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Abstract

We generalize contrastive estimation in
two ways that permit adding more knowl-
edge to unsupervised learning. The first
allows the modeler to specify not only the
set of corrupted inputs for each observa-
tion, but also how bad each one is. The
second allows specifying structural prefer-
ences on the latent variable used to explain
the observations. They require setting ad-
ditional hyperparameters, which can be
problematic in unsupervised learning, so
we investigate new methods for unsuper-
vised model selection and system com-
bination. We instantiate these ideas for
part-of-speech induction without tag dic-
tionaries, improving over contrastive esti-
mation as well as strong benchmarks from
the PASCAL 2012 shared task.

1 Introduction

Unsupervised NLP aims to discover useful struc-
ture in unannotated text. This structure might
be part-of-speech (POS) tag sequences (Merialdo,
1994), morphological segmentation (Creutz and
Lagus, 2005), or syntactic structure (Klein and
Manning, 2004), among others. Unsupervised
systems typically improve when researchers incor-
porate knowledge to bias learning to capture char-
acteristics of the desired structure.1

There are many successful examples of adding
knowledge to improve learning without labeled
examples, including: sparsity in POS tag distri-
butions (Johnson, 2007; Ravi and Knight, 2009;
Ganchev et al., 2010), short attachments for
dependency parsing (Smith and Eisner, 2006),

1We note that doing so strains the definition of the term
unsupervised. Hence we will use the term weakly-supervised
to refer to methods that do not explicitly train on labeled ex-
amples for the task of interest, but do use some form of task-
specific knowledge.

agreement of word alignment models (Liang et
al., 2006), power law effects in lexical distribu-
tions (Blunsom and Cohn, 2010; Blunsom and
Cohn, 2011), multilingual constraints (Smith and
Eisner, 2009; Ganchev et al., 2009; Snyder et al.,
2009; Das and Petrov, 2011), and orthographic
cues (Spitkovsky et al., 2010c; Spitkovsky et al.,
2011b), inter alia.

Contrastive estimation (CE; Smith and Eisner,
2005) is a general approach to weakly-supervised
learning with a particular way of incorporating
knowledge. CE increases the likelihood of the ob-
servations at the expense of those in a particular
neighborhood of each observation. The neighbor-
hood typically contains corrupted versions of the
observations. The latent structure is marginalized
out for both the observations and their corruptions;
the intent is to learn latent structure that helps to
explain why the observation was generated rather
than any of the corrupted alternatives.

In this paper, we present a new objective func-
tion for weakly-supervised learning that general-
izes CE by including two types of cost functions,
one on observations and one on output structures.
The first (§4) allows us to specify not only the set
of corrupted observations, but also how bad each
corruption was. We use n-gram language models
to measure the severity of each corruption.

The second (§5) allows us to specify prefer-
ences on desired output structures, regardless of
the input sentence. For POS tagging, we attempt
to learn language-independent tag frequencies by
computing counts from treebanks for 11 languages
not used in our POS induction experiments. For
example, we encourage tag sequences that contain
adjacent nouns and penalize those that contain ad-
jacent adpositions.

We consider several unsupervised ways to set
hyperparameters for these cost functions (§7), in-
cluding the recently-proposed log-likelihood esti-
mator of Bengio et al. (2013). We also circumvent

1329



hyperparameter selection via system combination,
developing a novel voting scheme for POS induc-
tion that aligns tag identifiers across runs.

We evaluate our approach, which we call cost-
augmented contrastive estimation (CCE), on
POS induction without tag dictionaries for five
languages from the PASCAL shared task (Gelling
et al., 2012). We find that CCE improves over both
standard CE as well as strong baselines from the
shared task. In particular, our final average accu-
racies are better than all entries in the shared task
that use the same number of tags.

2 Related Work

Weakly-supervised techniques can be roughly cat-
egorized in terms of whether they influence the
model, the learning procedure, or explicitly target
the output structure. Examples abound in NLP;
we focus on those that have been applied to POS
tagging.

There have been many efforts at biasing
models, including features (Smith and Eisner,
2005a; Berg-Kirkpatrick et al., 2010), sparse
priors (Johnson, 2007; Goldwater and Griffiths,
2007; Toutanova and Johnson, 2007), sparsity
in tag transition distributions (Ravi and Knight,
2009), small models via minimum description
length criteria (Vaswani et al., 2010; Poon et al.,
2009), a one-tag-per-type constraint (Blunsom and
Cohn, 2011), and power law effects via Bayesian
nonparametrics (Van Gael et al., 2009; Blunsom
and Cohn, 2010; Blunsom and Cohn, 2011).

We focus below on efforts that induce bias into
the learning (§2.1) or more directly in the output
structure (§2.2), as they are more closely related
to our contributions in this paper.

2.1 Biasing Learning

Some unsupervised methods do not change the
model or attempt to impose structural bias; rather,
they change the learning. This may involve op-
timizing a different objective function for the
same model, e.g., by switching from soft to hard
EM (Spitkovsky et al., 2010b). Or it may in-
volve changing the objective during learning via
annealing (Smith and Eisner, 2004) or more gen-
eral multi-objective techniques (Spitkovsky et al.,
2011a; Spitkovsky et al., 2013).

