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Abstract

Many forms of word relatedness have been
developed, providing different perspec-
tives on word similarity. We introduce
a Bayesian probabilistic tensor factoriza-
tion model for synthesizing a single word
vector representation and per-perspective
linear transformations from any number
of word similarity matrices. The result-
ing word vectors, when combined with the
per-perspective linear transformation, ap-
proximately recreate while also regulariz-
ing and generalizing, each word similarity
perspective.

Our method can combine manually cre-
ated semantic resources with neural word
embeddings to separate synonyms and
antonyms, and is capable of generaliz-
ing to words outside the vocabulary of
any particular perspective. We evaluated
the word embeddings with GRE antonym
questions, the result achieves the state-of-
the-art performance.

1 Introduction

In recent years, vector space models (VSMs)
have been proved successful in solving various
NLP tasks including named entity recognition,
part-of-speech tagging, parsing, semantic role-
labeling and answering synonym or analogy ques-
tions (Turney et al., 2010; Collobert et al., 2011).
Also, VSMs are reported performing well on
tasks involving the measurement of word related-
ness (Turney et al., 2010). Many existing works
are distributional models, based on the Distribu-
tional Hypothesis, that words occurring in simi-
lar contexts tend to have similar meanings (Har-
ris, 1954). The limitation is that word vectors de-
veloped from distributional models cannot reveal
word relatedness if its information does not lie in

word distributions. For instance, they are believed
to have difficulty distinguishing antonyms from
synonyms, because the distribution of antonymous
words are close, since the context of antonymous
words are always similar to each other (Moham-
mad et al., 2013). Although some research claims
that in certain conditions there do exist differ-
ences between the contexts of different antony-
mous words (Scheible et al., 2013), the differences
are subtle enough that it can hardly be detected by
such language models, especially for rare words.

Another important class of lexical resource for
word relatedness is a lexicon, such as Word-
Net (Miller, 1995) or Roget’s Thesaurus (Kipfer,
2009). Manually producing or extending lexi-
cons is much more labor intensive than generat-
ing VSM word vectors using a corpus. Thus, lex-
icons are sparse with missing words and multi-
word terms as well as missing relationships be-
tween words. Considering the synonym / antonym
perspective as an example, WordNet answers less
than 40% percent of the the GRE antonym ques-
tions provided by Mohammad et al. (2008) di-
rectly. Moreover, binary entries in lexicons do not
indicate the degree of relatedness, such as the de-
gree of lexical contrast between happy and sad or
happy and depressed. The lack of such informa-
tion makes it less fruitful when adopted in NLP
applications.

In this work, we propose a Bayesian tensor fac-
torization model (BPTF) for synthesizing a com-
posite word vector representation by combining
multiple different sources of word relatedness.
The input is a set of word by word matrices, which
may be sparse, providing a number indicating the
presence or degree of relatedness. We treat word
relatedness matrices from different perspectives as
slices, forming a word relatedness tensor. Then the
composite word vectors can be efficiently obtained
by performing BPTF. Furthermore, given any two
words and any trained relatedness perspective, we
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can create or recreate the pair-wise word related-
ness with regularization via per-perspective linear
transformation.

This method allows one set of word vectors to
represent word relatednesses from many different
perspectives (e.g. LSA for topic relatedness / cor-
pus occurrences, ISA relation and YAGO type) It
is able to bring the advantages from both word re-
latedness calculated by distributional models, and
manually created lexicons, since the former have
much more vocabulary coverage and many varia-
tions, while the latter covers word relatedness that
is hard to detect by distributional models. We can
use information from distributional perspectives to
create (if does not exist) or re-create (with regular-
ization) word relatedness from the lexicon’s per-
spective.

