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Abstract

We investigate grammatical error detec-
tion in spoken language, and present a
data-driven method to train a dependency
parser to automatically identify and label
grammatical errors. This method is ag-
nostic to the label set used, and the only
manual annotations needed for training are
grammatical error labels. We find that the
proposed system is robust to disfluencies,
so that a separate stage to elide disfluen-
cies is not required. The proposed system
outperforms two baseline systems on two
different corpora that use different sets of
error tags. It is able to identify utterances
with grammatical errors with an F1-score
as high as 0.623, as compared to a baseline
F1 of 0.350 on the same data.

1 Introduction

Research into automatic grammatical error detec-
tion has primarily been motivated by the task of
providing feedback to writers, whether they be na-
tive speakers of a language or second language
learners. Grammatical error detection, however, is
also useful in the clinical domain, for example, to
assess a child’s ability to produce grammatical lan-
guage. At present, clinicians and researchers into
child language must manually identify and clas-
sify particular kinds of grammatical errors in tran-
scripts of children’s speech if they wish to assess
particular aspects of the child’s linguistic ability
from a sample of spoken language. Such manual
annotation, which is called language sample anal-
ysis in the clinical field, is expensive, hindering
its widespread adoption. Manual annotations may
also be inconsistent, particularly between different
research groups, which may be investigating dif-
ferent phenomena. Automated grammatical error
detection has the potential to address both of these
issues, being both cheap and consistent.
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Aside from performance, there are at least two
key requirements for a grammatical error detector
to be useful in a clinical setting: 1) it must be able
to handle spoken language, and 2) it must be train-
able. Clinical data typically consists of transcripts
of spoken language, rather than formal written lan-
guage. As a result, a system must be prepared
to handle disfluencies, utterance fragments, and
other phenomena that are entirely grammatical in
speech, but not in writing. On the other hand, a
system designed for transcripts of speech does not
need to identify errors specific to written language
such as punctuation or spelling mistakes. Further-
more, a system designed for clinical data must be
able to handle language produced by children who
may have atypical language due to a developmen-
tal disorder, and therefore may produce grammati-
cal errors that would be unexpected in written lan-
guage. A grammatical error detector appropriate
for a clinical setting must also be trainable be-
cause different groups of clinicians may wish to
investigate different phenomena, and will there-
fore prefer different annotation standards. This
is quite different from grammatical error detectors
for written language, which may have models for
different domains, but which are not typically de-
signed to enable the detection of novel error sets.

We examine two baseline techniques for gram-
matical error detection, then present a simple data-
driven technique to turn a dependency parser into a
grammatical error detector. Interestingly, we find
that the dependency parser-based approach mas-
sively outperforms the baseline systems in terms
of identifying ungrammatical utterances. Further-
more, the proposed system is able to identify spe-
cific error codes, which the baseline systems can-
not do. We find that disfluencies do not degrade
performance of the proposed detector, obviating
the need (for this task) for explicit disfluency de-
tection. We also analyze the output of our system
to see which errors it finds, and which it misses.
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Code | Description Example

[EO] | Overgeneralization errors | He falled [EO] .

[EW] | Other word level errors He were [EW] looking .
[EU] | Utterance level errors And they came to stopped .
[OM] | Omitted bound morpheme | He go [OM] .

[OW] | Omitted word She [OW] running .

Table 1: Error codes proposed in the SALT manual. Note that in SALT annotated transcripts, [OM] and
[OW] are actually indicated by ‘*’ followed by the morpheme or word hypothesized to be omitted.
When treating codes (other than [EU]) as tags, they are attached to the previous word in the string.

Finally, we evaluate our detector on a second set
of data with a different label set and annotation
standards. Although our proposed system does not
perform as well on the second data set, it still out-
performs both baseline systems. One interesting
difference between the two data sets, which does
appear to impact performance, is that the latter set
more strictly follows SALT guidelines (see Sec-
tion 2.1) to collapse multiple errors into a single
label. This yields transcripts with a granularity of
labeling somewhat less amenable to automation,
to the extent that labels are fewer and can be re-
liant on non-local context for aggregation.

