters of the POS tags. For example,VB, VBP,
VBZ, VBG, VBD, VBN were all mapped toVB.
This resulted in two kinds ofcause: causeNNand
causeVB and we used the 100,000 most frequent
lowercased word-POS pairs in the BNC.

4.3 Selection of Training Samples Based on
Categories of Predicates

To train the PAS-LBLM and PAS-CLBLM, we
could use all predicate categories. However, our
preliminary experiments showed that these cate-
gories covered many training samples which are
not directly relevant to our experimental setting,
such as determiner-noun dependencies. We thus
manually selected the categories used in our ex-
periments. The selected predicates are listed in
Table 1: adj arg1, nounarg1, prep arg12, and
verb arg12. These categories should provide
meaningful information on selectional preference.
For example, theprep arg12denotes prepositions
with two arguments, such as “eat at restaurant”
which means that the verb “eat” is related to the
noun “restaurant” by the preposition “at”. Prepo-
sitions are one of the predicates whose arguments
can be verbs, and thus prepositions are important
in training the composition functions for (subject-)
verb-object dependencies as described in the next
paragraph.

Another point we had to consider was how
to construct the training samples for the PAS-
CLBLM. We constructed compositional training
samples as explained in Section 3.3 whenc′ was
adj arg1, nounarg1, or verb arg12. Figure 2
shows two examples in addition to the example
in Figure 1 (b). Using such training samples, the
PAS-CLBLM could, for example, recognize from
the two predicate-argument structures, “eat food”
and “eat at restaurant”, that eating foods is an ac-
tion that occurs at restaurants.

Model Composition Function

Addl v(w1) + v(w2)
Addnl tanh(v(w1) + v(w2))
Waddl mc

adj ⊙ v(w1) + mc
arg1 ⊙ v(w2)

Waddnl tanh(mc
adj⊙v(w1)+mc

arg1⊙v(w2))

Table 2: Composition functions used in this work.
The examples are shown as theadjective-nounde-
pendency betweenw1 =“heavy” andw2 =“rain”.

4.4 Selection of Composition Functions

As described in Section 3.3, we are free to se-
lect any composition functions in Eq. (7). To
maintain the fast training speed of the PAS-
LBLM, we avoid dense matrix-vector multiplica-
tion in our composition functions. In Table 2,
we list the composition functions used for the
PAS-CLBLM. Addl is element-wise addition and
Addnl is element-wise addition with the non-
linear functiontanh. The subscriptsl andnl de-
note the wordslinear andnon-linear. Similarly,
Waddl is element-wise weighted addition and
Waddnl is element-wise weighted addition with
the non-linear functiontanh. The weight vec-
torsmc

i ∈ Rd×1 in Table 2 are predicate-category-
specific parameters which are learned during train-
ing. We investigate the effects of the non-linear
function tanh for these composition functions.
In the formulations of the backpropagation algo-
rithm, non-linear functions allow the input vectors
to weakly interact with each other.

4.5 Initialization and Optimization of Model
Parameters

We assigned a 50-dimensional vector for each
word-POS pair described in Section 4.2 and ini-
tialized the vectors and the scoring weight vec-
tors using small random values. In part inspired
by the initialization method of the weight matrices
in Socher et al. (2013a), we initialized all values
in the compositional weight vectors of the Waddl

and Waddnl as 1.0. The context weight vectors
were initialized using small random values.

We minimized the loss function in Eq. (5) us-
ing mini-batch SGD and AdaGrad (Duchi et al.,
2011). Using AdaGrad, the SGD’s learning rate
is adapted independently for each model parame-
ter. This is helpful in training the PAS-LBLM and
PAS-CLBLM, as they have conditionally depen-
dent model parameters with varying frequencies.
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The mini-batch size was32 and the learning rate
was0.05 for each experiment, and no regulariza-
tion was used. To verify the semantics captured by
the proposed models during training and to tune
the hyperparameters, we used theWordSim-3532

word similarity data set (Finkelstein et al., 2001).

5 Evaluation on Phrase Similarity Tasks

5.1 Evaluation Settings

The learned models were evaluated on four tasks
of measuring the semantic similarity between
short phrases. We performed evaluation using the
three tasks (AN, NN, and VO) in the dataset3 pro-
vided by Mitchell and Lapata (2010), and the SVO
task in the dataset4 provided by Grefenstette and
Sadrzadeh (2011).

The datasets include pairs of short phrases ex-
tracted from the BNC. AN, NN, and VO con-
tain 108 phrase pairs of adjective-noun, noun-
noun, and verb-object. SVO contains 200 pairs of
subject-verb-object phrases. Each phrase pair has
multiple human-ratings: the higher the rating is,
the more semantically similar the phrases. For ex-
ample, the subject-verb-object phrase pair of “stu-
dent write name” and “student spell name” has a
high rating. The pair “people try door” and “peo-
ple judge door” has a low rating.