We evaluate our model on distinguishing syn-
onyms and antonyms. There are a number of re-
lated works (Lin and Zhao, 2003; Turney, 2008;
Mohammad et al., 2008; Mohammad et al., 2013;
Yih et al., 2012; Chang et al., 2013). A number of
sophisticated methods have been applied, produc-
ing competitive results using diverse approaches.
We use the GRE antonym questions (Mohammad
et al., 2008) as a benchmark, and answer these
questions by finding the most contrasting choice
according to the created or recreated synonym /
antonym word relatedness. The result achieves
state-of-the-art performance.

The rest of this paper is organized as fol-
lows. Section 2 describes the related work of
word vector representations, the BPTF model and
antonymy detection. Section 3 presents our BPTF
model and the sampling method. Section 4 shows
the experimental evaluation and results with Sec-
tion 5 providing conclusion and future work.

2 Related Work

2.1 Word Vector Representations

Vector space models of semantics have a long his-
tory as part of NLP technologies. One widely-
used method is deriving word vectors using la-
tent semantic analysis (LSA) (Deerwester et al.,
1990), for measuring word similarities. This pro-
vides a topic based perspective on word simi-
larity. In recent years, neural word embeddings
have proved very effective in improving various
NLP tasks (e.g. part-of-speech tagging, chunking,
named entity recognition and semantic role label-
ing) (Collobert et al., 2011). The proposed neural

models have a large number of variations, such as
feed-forward networks (Bengio et al., 2003), hi-
erarchical models (Mnih and Hinton, 2008), re-
current neural networks (Mikolov, 2012), and re-
cursive neural networks (Socher et al., 2011).
Mikolov et al. (2013) reported their vector-space
word representation is able to reveal linguistic
regularities and composite semantics using sim-
ple vector addition and subtraction. For example,
“King−Man+Woman” results in a vector very
close to “Queen”. Luong et al. (2013) proposed
a recursive neural networks model incorporating
morphological structure, and has better perfor-
mance for rare words.

Some non-VSM models1 also generate word
vector representations. Yih et al. (2012) apply po-
larity inducing latent semantic analysis (PILSA)
to a thesaurus to derive the embedding of words.
They treat each entry of a thesaurus as a docu-
ment giving synonyms positive term counts, and
antonyms negative term counts, and preform LSA
on the signed TF-IDF matrix In this way, syn-
onyms will have cosine similarities close to one
and antonyms close to minus one.

Chang et al. (2013) further introduced Multi-
Relational LSA (MRLSA), as as extension of
LSA, that performs Tucker decomposition over a
three-way tensor consisting of multiple relations
(document-term like matrix) between words as
slices, to capture lexical semantics. The purposes
of MRLSA and our model are similar, but the dif-
ferent factorization techniques offer different ad-
vantages. In MRLSA, the k-th slice of tensor W
is approximated by

W:,:,k ≈ X:,:,k = US:,:,kVT ,

where U and V are both for the same word list
but are not guaranteed (or necessarily desired) to
be the same. Thus, this model has the ability to
capture asymmetric relations, but this flexibility is
a detriment for symmetric relatedness. In order to
expand word relatedness coverage, MRLSA needs
to choose a pivot slice (e.g. the synonym slice),
thus there always must existence such a slice, and
the model performance depends on the quality of
this pivot slice. Also, while non-completeness is
a pervasive issue in manually created lexicons,
MRLSA is not flexible enough to treat the un-
known entries as missing. Instead it just sets them

1As defined by Turney et al. (2010), VSM must be derived
from event frequencies.
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to zero at the beginning and uses the pivot slice
to re-calculate them. In contrast, our method of
BPTF is well suited to symmetric relations with
many unknown relatedness entries.

2.2 BPTF Model
Salakhutdinov and Mnih (2008) introduced a
Bayesian Probabilistic Matrix Factorization
(BPMF) model as a collaborative filtering algo-
rithm. Xiong et al. (2010) proposed a Bayesian
Probabilistic Tensor Factorization (BPTF) model
which further extended the original model to
incorporate temporal factors. They modeled latent
feature vector for users and items, both can be
trained efficiently using Markov chain Monte
Carlo methods, and they obtained competitive
results when applying their models on real-world
recommendation data sets.