2 Background

2.1 Systematic Analysis of Language
Transcripts (SALT)

The Systematic Analysis of Language Transcripts
(SALT) is the de facto standard for clinicians look-
ing to analyze samples of natural language. The
SALT manual includes guidelines for transcrip-
tion, as well as three types of annotations, of
which two are relevant here: maze annotations,
and error codes.!

Mazes are similar to what is referred to as ‘dis-
fluencies’ in the speech literature. The SALT
manual defines mazes as “filled pauses, false
starts, repetitions, reformulations, and interjec-
tions” (Miller et al., 2011, p. 6), without defining
any of these terms. Partial words, which are in-
cluded and marked in SALT-annotated transcripts,
are also included in mazes. Mazes are delimited
by parentheses, and have no internal structure, un-
like disfluencies annotated following the Switch-
board guidelines (Meteer et al., 1995), which are
commonly followed by the speech and language

'SALT also prescribes annotation of bound morphemes
and clitics, for example -ed in past tense verbs. We preprocess
all of the transcripts to remove bound morpheme and clitic
annotations.
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processing communities. An example maze anno-
tation would be: “He (can not) can not get up.”

The SALT manual proposes the set of error
codes shown (with examples) in Table 1, but re-
search groups may use a subset of these codes, or
augment them with additional codes. For example,
the SALT-annotated Edmonton Narrative Norms
Instrument (ENNI) corpus (Schneider et al., 2006)
rarely annotates omitted morphemes ([OM]), in-
stead using the [EW] code. Other SALT-annotated
corpora include errors that are not described in the
SALT manual. For example the CSLU ADOS cor-
pus (Van Santen et al., 2010) includes the [EX]
tag for extraneous words, and the Narrative Story
Retell corpus (SALT Software, 2014b) uses the
code [EP] to indicate pronominal errors (albeit
inconsistently, as many such errors are coded as
[EW] in this corpus). We note that the definitions
of certain SALT errors, notably [EW] and [EU],
are open to interpretation, and that these codes
capture a wide variety of errors. For example,
some of the errors captured by the [EW] code are:
pronominal case and gender errors; verb tense er-
rors; confusing ‘a’ and ‘an’; and using the wrong
preposition.

The SALT guidelines specify as a general rule
that annotators should not mark utterances with
more than two omissions ([OM] or [OW]) and/or
word-level errors (ex [EW], [EP]) (SALT Soft-
ware, 2014a). Instead, annotators are instructed
to code such utterances with an utterance-level er-
ror ([EU]). How strictly annotators adhere to this
rule affects the distribution of errors, reducing the
number of word-level errors and increasing the
number of utterance-level errors. Following this
rule also increases the variety of errors captured
by the [EU] code. The annotations in different
corpora, including ENNI and NSR, vary in how
strictly they follow this rule, even though this is
not mentioned in the the published descriptions of



these corpora.

2.2 Grammatical Error Detection

The most visible fruits of research into grammati-
cal error detection are the spellchecking and gram-
mar checking tools commonly included with word
processors, for example Microsoft Word’s gram-
mar checker. Although developed for handling
written language, many of the techniques used
to address these tasks could still be applicable to
transcripts of speech because many of the same
errors can still occur. The earliest grammatical-
ity tools simply performed pattern matching (Mac-
donald et al., 1982), but this approach is not robust
enough to identify many types of errors, and pat-
tern matching systems are not trainable, and there-
fore cannot be adapted quickly to new label sets.
Subsequent efforts to create grammaticality classi-
fiers and detectors leveraged information extracted
from parsers (Heidorn et al., 1982) and language
models (Atwell, 1987). These systems, however,
were developed for formal written English pro-
duced by well-educated adults, as opposed to spo-
ken English produced by young children, partic-
ularly children with suspected developmental de-
lays.

