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Abstract

We propose the first implementation of
an infinite-order generative dependency
model. The model is based on a new
recursive neural network architecture, the
Inside-Outside Recursive Neural Network.
This architecture allows information to
flow not only bottom-up, as in traditional
recursive neural networks, but also top-
down. This is achieved by computing
content as well as context representations
for any constituent, and letting these rep-
resentations interact. Experimental re-
sults on the English section of the Uni-
versal Dependency Treebank show that
the infinite-order model achieves a per-
plexity seven times lower than the tradi-
tional third-order model using counting,
and tends to choose more accurate parses
in k-best lists. In addition, reranking with
this model achieves state-of-the-art unla-
belled attachment scores and unlabelled
exact match scores.

1 Introduction

Estimating probability distributions is the core is-
sue in modern, data-driven natural language pro-
cessing methods. Because of the traditional defi-
nition of discrete probability

Pr(A) ≡ the number of times A occurs
the size of event space

counting has become a standard method to tackle
the problem. When data are sparse, smoothing
techniques are needed to adjust counts for non-
observed or rare events. However, successful use
of those techniques has turned out to be an art. For
instance, much skill and expertise is required to
create reasonable reduction lists for back-off, and
to avoid impractically large count tables, which
store events and their counts.

An alternative to counting for estimating prob-
ability distributions is to use neural networks.
Thanks to recent advances in deep learning, this
approach has recently started to look very promis-
ing again, with state-of-the-art results in senti-
ment analysis (Socher et al., 2013), language mod-
elling (Mikolov et al., 2010), and other tasks. The
Mikolov et al. (2010) work, in particular, demon-
strates the advantage of neural-network-based ap-
proaches over counting-based approaches in lan-
guage modelling: it shows that recurrent neu-
ral networks are capable of capturing long histo-
ries efficiently and surpass standard n-gram tech-
niques (e.g., Kneser-Ney smoothed 5-gram).

In this paper, keeping in mind the success of
these models, we compare the two approaches.
Complementing recent work that focused on such
a comparison for the case of finding appropriate
word vectors (Baroni et al., 2014), we focus here
on models that involve more complex, hierarchical
structures. Starting with existing generative mod-
els that use counting to estimate probability distri-
butions over constituency and dependency parses
(e.g., Eisner (1996b), Collins (2003)), we develop
an alternative based on recursive neural networks.
This is a non-trivial task because, to our knowl-
edge, no existing neural network architecture can
be used in this way. For instance, classic recur-
rent neural networks (Elman, 1990) unfold to left-
branching trees, and are not able to process ar-
bitrarily shaped parse trees that the counting ap-
proaches are applied to. Recursive neural net-
works (Socher et al., 2010) and extensions (Socher
et al., 2012; Le et al., 2013), on the other hand,
do work with trees of arbitrary shape, but pro-
cess them in a bottom-up manner. The probabil-
ities we need to estimate are, in contrast, defined
by top-down generative models, or by models that
require information flows in both directions (e.g.,
the probability of generating a node depends on
the whole fragment rooted at its just-generated sis-
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Figure 1: Inner (ip) and outer (op) representations
at the node that covers constituent p. They are vec-
torial representations of p’s content and context,
respectively.

ter).
To tackle this problem, we propose a new ar-

chitecture: the Inside-Outside Recursive Neural
Network (IORNN) in which information can flow
not only bottom-up but also top-down, inward and
outward. The crucial innovation in our architec-
ture is that every node in a hierarchical structure
is associated with two vectors: one vector, the in-
ner representation, representing the content under
that node, and another vector, the outer represen-
tation, representing its context (see Figure 1). In-
ner representations can be computed bottom-up;
outer representations, in turn, can be computed
top-down. This allows information to flow in
any direction, depending on the application, and
makes the IORNN a natural tool for estimating
probabilities in tree-based generative models.