2.3 Antonomy Detection
There are a number of previous works in detect-
ing antonymy. Lin and Zhao (2003) identifies
antonyms by looking for pre-identified phrases in
corpus datasets. Turney (2008) proposed a su-
pervised classification method for handling analo-
gies, then apply it to antonyms by transforming
antonym pairs into analogy relations. Mohammad
et al. (Mohammad et al., 2008; Mohammad et
al., 2013) proposed empirical approaches consid-
ering corpus co-occurrence statistics and the struc-
ture of a published thesaurus. Based on the as-
sumption that the strongly related words of two
words in a contrasting pair are also often antony-
mous, they use affix patterns (e.g. “un-”, “in-” and
“im-”) and a thesaurus as seed sets to add con-
trast links between word categories. Their best
performance is achieved by further manually an-
notating contrasting adjacent categories. This ap-
proach relies on the Contrast Hypothesis, which
will increase false positives even with a carefully
designed methodology. Furthermore, while this
approach can expand contrast relationships in a
lexicon, out-of-vocabulary words still pose a sub-
stancial challenge.

Yih et al. (2012) and Chang et al. (2013) also
applied their vectors on antonymy detection, and
Yih et al. achieves the state-of-the-art performance
in answering GRE antonym questions. In addition
to the word vectors generated from PILSA, they
use morphology and k-nearest neighbors from dis-
tributional word vector spaces to derive the em-
beddings for out-of-vocabulary words. The latter

is problematic since both synonyms and antonyms
are distributionally similar. Their approach is two
stage: polarity inducing LSA from a manually
created thesaurus, then falling back to morphol-
ogy and distributional similarity when the lexicon
lacks coverage. In contrast, we focus on fusing
the information from thesauruses and automati-
cally induced word relatedness measures during
the word vector space creation. Then prediction
is done in a single stage, from the latent vectors
capturing all word relatedness perspectives and the
appropriate per-perspective transformation vector.

3 Methods

3.1 The Bayesian Probabilistic Tensor
Factorization Model

Our model is a variation of the BPMF model
(Salakhutdinov and Mnih, 2008), and is similar
to the temporal BPTF model (Xiong et al., 2010).
To model word relatedness from multiple perspec-
tives, we denote the relatedness between word i
and word j from perspective k as Rk

ij . Then we
can organize these similarities to form a three-way
tensor R ∈ RN×N×K .

Table 1 shows an example, the first slice of the
tensor is a N × N matrix consists of 1/-1 corre-
sponding to the synonym/antonym entries in the
Roget’s thesaurus, and the second slice is aN×N
matrix consists of the cosine similarity from neural
word embeddings created by Luong et al. (2013),
where N is the number of words in the vocabu-
lary. Note that in our model the entries missing
in Table 1a do not necessarily need to be treated
as zero. Here we use the indicator variable Ik

ij

to denote if the entry Rk
ij exists (Ik

ij = 1) or not
(Ik

ij = 0). If K = 1, the BPTF model becomes to
BPMF. Hence the key difference between BPTF
and BPMF is that the former combines multi-
ple complementary word relatedness perspectives,
while the later only smooths and generalizes over
one.

We assume the relatedness Rk
ij to be Gaussian,

and can be expressed as the inner-product of three
D-dimensional latent vectors:

Rk
ij |Vi, Vj , Pk ∼ N (< Vi, Vj , Pk >,α

−1),

where< ·, ·, · > is a generalization of dot product:

< Vi, Vj , Pk >≡
D∑

d=1

V
(d)
i V

(d)
j P

(d)
k ,
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happy joyful lucky sad depressed
happy 1 1 -1 -1
joyful 1 -1
lucky 1 -1
sad -1 -1 -1 1

depressed -1 1

(a) The first slice: synonym & antonym relatedness

happy joyful lucky sad depressed
happy .03 .61 .65 .13
joyful .03 .25 .18 .23
lucky .61 .25 .56 .31
sad .65 .18 .56 -.01

depressed .13 .23 .31 -.01

(b) The second slice: distributional similarity

Table 1: Word Relatedness Tensor

and α is the precision, the reciprocal of the vari-
ance. Vi and Vj are the latent vectors of word i and
word j, and Pk is the latent vector for perspective
k.