Other learning modifications relate to automatic
data selection, e.g., choosing examples for genera-
tive learning (Spitkovsky et al., 2010a) or automat-

ically generating negative examples for discrimi-
native unsupervised learning (Li et al., 2010; Xiao
et al., 2011).

CE does both, automatically generating nega-
tive examples and changing the objective function
to include them. Our observation cost function al-
ters CE’s objective function, sharpening the effec-
tive distribution of the negative examples.

2.2 Structural Bias
Our output cost function is used to directly spec-
ify preferences on desired output structures. Sev-
eral others have had similar aims. For dependency
grammar induction, Smith and Eisner (2006) fa-
vored short attachments using a fixed-weight fea-
ture whose weight was optionally annealed during
learning. Their bias could be implemented as an
output cost function in our framework.

Posterior regularization (PR; Ganchev et al.,
2010) is a general framework for declaratively
specifying preferences on model outputs. Naseem
et al. (2010) proposed universal syntactic rules for
unsupervised dependency parsing and used them
in a PR regime; we use analogous universal tag
sequences in our cost function.

Our output cost is similar to posterior regular-
ization. The difference is that we specify pref-
erences via an arbitrary cost function on output
structures, while PR uses expectation constraints
on posteriors of the model. We compare to the PR
tag induction system of Graça et al. (2011) in our
experiments, improving over it in several settings.

2.3 Exploiting Resources
Much of the work mentioned above also benefits
from leveraging existing resources. These may be
curated or crowdsourced resources like the Wik-
tionary (Li et al., 2012), or traditional annotated
treebanks for languages other than those under in-
vestigation (Cohen et al., 2011). In this paper, we
use tag statistics from treebanks for 11 languages
to impose our structural bias for a different set of
languages used in our POS induction experiments.

Substantial recent work has improved many
NLP tasks by leveraging multilingual or paral-
lel text (Cohen and Smith, 2009; Snyder et al.,
2009; Wang and Manning, 2014), including un-
supervised POS tagging (Naseem et al., 2009; Das
and Petrov, 2011; Täckström et al., 2013; Ganchev
and Das, 2013). This sort of multilingual guidance
could also be captured by particular output cost
functions, though we leave this to future work.
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3 Unsupervised Structure Learning

We consider a structured unsupervised learning
setting. We use X to denote our set of possible
structured inputs, and for a particular x ∈ X,
we use Y(x) to denote the set of valid structured
outputs for x. We are given a dataset of inputs
{x(i)}Ni=1. To map inputs to outputs, we start by
building a model of the joint probability distribu-
tion pθ(x,y). We use a log-linear parameteriza-
tion with feature vector f and weight vector θ:

pθ(x,y) =
exp

{
θ>f(x,y)

}∑
x′∈X,y′∈Y(x′) exp

{
θ>f(x′,y′)

}
where the sum in the denominator ranges over all
possible inputs and all valid outputs for them.

In this paper, we consider ways of learning the
parameters θ. Given θ, at test time we output a y
for a new x using, e.g., Viterbi or minimum Bayes
risk decoding; we use the latter in this paper.

3.1 EM and Contrastive Estimation
We start by reviewing two ways of choosing
θ. The expectation-maximization algorithm (EM;
Dempster et al., 1977) finds a local optimum of
the marginal (log-)likelihood of the observations
{x(i)}Ni=1. The marginal log-likelihood is a sum
over all x(i) of the gain function γEM(x(i)):

γEM(x(i)) = log
∑

y∈Y(x(i))

pθ(x(i),y)

= log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
− log

∑
x′∈X,y′∈Y(x′)

exp
{
θ>f(x′,y′)

}
︸ ︷︷ ︸

Z(θ)

The difficulty is the final term, logZ(θ), which
requires summing over all possible inputs and
all valid outputs for them. This summation is
typically intractable for structured problems, and
may even diverge. For this reason, EM is typi-
cally only used to train log-linear model weights
when Z(θ) = 1, e.g., for hidden Markov models,
probabilistic context-free grammars, and models
composed of locally-normalized log-linear mod-
els (Berg-Kirkpatrick et al., 2010), among others.

There have been efforts at approximating the
summation over elements of X, whether by limit-
ing sequence length (Haghighi and Klein, 2006),
only summing over observations in the training

data (Riezler, 1999), restricting the observation
space based on the task (Dyer et al., 2011), or us-
ing Gibbs sampling to obtain an unbiased sample
of the full space (Della Pietra et al., 1997; Rosen-
feld, 1997).

Contrastive estimation (CE) addresses this chal-
lenge by using a neighborhood function N : X→
2X that generates a set of inputs that are “corrup-
tions” of an input x; N(x) always includes x. Us-
ing shorthand Ni for N(x(i)), CE corresponds to
maximizing the sum over inputs x(i) of the gain

γCE(x(i))= log Pr(x(i) | Ni)

= log

∑
y∈Y(x(i)) pθ(x(i),y)∑

x′∈Ni

∑
y′∈Y(x′) pθ(x′,y′)

= log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
−

log
∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′)

}
Two logZ(θ) terms cancel out, leaving the sum-
mation over input/output pairs in the neighbor-
hood instead of the full summation over pairs.