There have been a few investigations into tech-
niques to automatically identify particular con-
structions in transcripts of spoken English. Bow-
den and Fox (2002) proposed a rule-based sys-
tem to classify many types of errors made by
learners of English. Although their system could
be used on either transcripts of speech, or on
written English, they did not evaluate their sys-
tem in any way. Caines and Buttery (2010) use
a logistic regression model to identify the zero-
auxiliary construction (e.g., ‘you going home?’)
with over 96% accuracy. Even though the zero-
auxilliary construction is not necessarily ungram-
matical, identifying such constructions may be
useful as a preprocessing step to a grammatical-
ity classifier. Caines and Buttery also demonstrate
that their detector can be integrated into a sta-
tistical parser yielding improved performance, al-
though they are vague about the nature of the parse
improvement (see Caines and Buttery, 2010, p. 6).

Hassanali and Liu (2011) conducted the first in-
vestigation into grammaticality detection and clas-
sification in both speech of children, and speech of
children with language impairments. They identi-
fied 11 types of errors, and compared three types
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of systems designed to identify the presence of
each type of error: 1) rule based systems; 2) deci-
sion trees that use rules as features; and 3) naive
Bayes classifiers that use a variety of features.
They were able to identify all error types well
(F1 > 0.9 in all cases), and found that in general
the statistical systems outperformed the rule based
systems. Hassanali and Liu’s system was designed
for transcripts of spoken language collected from
children with impaired language, and is able to
detect the set of errors they defined very well.
However, it cannot be straightforwardly adapted
to novel error sets.

Morley et al. (2013) evaluated how well the
detectors proposed by Hassanali and Liu could
identify utterances with SALT error codes. They
found that a simplified version of one of Has-
sanali and Liu’s detectors was the most effective at
identifying utterances with any SALT error codes,
although performance was very low (F1=0.18).
Their system uses features extracted solely from
part of speech tags with the Bernoulli Naive Bayes
classifier in Scikit (Pedregosa et al., 2012). Their
detector may be adaptable to other annotation
standards, but it does not identify which errors are
in each utterance; it only identifies which utter-
ances have errors, and which do not.

2.3 Redshift Parser

We perform our experiments with the redshift
parser?, which is an arc-eager transition-based de-
pendency parser. We selected redshift because of
its ability to perform disfluency detection and de-
pendency parsing jointly. Honnibal and Johnson
(2014) demonstrate that this system achieves state-
of-the-art performance on disfluency detection,
even compared to single purpose systems such as
the one proposed by Qian and Liu (2013). Ra-
sooli and Tetreault (2014) have developed a sys-
tem that performs disfluency detection and depen-
dency parsing jointly, and with comparable perfor-
mance to redshift, but it is not publicly available as
of yet.

Redshift uses an averaged perceptron learner,
and implements several feature sets. The first fea-
ture set, which we will refer to as ZHANG is the
one proposed by Zhang and Nivre (2011). It in-
cludes 73 templates that capture various aspects
of: the word at the top of the stack, along with its

ZRedshift is available at https://github.com/
sylloglsm/redshift. We use the version in the
experiment branch from May 15, 2014.



leftmost and rightmost children, parent and grand-
parent; and the word on the buffer, along with
its leftmost children; and the second and third
words on the buffer. Redshift also includes fea-
tures extracted from the Brown clustering algo-
rithm (Brown et al., 1992). Finally, redshift in-
cludes features that are designed to help iden-
tify disfluencies; these capture rough copies, ex-
act copies, and whether neighboring words were
marked as disfluent. We will refer to the feature
set containing all of the features implemented in
redshift as FULL. We refer the reader to Honnibal
and Johnson (2014) for more details.

3 Data, Preprocessing, and Evaluation

Our investigation into using a dependency parser
to identify and label grammatical errors requires
training data with two types of annotations: de-
pendency labels, and grammatical error labels. We
are not aware of any corpora of speech with both
of these annotations. Therefore, we use two dif-
ferent sets of training data: the Switchboard cor-
pus, which contains syntactic parses; and SALT
annotated corpora, which have grammatical error
annotations.