We follow a Bayesian approach, adding Gaus-
sian priors to the variables:

Vi ∼ N (µV ,Λ−1
V ),

Pi ∼ N (µP ,Λ−1
P ),

where µV and µP are D dimensional vectors and
ΛV and ΛP are D-by-D precision matrices.

Furthermore, we model the prior distribution of
hyper-parameters as conjugate priors (following
the model by (Xiong et al., 2010)):

p(α) =W(α|Ŵ0, ν0),

p(µV ,ΛV ) = N (µV |µ0, (β0ΛV )−1)W(ΛV |W0, ν0),

p(µP ,ΛP ) = N (µP |µ0, (β0ΛP )−1)W(ΛP |W0, ν0),

where W(W0, ν0) is the Wishart distribution of
degree of freedom ν and a D-by-D scale matrix
W , and Ŵ0 is a 1-by-1 scale matrix for α. The
graphical model is shown in Figure 1 (with β0 set
to 1). After choosing the hyper-priors, the only re-
maining parameter to tune is the dimension of the
latent vectors.

Due to the existence of prior distributions, our
model can capture the correlation between dif-
ferent perspectives during the factorization stage,
then create or re-create word relatedness using this
correlation for regularization and generalization.
This advantage is especially useful when such cor-
relation is too subtle to be captured by other meth-
ods. On the other hand, if perspectives (let’s say k
and l) are actually unrelated, our model can handle
it as well by making Pk and Pl orthogonal to each
other.

3.2 Inference
To avoid calculating intractable distributions, we
use a numerical method to approximate the re-
sults. Here we use the Gibbs sampling algorithm

Rk
ij

PkµP

ΛP

µ0

W0, ν0

α

Vi Vj

ΛV µVW0, ν0 µ0

· · · · · ·· · ·

k = 1, ..., K

Ik
i,j = 1

i 6= j

i, j = 1, ..., N

Figure 1: The graphical model for BPTF.

to perform the Markov chain Monte Carlo method.
When sampling a block of parameters, all other
parameters are fixed, and this procedure is re-
peated many times until convergence. The sam-
pling algorithm is shown in Algorithm 1.

With conjugate priors, and assuming Ik
i,i =

0, ∀i, k (we do not consider a word’s relatedness
to itself), the posterior distributions for each block
of parameters are:

p(α|R,V,P) =W(Ŵ0
∗
, ν̂0
∗) (1)

Where:

ν̂∗0 = ν̂0 +
2∑
k=1

N∑
i,j=1

Ikij ,

(Ŵ ∗0 )−1 = Ŵ−1
0 +

2∑
k=1

N∑
i,j=1

Ikij(R
k
ij− < Vi, Vj , Pk >)2
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p(µV ,ΛV |V) = N (µV |µ∗0, (β∗0ΛV )−1)W(ΛV |W ∗0 , ν∗0 )
(2)

Where:

µ∗0 =
β0µ0 +NV̄

β0 +N
, β∗0 = β0 +N, ν∗0 = ν0 +N,

(W ∗0 )−1 = W−1
0 +NS̄ +

β0N

β0 +N
(µ0 − V̄ )(µ0 − V̄ )T ,

V̄ =
1

N

N∑
i=1

Vi, S̄ =
1

N

N∑
i=1

(Vi − V̄ )(Vi − V̄ )T

p(µP ,ΛP |P) = N (µP |µ∗0, (β∗0ΛP )−1)W(ΛP |W ∗0 , ν∗0 )
(3)