Two desiderata govern the choice of N. One is
to make the summation over its elements computa-
tionally tractable. If N(x) = X for all x ∈ X, we
obtain EM, so a smaller neighborhood typically
must be used in practice. The second considera-
tion is to target learning for the task of interest. For
POS tagging and dependency parsing, Smith and
Eisner (2005a, 2005b) used neighborhood func-
tions that corrupted the observations in systematic
ways, e.g., their TRANS1 neighborhood contains
the original sentence along with those that result
from transposing a single pair of adjacent words.
The intent was to force the learner to explain why
the given sentences were observed at the expense
of the corrupted sentences.

Next we present our modifications to con-
trastive estimation. Both can be viewed as adding
specialized cost functions that penalize some part
of the structured input/output pair.

4 Modeling Corruption Costs

While CE allows us to specify a set of corrupted
x for each x(i) via the neighborhood function N,
it says nothing about how bad each corruption is.
The same type of corruption might be harmful in
one context and not harmful in another.

This fact was suggested as the reason why cer-
tain neighborhoods did not work as well for POS
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tagging as others (Smith and Eisner, 2005a). One
poorly-performing neighborhood consisted of sen-
tences in which a single word of the original
was deleted. Deleting a single word in a sen-
tence might not harm grammaticality. By contrast,
neighborhoods that transpose adjacent words led
to better results. These kinds of corruptions are ex-
pected to be more frequently harmful, at least for
languages with relatively rigid word order. How-
ever, there may still be certain transpositions that
are benign, at least for grammaticality.

To address this, we introduce an observation
cost function ∆ : X × X → R≥0 that indicates
how much two observations differ. Using ∆, we
define the following gain function γCCE1(x(i)) =

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
−

log
∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′) + ∆(x(i),x′)

}
The function ∆ inflates the score of neighbor-
hood entries with larger differences from the ob-
served x(i). This gain function is inspired by ideas
from structured large-margin learning (Taskar et
al., 2003; Tsochantaridis et al., 2005), specifi-
cally softmax-margin (Povey et al., 2008; Gimpel
and Smith, 2010). Softmax-margin extends con-
ditional likelihood by allowing the user to specify
a cost function to give partial credit for structures
that are partially correct. Conditional likelihood,
by contrast, treats all incorrect structures equally.

While softmax-margin uses a cost function to
specify how two output structures differ, our gain
function γCCE1 uses a cost function ∆ to specify
how two inputs differ. But the motivations are sim-
ilar: since poor structures have their scores artifi-
cially inflated by ∆, learning pays more attention
to them, choosing weights that penalize them more
than the lower-cost structures.

4.1 Observation Cost Functions
What types of cost functions should we consider?
For efficient inference, we want to ensure that
∆ decomposes additively across parts of the cor-
rupted input x′ in the same way as the features; we
assume unigram and bigram features in this paper.

In addition, the choice of the observation cost
function ∆ is tied to the choice of neighborhood
function. In our experiments, we use neighbor-
hoods that change the order of words in the obser-
vation but not the set of words. Our first cost func-

tion simply counts the number of novel bigrams
introduced when corrupting the original:

∆I(x(i),x) = α

|x|+1∑
j=1

I
[
xj−1xj /∈ 2grams(x(i))

]
where xj is the jth word of sentence x, x0 is
the start-of-sentence marker, x|x|+1 is the end-of-
sentence marker, 2grams(x) returns the set of bi-
grams in x, I[] returns 1 if its argument is true and
0 otherwise, and α is a constant to be tuned. We
call this cost function MATCH. Only x(i) (which
is always contained in Ni) is guaranteed to have
cost 0. In the TRANS1 neighborhood, corrupted
sequences will be penalized more if their transpo-
sitions occur in the middle of the sentence rather
than at the beginning or end.

We also consider a version that weights the in-
dicator by the negative log probability of the novel
bigram: ∆LM (x(i),x) =

α

|x|+1∑
j=1

−log P(xj |xj−1)I
[
xj−1xj /∈ 2grams(x(i))

]
where P(xj |xj−1) is obtained from a bigram lan-
guage model. Among novel bigrams in the cor-
ruption x, if the second word is highly surprising
conditioned on the first, the bigram will incur high
cost. We refer to ∆LM (x(i),x) as MATLM.

5 Expressing Structural Preferences

Our second modification to CE allows us to spec-
ify structural preferences for outputs y. We first
note that there exist objective functions for su-
pervised structure prediction that never require
computing the feature vector for the true output
y(i). Examples include Bayes risk (Kaiser et al.,
2000; Povey and Woodland, 2002) and structured
ramp loss (Do et al., 2008). These two objec-
tives do, however, need to compute a cost func-
tion cost(y(i),y), which requires the true output
y(i). We start with the following form of struc-
tured ramp loss from Gimpel and Smith (2012),
transformed here to a gain function:

max
y∈Y(x(i))

(
θ>f(x(i),y)− cost(y(i),y)

)
−

max
y′∈Y(x(i))

(
θ>f(x(i),y′) + cost(y(i),y′)

)
(1)

Maximizing this gain function for supervised
learning corresponds to increasing the model score
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of outputs that have both high model score (θ>f )
and low cost, while decreasing the model score of
outputs with high model score and high cost.