3.1 Switchboard

The Switchboard treebank (Godfrey et al., 1992)
is a corpus of transcribed conversations that have
been manually parsed. These parses include
EDITED nodes, which span disfluencies. We pre-
process the Switchboard treebank by removing all
partial words as well as all words dominated by
EDITED nodes, and converting all words to lower-
case. We then convert the phrase-structure trees to
dependencies using the Stanford dependency con-
verter (De Marneffe et al., 2006) with the basic de-
pendency scheme, which produces dependencies
that are strictly projective.

3.2 SALT Annotated Corpora

We perform two sets of experiments on the two
SALT-annotated corpora described in Table 2. We
carry out the first set of experiments on on the Ed-
monton Narrative Norms Instrument (ENNI) cor-
pus, which contains 377 transcripts collected from
children between the ages of 3 years 11 months
and 10 years old. The children all lived in Edmon-
ton, Alberta, Canada, were typically developing,
and were native speakers of English.

After exploring various system configurations,

983

ENNI NSR
Words Utts ‘Words Utts
Train 360,912 44915 103,810 11,869
Dev. 45,504 5,614 12,860 1,483
Test 44,996 5,615 12,982 1,485
% with error 13.2 14.3

(a) Word and utterance counts

ENNI  NSR
[EP] 0 20
[EO] 0 495
[EW] 4916 1,506
[EU] 3332 568
[OM] 10 297
[OW] 766 569
Total 9,024 3,455

(b) Error code counts

Table 2: Summary of ENNI and NSR Corpora.
There can be multiple errors per utterance. Word
counts include mazes.

we evaluate how well our method works when it
is applied to another corpus with different anno-
tation standards. Specifically, we train and test
our technique on the Narrative Story Retell (NSR)
corpus (SALT Software, 2014b), which contains
496 transcripts collected from typically develop-
ing children living in Wisconsin and California
who were between the ages of 4 years 4 months
and 12 years 8 months old. The ENNI and NSR
corpora were annotated by two different research
groups, and as Table 2 illustrates, they contain
a different distribution of errors. First, ENNI
uses the [EW] (other word-level error) tag to code
both overgeneralization errors instead of [EO], and
omitted morphemes instead of [OM]. The [EU]
code is also far more frequent in ENNI than NSR.
Finally, the NSR corpus includes an error code that
does not appear in the ENNI corpus: [EP], which
indicates a pronominal error, for example using
the wrong person or case. [EP], however, is rarely
used.

We preprocess the ENNI and NSR corpora to
reconstruct surface forms from bound morpheme
annotations (ex. ‘go/3S’ becomes ‘goes’), partial
words, and non-speech sounds. We also either ex-
cise manually identified mazes or remove maze
annotations, depending upon the experiment.

3.3 Evaluation

Evaluating system performance in tagging tasks
on manually annotated data is typically straight-



Evaluation Level: ERROR UTTERANCE
Individual error codes Has error?
Gold error codes: || [EW] | [EW] Yes
Predicted error codes: || [EW] [OW] Yes
Evaluation: | TP | FN | FP TP

Figure 1: Illustration of UTTERANCE and ERROR level evaluation
TP = true positive; FP = false positive; FN = false negative

forward: we simply compare system output to the
gold standard. Such evaluation assumes that the
best system is the one that most faithfully repro-
duces the gold standard. This is not necessarily
the case with applying SALT error codes for three
reasons, and each of these reasons suggests a dif-
ferent form of evaluation.

First, automatically detecting SALT error codes
is an important task because it can aid clini-
cal investigations. As Morley et al. (2013) il-
lustrated, even extremely coarse features derived
from SALT annotations, for example a binary fea-
ture for each utterance indicating the presence of
any error codes, can be of immense utility for iden-
tifying language impairments. Therefore, we will
evaluate our system as a binary tagger: each ut-
terance, both in the manually annotated data and
system output either contains an error code, or it
does not. We will label this form of evaluation as
UTTERANCE level.

Second, clinicians are not only interested in
how many utterances have an error, but also which
particular errors appear in which utterances. To
address this issue, we will compute precision, re-
call, and F1 score from the counts of each er-
ror code in each utterance. We will label this
form of evaluation as ERROR level. Figure 1 illus-
trates both UTTERANCE and ERROR level evalua-
tion. Note that the utterance level error code [EU]
is only allowed to appear once per utterance. As
a result, we will ignore any predicted [EU] codes
beyond the first.