Which has the same form as p(µV ,ΛV |V).

p(Vi|R,V¬i,P, µV ,ΛV , α) = N (µ∗i , (Λ
∗
i )
−1) (4)

Where:

µ∗i = (Λ∗i )
−1(ΛV µV + α

2∑
k=1

N∑
j=1

IkijR
k
ijQjk),

Λ∗i = ΛV + α

2∑
k=1

N∑
j=1

IkijQjkQ
T
jk,

Qjk = Vj � Pk
� is the element-wise product.

p(Pi|R,V,P¬i, µP ,ΛP , α) = N (µ∗i , (Λ
∗
i )
−1) (5)

Where:

µ∗k = (Λ∗k)−1(ΛPµP + α

N∑
i,j=1

IkijR
k
ijXij),

Λ∗k = ΛP + α

N∑
i,j=1

IkijXijX
T
ij ,

Xij = Vi � Vj

The influence each perspective k has on the la-
tent word vectors is roughly propotional to the
number of non-empty entries nk =

∑
i,j I

k
i,j . If

one wants to adjust the weight of each slices, this
can easily achieved by adjusting (e.g. down sam-
pling) the number of entries of each slice sampled
at each iteration.

3.2.1 Out-of-Vocabulary words
It often occurs that some of the perspectives have
greater word coverage than the others. For ex-
ample, hand-labeled word relatedness usually has
much less coverage than automatically acquired
similarities. Of course, it is typically for the hand-
labeled perspectives that the generalization is most

Algorithm 1 Gibbs Sampling for BPTF
Initialize the parameters.
repeat

Sample the hyper-parameters α, µV , ΛV , µP ,
ΛP (Equation 1, 2, 3)
for i = 1 to N do

Sample Vi (Equation 4)
end for
for k = 1 to 2 do

Sample Pk (Equation 5)
end for

until convergence

desired. In this situation, our model can generalize
word relatedness for the sparse perspective. For
example, assume perspective k has larger vocabu-
lary coverageNk, while perspective l has a smaller
coverage Nl.

There are two options for using the high vocab-
ulary word relation matrix to generalize over the
perspective with lower coverage. The most direct
way simply considers the larger vocabulary in the
BPTF R ∈ RNk×Nk×K directly. A more efficient
method trains on a tensor using the smaller vocab-
ulary R ∈ RNl×Nl×K , then samples the Nk −Nl

word vectors using Equation 4.

3.3 Predictions
With MCMC method, we can approximate the
word relatedness distribution easily by averaging
over a number of samples (instead of calculating
intractable marginal distribution):

p(R̂k
ij |R) ≈ 1

M

M∑
m=1

p(R̂k
ij |V m

i , V m
j , Pm

k , α
m),

wherem indicate parameters sampled from differ-
ent sampling iterations.

3.4 Scalability
The time complexity of training our model is
roughly O(n×D2), where n is the number of ob-
served entries in the tensor. If one is only inter-
ested in creating and re-creating word relatedness
of one single slice rather than synthesizing word
vectors, then entries in other slices can be down-
sampled at every iteration to reduce the training
time. In our model, the vector length D is not
sensitive and does not necessarily need to be very
long. Xiong et al. (2010) reported in their collab-
orative filtering experiment D = 10 usually gives
satisfactory performance.
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4 Experimental Evaluation

In this section, we evaluate our model by answer-
ing antonym questions. This task is especially
suitable for evaluating our model since the perfor-
mance of straight-forward look-up from the the-
sauruses we considered is poor. There are two ma-
jor limitations:

1. The thesaurus usually only contains antonym
information for word pairs with a strong con-
trast.

2. The vocabulary of the antonym entries in the
thesaurus is limited, and does not contain
many words in the antonym questions.

On the other hand, distributional similarities can
be trained from large corpora and hence have a
large coverage for words. This implies that we can
treat the thesaurus data as the first slice, and the
distributional similarities as the second slice, then
use our model to create / recreate word relatedness
on the first slice to answer antonym questions.