For evaluation we used the Spearman’s rank
correlationρ between the human-ratings and the
cosine similarity between the composed vector
pairs. We mainly usednon-averagedhuman-
ratings for each pair, and as described in Section
5.3, we also usedaveragedhuman-ratings for the
SVO task. Each phrase pair in the datasets was an-
notated by more than two annotators. In the case
of averaged human ratings, we averaged multiple
human-ratings for each phrase pair, and in the case
of non-averaged human-ratings, we treated each
human-rating as a separate annotation.

With the PAS-CLBLM, we represented each
phrase using the composition functions listed in
Table 2. When there was no composition present,
we represented the phrase using element-wise ad-
dition. For example, when we trained the PAS-
CLBLM with the composition function Waddnl,

2http://www.cs.technion.ac.il/ ˜ gabr/
resources/data/wordsim353/

3http://homepages.inf.ed.ac.uk/
s0453356/share

4http://www.cs.ox.ac.uk/activities/
compdistmeaning/GS2011data.txt

Model AN NN VO

PAS-CLBLM (Addl) 0.52 0.44 0.35
PAS-CLBLM (Addnl) 0.52 0.46 0.45
PAS-CLBLM (Waddl) 0.48 0.39 0.34
PAS-CLBLM (Waddnl) 0.48 0.40 0.39
PAS-LBLM 0.41 0.44 0.39
word2vec 0.52 0.48 0.42
BL w/ BNC 0.48 0.50 0.35
HB w/ BNC 0.41 0.44 0.34
KS w/ ukWaC n/a n/a 0.45
K w/ BNC n/a n/a 0.41

Human agreement 0.52 0.49 0.55

Table 3: Spearman’s rank correlation scoresρ for
the three tasks: AN, NN, and VO.

the composed vector for each phrase was com-
puted using the Waddnl function, and when we
trained the PAS-LBLM, we used the element-wise
addition function. To compute the composed vec-
tors using the Waddl and Waddnl functions, we
used the categories of the predicatesadj arg1,
nounarg1, andverb arg12 listed in Table 1.

As a strong baseline, we trained theSkip-gram
model of Mikolov et al. (2013b) using the pub-
licly available word2vec5 software. We fed the
POS-tagged BNC into word2vec since our models
utilize POS tags and trained 50-dimensional word
vectors using word2vec. For each phrase we then
computed the representation using vector addition.

5.2 AN, NN, and VO Tasks

Table 3 shows the correlation scoresρ for the AN,
NN, and VO tasks.Human agreementdenotes the
inter-annotator agreement. The word2vec baseline
achieves unexpectedly high scores for these three
tasks. Previously these kinds of models (Mikolov
et al., 2013b; Mnih and Kavukcuoglu, 2013) have
mainly been evaluated for word analogy tasks and,
to date, there has been no work using these word
vectors for the task of measuring the semantic sim-
ilarity between phrases. However, this experimen-
tal result suggests that word2vec can serve as a
strong baseline for these kinds of tasks, in addi-
tion to word analogy tasks.

In Table 3,BL , HB, KS, andK denote the work
of Blacoe and Lapata (2012), Hermann and Blun-
som (2013), Kartsaklis and Sadrzadeh (2013), and
Kartsaklis et al. (2013) respectively. Among these,

5https://code.google.com/p/word2vec/
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Averaged Non-averaged
Model Corpus SVO-SVO SVO-V SVO-SVO SVO-V

PAS-CLBLM (Addl) 0.29 0.34 0.24 0.28
PAS-CLBLM (Addnl) 0.27 0.32 0.24 0.28
PAS-CLBLM (Waddl) BNC 0.25 0.26 0.21 0.23
PAS-CLBLM (Waddnl) 0.42 0.50 0.34 0.41
PAS-LBLM 0.21 0.06 0.18 0.08
word2vec BNC 0.12 0.32 0.12 0.28
Grefenstette and Sadrzadeh (2011)BNC n/a n/a 0.21 n/a
Tsubaki et al. (2013) ukWaC n/a 0.47 n/a n/a
Van de Cruys et al. (2013) ukWaC n/a n/a 0.32 0.37

Human agreement 0.75 0.62

Table 4: Spearman’s rank correlation scoresρ for the SVO task.Averageddenotes theρ calculated by
averaged human ratings, andNon-averageddenotes theρ calculated by non-averaged human ratings.

only Kartsaklis and Sadrzadeh (2013) used the
ukWaC corpus (Baroni et al., 2009) which is an or-
der of magnitude larger than the BNC. As we can
see in Table 3, the PAS-CLBLM (Addnl) achieves
scores comparable to and higher than those of the
baseline and the previous state-of-the-art results.
In relation to these results, the Waddl and Waddnl

variants of the PAS-CLBLM do not achieve great
improvements in performance. This indicates that
simple word vector addition can be sufficient to
compose representations for phrases consisting of
word pairs.