Third, the quality of the SALT annotations
themselves is unknown, and therefore evaluation
in which we treat the manually annotated data as a
gold standard may not yield informative metrics.
Morley et al. (2014) found that there are likely
inconsistencies in maze annotations both within
and across corpora. In light of that finding, it is
possible that error code annotations are somewhat
inconsistent as well. Furthermore, our approach
has a critical difference from manual annotation:
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we perform classification one utterance at a time,
while manual annotators have access to the context
of an utterance. Therefore certain types of errors,
for example using a pronoun of the wrong gender,
or responding ungrammatically to a question (ex.
‘What are you doing?’ ‘Eat.”) will appear gram-
matical to our system, but not to a human anno-
tator. We address both of these issues with an in-
depth analysis of the output of one of our systems,
which includes manually re-coding utterances out
of context.

4 Detecting Errors in ENNI

4.1 Baselines

We evaluate two existing systems to see how ef-
fectively they can identify utterances with SALT
error codes: 1) Microsoft Word 2010’s gram-
mar check, and 2) the simplified version of Has-
sanali and Liu’s grammaticality detector (2011)
proposed by Morley et al. (2013) (mentioned in
Section 2.2). We configured Microsoft Word
2010’s grammar check to look for the following
classes of errors: negation, noun phrases, subject-
verb agreement, and verb phrases (see http://
bit.ly/lkphUHa). Mosterror classes in gram-
mar check are not relevant for transcribed speech,
for example capitalization errors or confusing it’s
and its; we selected classes of errors that would
typically be indicated by SALT error codes.

Note that these baseline systems can only give
us an indication of whether there is an error in
the utterance or not; they do not provide the spe-
cific error tags that mimic the SALT guidelines.
Hence we evaluate just the UTTERANCE level per-
formance of the baseline systems on the ENNI de-
velopment and test sets. These results are given
in the top two rows of each section of Table 3.
We apply these systems to utterances in two condi-
tions: with mazes (i.e., disfluencies) excised; and
with unannotated mazes left in the utterances. As
can be seen in Table 3, the performance Microsoft
Word’s grammar checker degrades severely when



(a)

Him [EW] (can not) can not get up .

ROOT

(b)

nsubj+[EW]

aux

m can not

ROOT hi

neg

aux @
f 1
can not get up

Figure 2: (a) SALT annotated utterance; mazes indicated by parentheses; (b) Dependency parse of same
utterance parsed with a grammar trained on the Switchboard corpus and augmented dependency labels.
We use a corpus of parses with augmented labels to train our grammaticality detector.

mazes are not excised, but this is not the case for
the Morley et al. (2013) detector.

4.2 Proposed System

Using the ENNI corpus, we now explore various
configurations of a system for grammatical error
code detection. All of our systems use redshift
to learn grammars and to parse. First, we train
an initial grammar G on the Switchboard tree-
bank (Godfrey et al., 1992) (preprocessed as de-
scribed in Section 3.1). Redshift learns a model for
part of speech tagging concurrently with Go. We
use (G to parse the training portion of the ENNI
corpus. Then, using the SALT annotations, we
append error codes to the dependency arc labels
in the parsed ENNI corpus, assigning each error
code to the word it follows in the SALT annotated
data. Figure 2 shows a SALT annotated utterance,
as well as its dependency parse augmented with
error codes. Finally, we train a grammar G ;.- on
the parse of the ENNI training fold that includes
the augmented arc labels. We can now use G g
to automatically apply SALT error codes: they are
simply encoded in the dependency labels. We also
apply the [EW] label to any word that is in a list of
overgeneralization errors”.

We modify three variables in our initial trials on
the ENNI development set. First, we change the
proportion of utterances in the training data that
contain an error by removing utterances.* Doing
so allows us to alter the operating point of our sys-

3The list of overgeneralization errors was generously pro-
vided by Kyle Gorman
*Of course, we never modify the development or test data.

tem in terms of precision and recall. Second, we
again train and test on two versions of the ENNI
corpus: one which has had mazes excised, and the
other which has them present (but not annotated).
Third, we evaluate two feature sets: ZHANG and
FULL.