4.1 The GRE Antonym Questions

There are several publicly available test datasets
to measure the correctness of our word embed-
dings. In order to be able to compare with pre-
vious works, we follow the widely-used GRE test
dataset provided by (Mohammad et al., 2008),
which has a development set (consisting of 162
questions) and a test set (consisting of 950 ques-
tions). The GRE test is a good benchmark because
the words are relatively rare (19% of the words in
Mohammad’s test are not in the top 50,000 most
frequent words from Google Books (Goldberg and
Orwant, 2013)), thus it is hard to lookup answers
from a thesaurus directly with high recall. Below
is an example of the GRE antonym question:

adulterate: a. renounce b. forbid
c. purify d. criticize e. correct

The goal is to choose the most opposite word from
the target, here the correct answer is purify.

4.2 Data Resources

In our tensor model, the first slice (k = 1) con-
sists of synonyms and antonyms from public the-
sauruses, and the second slice (k = 2) consists of
cosine similarities from neural word embeddings
(example in Table 1)

4.2.1 Thesaurus
Two popular thesauruses used in other research are
the Macquarie Thesaurus and the Encarta The-
saurus. Unfortunately, their electronic versions
are not publicly available. In this work we use two
alternatives:

WordNet Words in WordNet (version 3.0) are
grouped into sense-disambiguated synonym sets
(synsets), and synsets have links between each
other to express conceptual relations. Previ-
ous works reported very different look-up perfor-
mance using WordNet (Mohammad et al., 2008;
Yih et al., 2012), we consider this difference
as different understanding of the WordNet struc-
ture. By extending “indirect antonyms” defined in
WordNet to nouns, verbs and adverbs that similar
words share the antonyms,we achieve a look-up
performance close to Yih et al. (2012). Using this
interpretation of WordNet synonym and antonym
structure we obtain a thesaurus containing 54,239
single-token words. Antonym entries are present
for 21,319 of them with 16.5 words per entry on
average, and 52,750 of them have synonym entries
with 11.7 words per entry on average.

Roget’s Only considering single-token words,
the Roget’s Thesaurus (Kipfer, 2009) contains
47,282 words. Antonym entries are present for
8,802 of them with 4.2 words per entry on av-
erage, and 22,575 of them have synonym entries
with 20.7 words per entry on average. Although
the Roget’s Thesaurus has a less coverage on both
vocabulary and antonym pairs, it has better look-
up precision in the GRE antonym questions.

4.2.2 Distributional Similarities
We use cosine similarity of the morphRNN word
representations2 provided by Luong et al. (2013)
as a distributional word relatedness perspective.
They used morphological structure in training re-
cursive neural networks and the learned mod-
els outperform previous works on word similarity
tasks, especially a task focused on rare words. The
vector space models were initialized from exist-
ing word embeddings trained on Wikipedia. We
use word embeddings adapted from Collobert et
al. (2011). This advantage complements the weak-
ness of the thesaurus perspective – that it has less
coverage on rare words. The word vector data con-
tains 138,218 words, and it covers 86.9% of the
words in the GRE antonym questions. Combining
the two perspectives, we can cover 99.8% of the
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Dev. Set Test Set
Prec. Rec. F1 Prec. Rec. F1