We demonstrate the use of the IORNN by ap-
plying it to an ∞-order generative dependency
model which is impractical for counting due to
the problem of data sparsity. Counting, instead, is
used to estimate a third-order generative model as
in Sangati et al. (2009) and Hayashi et al. (2011).
Our experimental results show that our new model
not only achieves a seven times lower perplex-
ity than the third-order model, but also tends to
choose more accurate candidates in k-best lists. In
addition, reranking with this model achieves state-
of-the-art scores on the task of supervised depen-
dency parsing.

The outline of the paper is following. Firstly, we
give an introduction to Eisner’s generative model
in Section 2. Then, we present the third-order
model using counting in Section 3, and propose
the IORNN in Section 4. Finally, in Section 5 we
show our experimental results.

2 Eisner’s Generative Model

Eisner (1996b) proposed a generative model for

dependency parsing. The generation process is
top-down: starting at the ROOT, it generates
left dependents and then right dependents for the
ROOT. After that, it generates left dependents and
right dependents for each of ROOT’s dependents.
The process recursively continues until there is no
further dependent to generate. The whole process
is captured in the following formula

P (T (H)) =
L∏

l=1

P
(
HL

l |CHL
l

)
P
(
T (HL

l )
)×

R∏
r=1

P
(
HR

r |CHR
r

)
P
(
T (HR

r )
)

(1)

whereH is the current head, T (N) is the fragment
of the dependency parse rooted in N , and CN is
the context in which N is generated. HL, HR are
respectively H’s left dependents and right depen-
dents, plus EOC (End-Of-Children), a special to-
ken to indicate that there are no more dependents
to generate. Thus, P (T (ROOT )) is the proba-
bility of generating the entire dependency struc-
ture T . We refer to 〈HL

l , CHL
l
〉, 〈HR

r , CHR
r
〉 as

“events”, and 〈CHL
l
〉, 〈CHR

r
〉 as “conditioning con-

texts”.
In order to avoid the problem of data sparsity,

the conditioning context in which a dependent D
is generated should capture only part of the frag-
ment generated so far. Based on the amount of
information that contexts hold, we can define the
order of a generative model (see Hayashi et al.
(2011, Table 3) for examples)

• first-order: C1
D contains the head H ,

• second-order: C2
D contains H and the just-

generated sibling S,
• third-order: C3

D contains H , S, the sibling S′

before S (tri-sibling); or H , S and the grand-
head G (the head of H) (grandsibling) (the
fragment enclosed in the blue doted contour
in Figure 2),
• ∞-order: C∞D contains all of D’s ancestors,

theirs siblings, and its generated siblings (the
fragment enclosed in the red dashed contour
in Figure 2).

In the original models (Eisner, 1996a), each de-
pendent D is a 4-tuple 〈dist, w, c, t〉
• dist(H,D) the distance between D and its

headH , represented as one of the four ranges
1, 2, 3-6, 7-∞.
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Figure 2: Example of different orders of context of “diversified”. The blue dotted shape corresponds
to the third-order outward context, while the red dashed shape corresponds to the∞-order left-to-right
context. The green dot-dashed shape corresponds to the context to compute the outer representation.

• word(D) the lowercase version of the word
of D,
• cap(D) the capitalisation feature of the word

of D (all letters are lowercase, all letters are
uppercase, the first letter is uppercase, the
first letter is lowercase),
• tag(D) the POS-tag of D,

Here, to make the dependency complete,
deprel(D), the dependency relation of D (e.g.,
SBJ, DEP), is also taken into account.

3 Third-order Model with Counting

The third-order model we suggest is similar to
the grandsibling model proposed by Sangati et
al. (2009) and Hayashi et al. (2011). It defines
the probability of generating a dependent D =
〈dist, d, w, c, t〉 as the product of the distance-
based probability and the probabilities of gener-
ating each of its components (d, t, w, c, denoting
dependency relation, POS-tag, word and capitali-
sation feature, respectively). Each of these prob-
abilities is smoothed using back-off according to
the given reduction lists (as explained below).