For unsupervised learning, we do not have y(i),
so we simply drop y(i) from the cost function. The
result is an output cost function π : Y → R≥0

which captures our a priori knowledge about de-
sired output structures. The value of π(y) should
be large for outputs y that are far from the ideal.
In this paper, we consider POS induction and use
intrinsic evaluation; however, in a real-world sce-
nario, the output cost function could use signals
derived from the downstream task in which the
tags are being used.

Given π, we convert each max to a log
∑

exp in
Eq. 1 and introduce the contrastive neighborhood
into the second term, defining our new gain func-
tion γCCE2(x(i)) =

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)− π(y)

}
−

log
∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′) + π(y′)

}
Gimpel (2012) found that using such “softened”
versions of the ramp losses worked better than the
original versions (e.g., Eq. 1) when training ma-
chine translation systems.

5.1 Output Cost Functions
The output cost π should capture our desider-
ata about y for the task of interest. We con-
sider universal POS tag subsequences analogous
to the universal syntactic rules of Naseem et al.
(2010). In doing so, we use the universal tags of
Petrov et al. (2012): NOUN, VERB, ADJ (ad-
jective), ADV (adverb), PRON (pronoun), DET
(determiner), ADP (pre/postposition), NUM (nu-
meral), CONJ (conjunction), PRT (particle), ‘.’
(punctuation), and X (other).

We aimed for a set of rules that would be ro-
bust across languages. So, we used treebanks for
11 languages from the CoNLL 2006/2007 shared
tasks (Buchholz and Marsi, 2006; Nivre et al.,
2007) other than those used in our POS induc-
tion experiments. In particular, we used Arabic,
Bulgarian, Catalan, Czech, English, Spanish, Ger-
man, Hungarian, Italian, Japanese, and Turkish.
We replicated shorter treebanks a sufficient num-
ber of times until they were a similar size as the
largest treebank. Then we counted gold POS tag
unigrams and bigrams from the concatenation.

tag unigram count cost
X 50783 3.83
NUM 174613 2.59
PRT 179131 2.57
ADV 330210 1.96
CONJ 436649 1.68
PRON 461880 1.62
DET 615284 1.33
ADJ 694685 1.21
ADP 906922 0.95
VERB 1018989 0.83
. 1042662 0.81
NOUN 2337234 0
tag bigram count cost
DET PRT 109 84.41
DET CONJ 518 68.82
NUM ADV 1587 57.63
NOUN NOUN 409828 2.09
DET NOUN 454980 1.04
NOUN . 504897 0

Table 1: Counts and costs for universal tags based
on treebanks for 11 languages not used in POS in-
duction experiments.

Where #(y) is the count of tag y in the treebank
concatenation, the cost of y is

u(y) = log
(

maxy′ #(y′)
#(y)

)
and, where #(〈y1, y2〉) is the count of tag bigram
〈y1, y2〉, the cost of 〈y1, y2〉 is

u(〈y1, y2〉) = 10×log

(
max〈y′1,y′2〉#(〈y′1, y′2〉)

#(〈y1, y2〉)

)

We use a multiplier of 10 in order to exaggerate
count differences among bigrams, which gener-
ally are closer together than unigram counts. In
Table 1, we show counts and costs for all tag uni-
grams and selected tag bigrams.2

Given these costs for individual tag unigrams
and bigrams, we use the following π function,
which we call UNIV:

π(y) = β

|y|+1∑
j=1

u(yj) + u(〈yj−1, yj〉)

where β is a constant to be tuned and yj is the
jth tag of y. We define y0 to be the beginning-
of-sentence marker and y|y|+1 to be the end-of-
sentence marker (which has unigram cost 0).

Many POS induction systems use one-tag-
per-type constraints (Blunsom and Cohn, 2011;
Gelling et al., 2012), which often lead to higher

2The complete tag bigram list is provided in the supple-
mentary material.
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max
θ

N∑
i=1

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)

}
− log

∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′)

}
(2)

max
θ

N∑
i=1

log
∑

y∈Y(x(i))

exp
{
θ>f(x(i),y)− π(y)

}
− log

∑
x′∈Ni

∑
y′∈Y(x′)

exp
{
θ>f(x′,y′) + ∆(x(i),x′) + π(y′)

}
(3)

Figure 1: Contrastive estimation (Eq. 2) and cost-augmented contrastive estimation (Eq. 3). L2 regular-
ization terms (C

2

∑|θ|
j=1 θ

2
j ) are not shown here but were used in our experiments.

accuracies even though the gold standard is not
constrained in this way. This constraint can be en-
coded as an output cost function, though it would
require approximate inference (Poon et al., 2009).

6 Cost-Augmented CE

We extended the objective function underlying
CE by defining two new types of cost functions,
one on observations (§4) and one on outputs (§5).
We combine them into a single objective, which
we call cost-augmented contrastive estimation
(CCE), shown as Eq. 3 in Figure 1.

If the cost functions ∆ and π factor in the same
way as the features f , then it is straightforward
to implement CCE atop an existing CE implemen-
tation. The additional terms in the cost functions
can be implemented as features with fixed weights
(albeit where the weight differs depending on the
context).