WordNet lookup 0.40 0.40 0.40 0.42 0.41 0.42
WordNet PILSA 0.63 0.62 0.62 0.60 0.60 0.60
WordNet MRLSA 0.66 0.65 0.65 0.61 0.59 0.60
Encarta lookup 0.65 0.61 0.63 0.61 0.56 0.59
Encarta PILSA 0.86 0.81 0.84 0.81 0.74 0.77
Encarta MRLSA 0.87 0.82 0.84 0.82 0.74 0.78
Encarta PILSA + S2Net + Emebed 0.88 0.87 0.87 0.81 0.80 0.81
W&E MRLSA 0.88 0.85 0.87 0.81 0.77 0.79
WordNet lookup* 0.93 0.32 0.48 0.95 0.33 0.49
WordNet lookup 0.48 0.44 0.46 0.46 0.43 0.44
WordNet BPTF 0.63 0.63 0.63 0.63 0.62 0.62
Roget lookup* 1.00 0.35 0.52 0.99 0.31 0.47
Roget lookup 0.61 0.44 0.51 0.55 0.39 0.45
Roget BPTF 0.80 0.80 0.80 0.76 0.75 0.76
W&R lookup* 1.00 0.48 0.64 0.98 0.45 0.62
W&R lookup 0.62 0.54 0.58 0.59 0.51 0.55
W&R BPMF 0.59 0.59 0.59 0.52 0.52 0.52
W&R BPTF 0.88 0.88 0.88 0.82 0.82 0.82

Table 2: Development and test results on the GRE antonym questions. *Note: to allow comparison, in
look-up we follow the approach used by (Yih et al., 2012): randomly guess an answer if the target word
is in the vocabulary while none of the choices are. Asterisk indicates the look-up results without random
guessing.

GRE antonym question words. Further using mor-
phology information from WordNet, the coverage
achieves 99.9%.

4.3 Tests

To answer the GRE questions, we calculateR1
ij for

word pair (i, j), where i is the target word and j
is one of the question’s candidates. The candidate
with the smallest similarity is then the predicted
answer. If a target word is missing in the vocabu-
lary, that question will not be answered, while if a
choice is missing, that choice will be ignored.

We first train on a tensor from a subset consist-
ing of words with antonym entries, then add all
other words using the out-of-vocabulary method
described in Section 3. During each iteration, ze-
ros are randomly added into the first slice to keep
the model from overfitting. In the meantime, the
second slice entries is randomly downsampled to
match the number of non-empty entries in the first
slice. This ensures each perspective has approxi-
mately equal influence on the latent word vectors.

We sample the parameters iteratively, and
choose the burn-in period and vector length D ac-

cording to the development set. We choose the
vector length D = 40, the burn-in period starting
from the 30th iterations, then averaging the relat-
edness over 200 runs. The hyper-priors used are
µ0 = 0, ν0 = ν̂0 = D, β0 = 1 and W0 = Ŵ0 = I
(not tuned). Note that Yih et al. (2012) use a vec-
tor length of 300, which means our embeddings
save considerable storage space and running time.
Our model usually takes less than 30 minutes to
meet the convergence criteria (on a machine with
an Intel Xeon E3-1230V2 @ 3.3GHz CPU ). In
contrast, the MRLSA requires about 3 hours for
tensor decomposition (Chang et al., 2013).

4.4 Results

The results are summarized in Table 2. We list the
results of previous works (Yih et al., 2012; Chang
et al., 2013) at the top of the table, where the
best performance is achieved by PILSA on Encarta
with further discriminative training and embed-
ding. For comparison, we adopt the standard first
used by (Mohammad et al., 2008), where preci-
sion is the number of questions answered correctly

2http://www-nlp.stanford.edu/ lmthang/morphoNLM/
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Figure 2: Convergence curves of BPMF and BPTF
in training the W&R dataset. MAE is the mean
absolute error over the synonym & antonym slice
in the training tensor.

divided by the number of questions answered. Re-
call is the number of questions answered correctly
divided by the total number of questions. BPMF
(Bayesian Probabilistic Matrix Factorization) re-
sult is derived by only keeping the synonym &
antonym slice in our BPTF model.

By using Roget’s and WordNet together, our
method increases the baseline look-up recall from
51% to 82% on the test set, while Yih’s method
increases the recall of Encarta from 56% to 80%.
This state-of-the-art performance is achieved with
the help of a neural network for fine tuning and
multiple schemes of out-of-vocabulary embed-
ding, while our method has inherent and straight-
forward “out-of-vocabulary embedding”. While
MRLSA, which has this character as well, only
has a recall 77% when combining WordNet and
Encarta together.