5.3 SVO Task

Table 4 shows the correlation scoresρ for the SVO
task. The scoresρ for this task are reported for
both averagedand non-averagedhuman ratings.
This is due to a disagreement in previous work
regarding which metric to use when reporting re-
sults. Hence, we report the scores for both settings
in Table 4. Another point we should consider is
that some previous work reported scores based on
the similarity between composed representations
(Grefenstette and Sadrzadeh, 2011; Van de Cruys
et al., 2013), and others reported scores based on
the similarity between composed representations
and word representations of landmark verbs from
the dataset (Tsubaki et al., 2013; Van de Cruys et
al., 2013). For completeness, we report the scores
for both settings:SVO-SVOandSVO-Vin Table 4.

The results show that the weighted addition
model with the non-linear functiontanh (PAS-
CLBLM (Waddnl)) is effective for the more com-
plex phrase task. While simple vector addition is
sufficient for phrases consisting of word pairs, it is

clear from our experimental results that they fall
short for more complex structures such as those
involved in the SVO task.

Our PAS-CLBLM (Waddnl) model outperforms
the previous state-of-the-art scores for the SVO
task as reported by Tsubaki et al. (2013) and
Van de Cruys et al. (2013). As such, there are three
key points that we would like to emphasize:

(1) the difference of the training corpus size,

(2) the necessity of the pre-trained word vectors,

(3) the modularity of deep learning models.

Tsubaki et al. (2013) and Van de Cruys et al.
(2013) used the ukWaC corpus. This means our
model works better, despite using a considerably
smaller corpora. It should also be noted that, like
us, Grefenstette and Sadrzadeh (2011) used the
BNC corpus.

The model of Tsubaki et al. (2013) is based on
neural network language models which use syn-
tactic dependencies between verbs and their ob-
jects. While their novel model, which incorpo-
rates the idea ofco-compositionality, works well
with pre-trained word vectors produced by exter-
nal models, it is not clear whether the pre-trained
vectors are required to achieve high scores. In
contrast, we have achieved state-of-the-art results
without the use of pre-trained word vectors.

Despite our model’s scalability, we trained 50-
dimensional vector representations for words and
their composition functions and achieved high
scores using this low dimensional vector space.
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model d AN NN VO SVO

Addl 50 0.52 0.44 0.35 0.24
1000 0.51 0.51 0.43 0.31

Addnl 50 0.52 0.46 0.45 0.24
1000 0.51 0.50 0.45 0.31

Waddl 50 0.48 0.39 0.34 0.21
1000 0.50 0.49 0.43 0.32

Waddnl 50 0.48 0.40 0.39 0.34
1000 0.51 0.48 0.48 0.34

Table 5: Comparison of the PAS-CLBLM between
d = 50 andd = 1000.

This maintains the possibility to incorporate re-
cently developed deep learning composition func-
tions into our models, such as recursive neural
tensor networks (Socher et al., 2013b) and co-
compositional neural networks (Tsubaki et al.,
2013). While such complex composition functions
slow down the training of compositional models,
richer information could be captured during train-
ing.

5.4 Effects of the Dimensionality

To see how the dimensionality of the word vectors
affects the scores, we trained the PAS-CLBLM for
each setting using 1,000-dimensional word vectors
and set the learning rate to0.01. Table 5 shows
the scores for all four tasks. Note that we only re-
port the scores for the settingnon-averaged SVO-
SVOhere. As shown in Table 5, the scores consis-
tently improved with a few exceptions. The scores
ρ = 0.51 for the NN task andρ = 0.48 for the
VO task are the best results to date. However, the
scoreρ = 0.34 for the SVO task did not improve
by increasing the dimensionality. This means that
simply increasing the dimensionality of the word
vectors does not necessarily lead to better results
for complex phrases.