7 Model Selection

Our modifications give increased flexibility, but
require setting new hyperparameters. In addition
to the choice of the cost functions, each has a
weight: α for ∆ and β for π. We need ways to
set these weights that do not require labeled data.

Smith and Eisner (2005a) chose the hyperpa-
rameter values that yielded the best CE objec-
tive on held-out development data. We use their
strategy, though we experiment with two others as
well.3 In particular, we estimate held-out data log-
likelihood via the method of Bengio et al. (2013)
and also consider ways of combining outputs from
multiple models.

7.1 Estimating Held-Out Log-Likelihood
Bengio et al. (2013) recently proposed ways to
efficiently estimate held-out data log-likelihood

3When using their strategy for CCE, we compute the CE
criterion only, omitting the costs. We do so because the
weights of the cost terms can have a large impact on the mag-
nitude of the objective, making it difficult to do a fair com-
parison of models with different cost weights.

for generative models. They showed empirically
that a simple, biased version of their conserva-
tive sampling-based log-likelihood (CSL) estima-
tor can be useful for model selection.

The biased CSL requires a Markov chain on the
variables in the model (i.e., x and y) as well as
the ability to compute pθ(x|y). It generates con-
secutive samples of y from a Markov chain ini-
tialized at each x in a development set D, with
S Markov chains run for each x. We compute
and sum pθ(x|yj) for each sampled yj , then sum
over all x in D. The result is a biased estimate for
the log-likelihood of D. Bengio et al. showed that
these biased estimates could give the same model
ranking as unbiased estimates, though more effi-
ciently. They also showed that taking the single,
initial sample from the S Markov chains resulted
in the same model ranking as using many samples
from each chain. We follow suit here.

Our Markov chain is a blocked Gibbs sam-
pler in which we alternate between sampling from
pθ(y|x) and pθ(x|y). Since we only use a sin-
gle sample from each Markov chain and initialize
each chain to x, this simply amounts to drawing S
samples from pθ(y|x). To sample from pθ(y|x),
we use the exact algorithm obtained by running
the backward algorithm and then performing left-
to-right sampling of tags using the local features
and requisite backward terms to define the local
tag distributions.

We then compute pθ(x|y) for each sampled y.
If there are no features in f that look at more than
one word (which is the case with the features used
in our experiments), then this probability factors:

pθ(x|y) =
∏|y|

k=1 pθ(xk|yk)

This is easily computable assuming that we have
normalization constants Z(y) cached for each tag
y. To compute each Z(y), we sum over all words
observed in the training data (replacing some with
a special UNK token; see below). We can then
compute likelihoods for individual words and mul-
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tiply them across the words in the sentence to com-
pute pθ(x|y).

To summarize, we get a log-likelihood estimate
for development setD = {x(i)}|D|i=1 by sampling S
times from pθ(y|x(i)) for each x(i), getting sam-
ples {{y(i),j}Sj=1}|D|i=1, then we compute

∑|D|
i=1

∑S
j=1 log pθ(x(i)|y(i),j)

We used values of S ∈ {1, 10, 100}, finding that
the ranking of models was consistent across S val-
ues. We used S = 10 in all results reported below.

We note that this estimator was originally pre-
sented for generative models, and that (C)CE is
not a generative training criterion. It seeks to max-
imize the conditional probability of an observation
given its neighborhood. Nonetheless, when imple-
menting our log-likelihood estimator, we treat the
model as a generative model, computing the Z(y)
constants by summing over all words in the vocab-
ulary.

7.2 System Combination

We can avoid choosing a single model by com-
bining the outputs of multiple models via system
combination. We decode test data by using poste-
rior decoding. To combine the outputs of multiple
models, we find the max-posterior tag under each
model, then choose the highest vote-getter, break-
ing ties arbitrarily.

However, when doing POS induction without a
tag dictionary, the tags are simply unique identi-
fiers and may not have consistent meaning across
runs. To address this, we propose a novel voting
scheme that is inspired by the widely-used 1-to-1
accuracy metric for POS induction (Haghighi and
Klein, 2006). This metric maps system tags to
gold tags to maximize accuracy with the constraint
that each gold tag is mapped to at most once. The
optimal mapping can be found by solving a maxi-
mum weighted bipartite matching problem.

We adapt this idea to map tags between two sys-
tems, rather than between system tags and gold
tags. Given k systems that we want to combine,
we choose one to be the backbone and map the re-
maining k − 1 systems’ outputs to the backbone.4

After mapping each system’s output to the back-
bone system, we perform simple majority voting
among all k systems. To choose the backbone, we

4We use the LEMON C++ toolkit (Dezs et al., 2011) to
solve the maximum weighted bipartite matching problems.

consider each of the k systems in turn as back-
bone and maximize the sum of the weights of the
weighted bipartite matching solutions found. This
is a heuristic that attempts to choose a backbone
that is similar to all other systems. We found
that highly-weighted matchings often led to high
POS tagging accuracy metrics. We call this vot-
ing scheme ALIGN. To see the benefit of ALIGN,
we also compare to a simple scheme (NAÏVE) that
performs majority voting without any tag map-
ping.