The plots in Figure 3 show how the per-
formances of our systems at different operating
points vary, while Table 3 shows the performance
of our best system configurations on the ENNI de-
velopment and test sets. Surprisingly, we see that
neither the choice of feature set, nor the presence
of mazes has much of an effect on system per-
formance. This is in strong contrast to Microsoft
Word’s grammar check, which is minimally effec-
tive when mazes are included in the data. The
Morley et al. (2013) system is robust to mazes,
but still performs substantially worse than our pro-
posed system.

4.3 Error Analysis

We now examine the errors produced by our best
performing system for data in which mazes are
present. As shown in Table 3, when we apply our
system to ENNI-development, the UTTERANCE
P/R/F1 is 0.831 / 0.502 / 0.626 and the ERROR
P/R/F1is 0.759 / 0.434 / 0.552. This system’s per-
formance detecting specific error codes is shown
in Table 4. We see that the recall of [EU] errors is
quite low compared with the recall for [EW] and
[OW] errors. This is not surprising, as human an-
notators may need to leverage the context of an ut-
terance to identify [EU] errors, while our system
makes predictions for each utterance in isolation.
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Figure 3: SALT error code detection performance at various operating points on ENNI development set

Eval Mazes Excised Mazes Present
System type P R F1 P R F1
Development
MS Word UTT | 0.843 0.245 0.380 | 0.127 0.063 0.084
Morley et al. (2013) | UTT | 0.407 0.349 0.376 | 0.343 0.321 0.332
Current paper UTT | 0943 0470 0.627 | 0.831 0.502 0.626
ERR | 0.895 0412 0.564 | 0.759 0.434 0.552
Test
MS Word UTT | 0.824 0.209 0.334 | 0.513 0.219 0.307
Morley et al. (2013) | UTT | 0.375 0.328 0.350 | 0.349 0.252 0.293
Current Paper UTT | 0909 0474 0.623 | 0.809 0.501 0.618
ERR | 0.682 0.338 0.452 | 0.608 0.360 0.452

Table 3: Baseline and current paper systems’ performance on ENNI. Evaluation is at the UTTERANCE
(UTT) level except for the current paper’s system, which also presents evaluation at the ERROR (ERR)
level.

Error Code P R F1
EU 0.639 0.193 0.297
EwW 0.832 0.582 0.685
ow 0.680 0.548 0.607

Table 4: ERROR level detection performance for
each code (system trained on ENNI; 30% error
utterances; ZHANG feature set; with mazes)

We randomly sampled 200 utterances from the
development set that have a manually annotated
error, are predicted by our system to have an er-
ror, or both. A speech-language pathologist who
has extensive experience with using SALT for re-
search purposes in both clinical and typically de-
veloping populations annotated the errors in each
utterance. She annotated each utterance in isola-
tion so as to ignore contextual errors. We compare
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our annotations to the original annotations, and
system performance using our annotations and the
original annotations as different gold standards.
The results of this comparison are shown in Table
5.

Comparing our manual annotations to the orig-
inal annotations, we notice some disagreements.
We suspect there are two reasons for this. First,
unlike the original annotators, we annotate these
utterances out of context. This may explain why
we identify far fewer utterance level error [EU]
codes than the original annotators (20 compared
with 67). Second, we may be using different cri-
teria for each error code than the original anno-
tators. This is an inevitable issue, as the SALT
guidelines do not provide detailed definitions of
the error codes, nor do individual groups of anno-
tators. To illustrate, the “coding notes” section of



Tag Gold Gold Count Disagreement P R F1
[EU]  Original 67 52 0.500 0.149 0.230
Revised 20 0.450 0.333 0.383
[EW]  Original 137 27 0.859 0.533 0.658
Revised 126 0.800 0.540 0.645
[OW]  Original 16 13 0.667 0.275 0.480
Revised 15 0.444 0.267 0.333

Table 5: System performance using ERROR level evaluation on 200 utterances selected from ENNI-dev
using original and revised annotations as gold standard