WordNet records less antonym relations for
nouns, verbs and adverbs, while the GRE antonym
questions has a large coverage of them. Al-
though by extending these antonym relations us-
ing the “indirect antonym” concept achieves better
look-up performance than Roget’s, in contrast, the
BPTF performance is actually much lower. This
implies Roget’s has better recording of antonym
relations. Mohammad et al. (2008) reproted a 23%
F-score look-up performance of WordNet which
support this claim as well. Combining WordNet
and Roget’s together can improve the look-up per-
formance further to 59% precision and 51% recall
(still not as good as Encarta look-up).

Notably, if we strictly follow our BPTF ap-
proach but only use the synonym & antonym slice
(i.e. a matrix factorization model instead of ten-

sor factorization model), this single-slice model
BPMF has performance that is only slightly bet-
ter than look-up. Meanwhile Figure 1 shows the
convergence curves of BPMF and BPTF. BPMF
actually has lower MAE after convergence. Such
behavior is caused by overfitting of BPMF on the
training data. While known entries were recreated
well, empty entries were not filled correctly. On
the other hand, note that although our BPTF model
has a higher MAE, it has much better performance
in answering the GRE antonym questions. We in-
terpret this as the regularization and generalization
effect from other slice(s). Instead of focusing on
one-slice training data, our model fills the missing
entries with the help of inter-slice relations.

We also experimented with a linear metric
learning method over the generated word vectors
(to learn a metric matrix A to measure the word
relatedness via V T

i AVj ) using L-BFGS. By op-
timizing the mean square error on the synonym
& antonym slice, we can reduce 8% of the mean
square error on a held out test set, and improve
the F-score by roughly 0.5% (of a single iteration).
Although this method doesn’t give a significant
improvement, it is general and has the potential
to boost the performance in other scenarios.

5 Conclusion

In this work, we propose a method to map words
into a metric space automatically using thesaurus
data, previous vector space models, or other word
relatedness matrices as input, which is capable
of handling out-of-vocabulary words of any par-
ticular perspective. This allows us to derive the
relatedness of any given word pair and any per-
spective by the embedded word vectors with per-
perspective linear transformation. We evaluated
the word embeddings with GRE antonym ques-
tions, and the result achieves the state-of-the-art
performance.

For future works, we will extend the model and
its applications in three main directions. First, in
this model we only use a three-way tensor with
two slices, while more relations may be able to
add into it directly. Possible additional perspec-
tive slices include LSA for topic relatedness, and
corpus occurrences in engineered or induced se-
mantic patterns.

Second, we will apply the method to other tasks
that require completing a word relatedness matrix.
We evaluated the performance of our model on
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creating / recreating one perspective of word re-
latedness: antonymy. Perhaps using vectors gen-
erated from many kinds of perspectives would im-
prove the performance on other NLP tasks, such
as term matching employed by textual entailment
and machine translation metrics.

Third, if our model does learn the relation be-
tween semantic similarities and distributional sim-
ilarities, there may be fruitful information con-
tained in the vectors Vi and Pk that can be ex-
plored. One straight-forward idea is that the dot
product of perspective vectors Pk · Pl should be a
measurement of correlation between perspectives.

Also, a straightforward adaptation of our model
has the potential ability to capture asymmet-
ric word relatedness as well, by using a per-
perspective matrix instead of vector for the asym-
metric slices (i.e. use V T

i AkVj instead of∑D
d=1 V

(d)
i P

(d)
k V

(d)
j for calculating word related-

ness, where Ak is a square matrix).

Acknowledgments

We thank Christopher Kedzie for assisting the
Semantic Technologies in IBM Watson seminar
course in which this work has been carried out,
and Kai-Wei Chang for giving detailed explana-
tion of the evaluation method in his work.

References
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