8 Experiments

Task and Datasets We consider POS induction
without tag dictionaries using five freely-available
datasets from the PASCAL shared task (Gelling
et al., 2012).5 These include Danish (DA), using
the Copenhagen Dependency Treebank v2 (Buch-
Kromann et al., 2007); Dutch (NL), using the
Alpino treebank (Bouma et al., 2001); Por-
tuguese (PT), using the Floresta Sintá(c)tica tree-
bank (Afonso et al., 2002); Slovene (SL), us-
ing the jos500k treebank (Erjavec et al., 2010);
and Swedish (SV), using the Talbanken tree-
bank (Nivre et al., 2006). We use their provided
training, development, and test sets.

Evaluation We fix the number of tags in our
models to 12, which matches the number of uni-
versal tags from Petrov et al. (2012). We use
both many-to-1 (M-1) and 1-to-1 (1-1) accuracy
as our evaluation metrics, using the universal tags
for the gold standard (which was done for the of-
ficial evaluation for the shared task).6 We note
that our π function assigns identities to tags (e.g.,
tag 1 is assumed to be NOUN), so we could use
actual tagging accuracy when training with the π
cost function. But we use M-1 and 1-1 accuracy
to enable easier comparison both among different
settings and to prior work.

Baselines From the shared task, we compare
to all entries that used 12 tags. These include

5http://wiki.cs.ox.ac.uk/
InducingLinguisticStructure/SharedTask

6It is common to use a greedy algorithm to com-
pute 1-to-1 accuracy, e.g., as in the shared task scor-
ing script (http://www.dcs.shef.ac.uk/˜tcohn/
wils/eval.tar.gz), though the optimal mapping can
be computed efficiently via the maximum weighted bipartite
matching algorithm, as stated above. We use the shared task
scorer for all results here for ease of comparison. When we
instead evaluate using the optimal mapping, we find that ac-
curacies are usually only slightly higher than those found by
the greedy algorithm.
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BROWN clusters (Brown et al., 1992), clusters ob-
tained using the mkcls tool (Och, 1995), and the
featurized HMM with sparsity constraints trained
using posterior regularization (PR), described by
Graça et al. (2011). The PR system achieved the
highest average 1-1 accuracy in the shared task.

We restrict our attention to systems that use 12
tags because the M-1 and 1-1 metrics are highly
dependent upon the number of hypothesized tags.
In general, using more tags leads to higher M-1
and lower 1-1 (Gelling et al., 2012). By keep-
ing the number of tags fixed, we hope to provide a
cleaner comparison among approaches.

We compare to two other baselines: an HMM
trained with 500 iterations of EM and an HMM
trained with 100 iterations of stepwise EM (Liang
and Klein, 2009). We used random initialization
as done by Liang and Klein: we set each param-
eter in each multinomial to exp{1 + c}, where
c ∼ U [0, 1], then normalized to get probability
distributions. For stepwise EM, we used mini-
batch size 3 and stepsize reduction power 0.7.

For all models we trained, including both base-
lines and CCE, we used only the training data
during training and used the unannotated devel-
opment data for certain model selection criteria.
No labels were used except for final evaluation on
the test data. Therefore, we need a way to handle
unknown words in test data. When running EM
and stepwise EM, while reading in the final 10%
of sentences in the training set, we replace novel
words with the special token UNK. We then re-
place unknown words in test data with UNK.

8.1 CCE Setup

Features We use standard indicator features on
tag-tag transitions and tag-word emissions, the
spelling features from Smith and Eisner (2005a),
and additional emission features based on Brown
clusters. The latter features are simply indicators
for tag-cluster pairs—analogous to tag-word emis-
sions in which the word is replaced by its Brown
cluster identifier. We run Brown clustering (Liang,
2005) on the POS training data for each language,
once with 12 clusters and once with 40, then add
tag-cluster emission features for each clustering
and one more for their conjunction.7

7To handle unknown words: for words that only appear
in the final 10% of training sentences, we replace them with
UNK when firing their tag-word emission features. We use
special Brown cluster identifiers reserved for UNK. But we
still use all spelling features derived from the actual word

Learning We solve Eq. 2 and Eq. 3 by running
LBFGS until convergence on the training data, up
to 100 iterations. We tag the test data with mini-
mum Bayes risk decoding and evaluate.

We use two neighborhood functions:

• TRANS1: the original sentence along with all
sentences that result from doing a single trans-
position of adjacent words.

• SHUFF10: the original sentence along with 10
random permutations of it.

We use L2 regularization, adding C
2

∑|θ|
j=1 θ

2
j to

the objectives shown in Figure 1. We use a fixed
(untuned) C = 0.0001 for all experiments re-
ported below.8 We initialize each CE model by
sampling weights from N(0, 1).

Cost Functions The cost functions ∆ and π
have constants α and β which balance their con-
tributions relative to the model score and must be
tuned. We consider the ways proposed in Sec-
tion 7, namely tuning based on the contrastive es-
timation criterion computed on development data
(CE), the log-likelihood estimate on development
data with S = 10 (LL), and our two system com-
bination algorithms: naı̈ve voting (NAÏVE) and
aligned voting (ALIGN), both of which use as in-
put the 4 system outputs whose hyperparameters
led to the highest values for the CE criterion on
development data.