UTTERANCE level ERROR level
System P R F1 P R F1
ENNI-trained 0.310 0.124 0.178 | 0.157 0.057 0.084
NSR-trained 0.243 0.249 0.277 | 0.150 0.195 0.170
MS Word 0.561 0.171 0.261 - - -
Morley et al. (2013) 0.250 0.281 0.264 - - -
NSR U MS Word 0.291 0.447 0.353 - - -
NSR U Morley et al. (2013) | 0.297 0.387 0.336 - - -
All3 0.330 0.498 0.397 - - -

Table 6: Error detection performance on NSR-development, mazes included

the description of the ENNI corpus® only lists the
error codes that were used consistently, but does
not describe how to apply them. These findings
illustrate the importance of having a rapidly train-
able error code detector: research groups will be
interested in different phenomena, and therefore
will likely have different annotation standards.

5 Detecting Errors in NSR

We apply our system directly to the NSR corpus
with mazes included. We use the same parameters
set on the ENNI corpus in Section 4.2. We apply
the model trained on ENNI to NSR, but find that it
does not perform very well as illustrated in Table
6. These results further underscore the need for
a trainable error code detector in this domain, as
opposed to the static error detectors that are more
common in the grammatical error detection litera-
ture.

We see in Table 6 that retraining our model
on NSR data improves performance substantially
(UTTERANCE F1 improves from 0.178 to 0.277),
but not to the level we observed on the ENNI cor-
pus. The Morley et al. (2013) system also per-
forms worse when trained and tested on NSR, as
compared with ENNI. When mazes are included,

Shttp://www.saltsoftware.com/salt/
databases/ENNIRDBDoc.pdf
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the performance of Microsoft Word’s grammar
check is higher on NSR than on ENNI (F1=0.261
vs 0.084), but it it still yields the lowest perfor-
mance of the three systems. We find that combin-
ing our proposed system with either or both of the
baseline systems further improves performance.

The NSR corpus differs from ENNI in several
ways: it is smaller, contains fewer errors, and uses
a different set of tags with a different distribution
from the ENNI corpus, as shown in Table 2. We
found that the smaller amount of training data is
not the only reason for the degradation in perfor-
mance; we trained a model for ENNI with a set of
training data that is the same size as the one for
NSR, but did not observe a major drop in perfor-
mance. We found that UTTERANCE F1 drops from
0.626 to 0.581, and ERROR F1 goes from 0.552 to
0.380, not nearly the magnitude drop in accuracy
observed for NSR.

We believe that a major reason for why our sys-
tem performs worse on NSR than ENNI may be
that the ENNI annotations adhere less strictly to
certain SALT recommendations than do the ones
in NSR. The SALT guidelines suggest that utter-
ances with two or more word-level [EW] and/or
omitted word [OW] errors should only be tagged
with an utterance-level [EU] error (SALT Soft-
ware, 2014a). ENNI, however, has many utter-



ances with multiple [EW] and [OW] error codes,
along with utterances containing all three error
codes. NSR has very few utterances with [EU] and
other codes, or multiple [EW] and [OW] codes.
The finer grained annotations in ENNI may sim-
ply be easier to learn.

6 Conclusion and Future Directions

We have proposed a very simple method to rapidly
train a grammatical error detector and classifier.
Our proposed system only requires training data
with error code annotations, and is agnostic as to
the nature of the specific error codes. Furthermore,
our system’s performance does not appear to be
affected by disfluencies, which reduces the burden
required to produce training data.

There are several key areas we plan to inves-
tigate in the future. First, we would like to ex-
plore different update functions for the parser; the
predicted error codes are a byproduct of parsing,
but we do not care what the parse itself looks like.
At present, the parser is updated whenever it pro-
duces a parse that diverges from the gold stan-
dard. It may be better to update only when the
error codes predicted for an utterance differ from
the gold standard. Second, we hope to explore fea-
tures that could be useful for identifying grammat-
ical errors in multiple data sets. Finally, we plan
to investigate why our system performed so much
better on ENNI than on NSR.
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