5.5 Effects of Bag-of-Words Contexts

Lastly, we trained the PAS-CLBLM without the
bag-of-words contexts described in Section 3.4
and used 50-dimensional word vectors. As can be
seen in Table 6, large score improvements were
observed only for the VO and SVO tasks by in-
cluding the bag-of-words contexts and the non-
linearity function. It is likely that the results de-
pend on how the bag-of-words contexts are con-
structed. However, we leave this line of analysis
as future work. Both adjective-noun and noun-

model BoW AN NN VO SVO

Addl w/ 0.52 0.44 0.35 0.24
w/o 0.48 0.46 0.38 0.23

Addnl w/ 0.52 0.46 0.45 0.24
w/o 0.50 0.47 0.41 0.15

Waddl w/ 0.48 0.39 0.34 0.21
w/o 0.47 0.39 0.38 0.21

Waddnl w/ 0.48 0.40 0.39 0.34
w/o 0.52 0.42 0.33 0.26

Table 6: Scores of the PAS-CLBLM with and
without BoW contexts.

noun phrase are noun phrases, and (subject-) verb-
object phrases can be regarded as complete sen-
tences. Therefore, different kinds of context infor-
mation might be required for both groups.

6 Qualitative Analysis on Composed
Vectors

An open question that remains is to what ex-
tent composition affects the representations pro-
duced by our PAS-CLBLM model. To evalu-
ate this we assigned a vector for each composed
representation. For example, the adjective-noun
dependency “heavy rain” would be assigned an
independent vector. We added the most fre-
quent 100,000 adjective-noun, noun-noun, and
(subject-) verb-object tuples to the vocabulary and
the resulting vocabulary contained 400,000 to-
kens (100,000+3×100,000). A similar method
for treating frequent neighboring words as single
words was introduced by Mikolov et al. (2013b).
However, some dependencies, such as (subject-)
verb-object phrases, are not always captured when
considering only neighboring words.

Table 7 (No composition) shows some examples
of predicate-argument dependencies with their
closest neighbors in the vector space according
to the cosine similarity. The table shows that the
learned vectors of multiple words capture seman-
tic similarity. For example, the vector of “heavy
rain” is close to the vectors of words which ex-
press the phenomenaheavily raining. The vector
of “new york” captures the concept of amajor city.
The vectors of (subject-) verb-object dependencies
also capture the semantic similarity, which is the
main difference to previous approaches, such as
that of Mikolov et al. (2013b), which only consider
neighboring words. These results suggest that the
PAS-CLBLM can learn meaningful composition
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Query No composition Composition
rain rain

(AN) thunderstorm sunshine
heavy downpour storm
rain blizzard drizzle

much rain chill
general manager executive

(AN) vice president director
chief executive director representative
executive project manager officer

managing director administrator
second war war

(NN) plane crash world
world riot race
war last war holocaust

great war warfare
oslo york

(NN) paris toronto
new birmingham paris
york moscow edinburgh

madrid glasgow
make order make

(VO) carry survey allow
make pay tax demand
payment pay produce

impose tax bring
achieve objective solve

(VO) bridge gap alleviate
solve improve quality overcome
problem deliver information resolve

encourage development circumvent
hold meeting take

(SVO) event take place get
meeting end season win
take discussion take place put
place do work gain

Table 7: Nearest neighbor vectors for multiple
words. POS-tags are not shown for simplicity.

category predicate arg1 arg2

adj arg1 2.38 6.55 -
nounarg1 3.37 5.60 -
verb arg12 6.78 2.57 2.18

Table 8: L2-norms of the 50-dimensional weight
vectors of the composition function Waddnl.

functions since the composition layers receive the
same error signal via backpropagation.

We then trained the PAS-CLBLM using Waddnl

to learn composition functions. Table 7 (Compo-
sition) shows the nearest neighbor words for each
composed vector, and as we can see, the learned
composition function emphasizes the head words
and captures some sort of semantic similarity. We
then inspected the L2-norms of the weight vectors
of the composition function. As shown in Table 8,
head words are strongly emphasized. Emphasiz-
ing head words is helpful in representing com-
posed meanings, but in the case of verbs it may

not always be sufficient. This can be observed in
Table 3 and Table 4, which demonstrates that verb-
related tasks are more difficult than noun-phrase
tasks.

While No compositioncaptures the seman-
tic similarity well using independent parameters,
there is the issue of data sparseness. As the size of
the vocabulary increases, the number of tuples of
word dependencies increases rapidly. In this ex-
periment, we used only the 300,000 most frequent
tuples. In contrast to this, the learned composi-
tion functions can capture similar information us-
ing only word vectors and a small set of predicate
categories.

7 Conclusion and Future Work

We have presented a compositional log-bilinear
language model using predicate-argument struc-
tures that incorporates both bag-of-words and
dependency-based contexts. In our experiments
the learned composed vectors achieve state-of-the-
art scores for the task of measuring the semantic
similarity between short phrases. For the subject-
verb-object phrase task, the result is achieved
without any pre-trained word vectors using a cor-
pus an order of magnitude smaller than that of the
previous state of the art. For future work, we will
investigate how our models and the resulting vec-
tor representations can be helpful for other unsu-
pervised and/or supervised tasks.
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