We used α ∈ {3 × 10−4, 10−3, 3 ×
10−3, 0.01, 0.03, 0.1, 0.3} and β ∈ {3 ×
10−6, 10−5, 3 × 10−5, 10−4, 3 × 10−4}. Setting
α = β = 0 gives us CE, which we also compare
to. When using both MATLM and UNIV simul-
taneously, we first choose the best two α values
by the LL criterion and the best two β values by
the CE criterion when using only those individual
costs. This gives us 4 pairs of values; we run ex-
periments with these pairs and choose the pair to
report using each of the model selection criteria.
For system combination, we use the 4 system out-
puts resulting from these 4 pairs.

For training bigram language models for the
MATLM cost, we use the language’s POS train-
ing data concatenated with its portion of the Eu-
roparl v7 corpus (Koehn, 2005) and the text of its

type. For unknown words at test time, we use the UNK emis-
sion feature, the Brown cluster features with the special UNK
cluster identifiers, and the word’s actual spelling features.

8In subsequent experiments we tried C ∈ {0.01, 0.001}
for the baseline CE setting and found minimal differences.
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neigh- cost mod. DA NL PT SL SV avg
borhood sel. M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1

SHUFF10

none N/A 45.0 38.0 55.1 45.7 54.2 38.0 54.7 45.7 47.4 31.3 51.3 39.7

MATCH
CE 48.9 31.5 56.5 46.4 54.2 37.7 55.9 46.8 48.9 33.8 52.9 39.2
LL 49.9 34.4 56.5 46.4 54.1 38.9 57.2 48.9 48.9 33.8 53.3 40.5

MATLM CE 49.1 34.3 59.6 50.4 53.6 37.1 55.0 46.2 48.8 33.1 53.2 40.2
LL 50.2 40.0 59.6 50.4 53.1 36.0 58.0 48.4 48.8 33.1 53.9 41.6

TRANS1

none N/A 58.5 42.7 62.5 49.5 70.7 43.8 58.6 46.1 58.7 53.8 61.8 47.2

MATCH
CE 58.5 42.5 66.3 53.3 70.6 43.3 59.1 45.6 59.3 54.2 62.7 47.8
LL 58.8 42.8 66.3 53.3 70.6 43.3 60.3 43.7 59.8 54.9 63.1 47.6

MATLM CE 59.4 43.5 63.8 50.1 70.2 43.0 58.5 46.1 59.2 54.8 62.2 47.5
LL 58.7 42.8 66.5 60.4 70.5 43.6 59.1 47.7 59.2 54.8 62.8 49.9

Table 2: Results for observation cost functions. The CE baseline corresponds to rows where cost=“none”.
Other rows are CCE. Best score for each column and each neighborhood is bold.

Wikipedia. The word counts for the Wikipedias
used range from 18M for Slovene to 1.9B for
Dutch. We used modified Kneser-Ney smoothing
as implemented by SRILM (Stolcke, 2002).

8.2 Results

We present two sets of results. First we compare
our MATCH and MATLM observation cost func-
tions for our two neighborhoods and two ways of
doing model selection. Then we do a broader com-
parison, comparing both types of costs and their
combination to our full set of baselines.

Observation Cost Functions In Table 2, we
show results for observation cost functions. We
note that the TRANS1 neighborhood works much
better than the SHUFF10 neighborhood, but we
find that using cost functions can close the gap in
certain cases, particularly for Dutch and Slovene
for which the SHUFF10 MATLM scores approach
or exceed the TRANS1 scores without a cost.

Since the SHUFF10 neighborhood exhibits
more diversity than TRANS1, we expect to see
larger gains from using observation cost functions.
We do in fact see larger gains in M-1, e.g., average
improvements are 1.6-2.6 for SHUFF10 and 0.4-
1.3 for TRANS1, though 1-1 gains are closer.

For TRANS1, while MATCH does reach a
slightly higher average M-1 than MATLM, the lat-
ter does much better in 1-1 (49.9 vs. 47.6 when
using LL for model selection). For SHUFF10,
MATLM consistently does better than MATCH.
Nonetheless, we suspect MATCH works as well as
it does because it at least differentiates the obser-
vation (which is always part of the neighborhood)
from the corruptions.

We find that the LL model selection criterion
consistently works better than the CE criterion for
model selection. When using LL model selection

and fixing the neighborhood, all average scores are
better than their CE baselines. For M-1, the aver-
age improvement is 1.0 to 2.6 points, and for 1-1
the average improvement ranges from 0.4 to 2.7.

We find the best overall performance when us-
ing MATLM with LL model selection with the
TRANS1 neighborhood, and we report this setting
in our subsequent experiments.

Output Cost Function Table 3 shows results
when using our UNIV output cost function, as well
as our full set of baselines. All (C)CE experiments
used the TRANS1 neighborhood.

We find that our contrastive estimation baseline
(cost=“none”) has a higher average M-1 (61.8)
than all results from the shared task, but its average
1-1 accuracy is lower than that reached by poste-
rior regularization, the best system in the shared
task according to 1-1. Using an observation cost
function increases both M-1 and 1-1: MATLM
yields an average 1-1 of 49.9, nearing the 50.1 of
PR while exceeding it in M-1 by nearly 2 points.

When using the UNIV cost function, we see
some variation in performance across model selec-
tion criteria, but we find improvements in both M-
1 and 1-1 accuracy under most settings. When do-
ing model selection via ALIGN voting, we roughly
match the average 1-1 of PR, and when using the
CE criterion, we beat it by 1 point on average (51.3
vs. 50.1).

Combined Costs When using the UNIV cost,
we find that model selection via CE works bet-
ter than LL. So for the combined costs, we took
the two best MATLM weights (α values) accord-
ing to LL and the two best UNIV weights (β val-
ues) according to CE and ran combined cost ex-
periments (MATCHLM+UNIV) with the four pairs
of hyperparameters. Then from among these four,
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system DA NL PT SL SV avg
M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1 M-1 1-1

HMM, EM 42.5 28.1 53.0 40.6 59.4 33.7 50.3 34.7 49.3 33.9 50.9 34.2
HMM, stepwise EM 51.7 38.2 61.6 45.2 66.5 46.7 53.6 35.7 55.3 39.6 57.7 41.1
BROWN 47.1 39.2 57.3 43.1 67.6 51.6 58.3 42.3 57.6 51.3 57.6 45.5
mkcls 53.1 44.2 63.0 54.1 68.1 46.3 50.4 40.6 57.3 43.6 58.4 45.8
posterior regularization 53.8 45.6 57.6 45.4 74.4 56.1 60.0 48.5 58.8 54.9 60.9 50.1

contrastive estimation
cost model sel.
none N/A 58.5 42.7 62.5 49.5 70.7 43.8 58.6 46.1 58.7 53.8 61.8 47.2

MATCH LL 58.8 42.8 66.3 53.3 70.6 43.3 60.3 43.7 59.8 54.9 63.1 47.6
MATLM LL 58.7 42.8 66.5 60.4 70.5 43.6 59.1 47.7 59.2 54.8 62.8 49.9

UNIV

CE 59.7 45.6 60.6 51.1 70.0 62.7 60.9 44.1 57.1 52.8 61.7 51.3
LL 59.5 42.2 62.1 56.3 70.7 43.1 60.9 44.1 57.1 52.8 62.1 47.7

NAÏVE 59.2 45.6 62.2 52.8 72.7 52.7 60.0 43.8 56.2 53.0 62.2 49.6
ALIGN 61.6 47.3 63.7 54.5 74.4 53.1 59.7 42.1 56.6 53.2 63.2 50.0

MATLM CE 59.8 45.7 60.4 48.4 70.0 62.8 52.9 45.0 59.4 54.9 60.5 51.4

+ LL 59.3 42.5 61.9 56.2 70.8 43.1 59.3 41.9 60.0 55.1 62.3 47.8
NAÏVE 58.5 44.4 64.9 60.3 65.4 52.1 55.5 45.9 59.0 54.4 60.6 51.4

UNIV ALIGN 61.1 45.4 66.2 60.9 75.8 49.8 59.5 48.2 59.0 54.4 64.3 51.7

Table 3: Unsupervised POS tagging accuracies for five languages, showing results for three systems from
the PASCAL shared task as well as three other baselines (EM, stepwise EM, and contrastive estimation).
All (C)CE results use the TRANS1 neighborhood. The best score in each column is bold.

we again chose results by CE, LL, and both voting
schemes.

The results are shown in the lower part of Ta-
ble 3. We find different trends in M-1 and 1-
1 depending on whether we use CE or LL for
model selection, which may be due to our lim-
ited hyperparameter search stemming from com-
putational constraints. However, by comparing
NAÏVE to ALIGN, we see a consistent benefit
from aligning tags before voting, leading to our
highest average accuracies. In particular, using
MATCHLM+UNIV and ALIGN, we improve over
CE by 2.5 in M-1 and 4.5 in 1-1, also improving
over the best results from the shared task.

9 Conclusion

We have shown how to modify contrastive estima-
tion to use additional sources of knowledge, both
in terms of observation and output cost functions.
We adapted a recently-proposed technique for es-
timating the log-likelihood of held-out data, find-
ing it to be effective as a model selection criterion
when using observation cost functions. We im-
proved tagging accuracy by using weak supervi-
sion in the form of universal tag frequencies. We
proposed a system combination method for POS
induction systems that consistently performs bet-
ter than naı̈ve voting and circumvents hyperpa-
rameter selection. We reported results on par with
or exceeding the best systems from the PASCAL
2012 shared task.

Contrastive estimation has been shown effective
for numerous NLP tasks, including dependency
grammar induction (Smith and Eisner, 2005b),
bilingual part-of-speech induction (Chen et al.,
2011), morphological segmentation (Poon et al.,
2009), and machine translation (Xiao et al., 2011).
The hope is that our contributions can benefit these
and other applications of weakly-supervised learn-
ing.
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Floresta sintá(c)tica: a treebank for Portuguese. In
Proc. of LREC.

Y. Bengio, L. Yao, and K. Cho. 2013. Bounding
the test log-likelihood of generative models. arXiv
preprint arXiv:1311.6184.

T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero,
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