P (D|CD)

= P (dist(H, D), dwct(D)|H, S, G, dir)

= P (d(D)|H, S, G, dir)

reduction list:

tw(H), tw(S), tw(G), dir
tw(H), tw(S), t(G), dir{

tw(H), t(S), t(G), dir
t(H), tw(S), t(G), dir

t(H), t(S), t(G), dir

× P (t(D)|d(D), H, S, G, dir)

reduction list:
d(D), dtw(H), t(S), dir
d(D), d(H), t(S), dir
d(D), d(D), dir

× P (w(D)|dt(D), H, S, G, dir)

reduction list:
dtw(H), t(S), dir
dt(H), t(S), dir

× P (c(D)|dtw(D), H, S, G, dir)

reduction list:
tw(D), d(H), dir
tw(D), dir

× P (dist(H, D)|dtwc(D), H, S, G, dir) (2)

reduction list:
dtw(D), dt(H), t(S), dir
dt(D), dt(H), t(S), dir

The reason for generating the dependency rela-
tion first is based on the similarity between rela-
tion/dependent and role/filler: we generate a role
and then choose a filler for that role.

Back-off The back-off parameters are identi-
cal to Eisner (1996b). To estimate the proba-
bility P (A|context) given a reduction list L =
(l1, l2, ..., ln) of context, let

pi =

{
count(A,li)+0.005

count(li)+0.5 if i = n
count(A,li)+3pi+1

count(li)+3 otherwise

then P (A|context) = p1.

4 The Inside-Outside Recursive Neural
Network

In this section, we first describe the Recur-
sive Neural Network architecture of Socher et
al. (2010) and then propose an extension we
call the Inside-Outside Recursive Neural Network
(IORNN). The IORNN is a general architecture
for trees, which works with tree-based genera-
tive models including those employed by Eisner
(1996b) and Collins (2003). We then explain how
to apply the IORNN to the∞-order model. Note
that for the present paper we are only concerned
with the problem of computing the probability of
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Figure 3: Recursive Neural Network (RNN).

a tree; we assume an independently given parser is
available to assign a syntactic structure, or multi-
ple candidate structures, to an input string.

4.1 Recursive Neural Network

The architecture we propose can best be under-
stood as an extension of the Recursive Neural Net-
works (RNNs) proposed by Socher et al. (2010),
that we mentioned above. In order to see how
an RNN works, consider the following example.
Assume that there is a constituent with parse tree
(p2 (p1 x y) z) (Figure 3), and that x,y, z ∈ Rn

are the (inner) representations of the three words
x, y and z, respectively. We use a neural network
which consists of a weight matrix W1 ∈ Rn×n for
left children and a weight matrix W2 ∈ Rn×n for
right children to compute the vector for a parent
node in a bottom up manner. Thus, we compute
p1 as follows

p1 = f(W1x + W2y + b)

where b is a bias vector and f is an activation
function (e.g., tanh or logistic). Having computed
p1, we can then move one level up in the hierarchy
and compute p2:

p2 = f(W1p1 + W2z + b)

This process is continued until we reach the root
node. The RNN thus computes a single vector
for each node p in the tree, representing the con-
tent under that node. It has in common with log-
ical semantics that representations for compounds
(here xyz) are computed by recursively applying a
composition function to meaning representations
of the parts. It is difficult to characterise the ex-
pressivity of the resulting system in logical terms,
but recent work suggests it is surprisingly power-
ful (e.g., Kanerva (2009)).

Figure 4: Inside-Outside Recursive Neural Net-
work (IORNN). Black rectangles correspond to in-
ner representations, white rectangles correspond
to outer representations.

4.2 IORNN

We extend the RNN-architecture by adding a sec-
ond vector to each node, representing the context
of the node, shown as white rectangles in figure 4.
The job of this second vector, the outer represen-
tation, is to summarize all information about the
context of node p so that we can either predict its
content (i.e., predict an inner representation), or
pass on this information to the daughters of p (i.e.,
compute outer representations of these daughters).
Outer representations thus allow information to
flow top-down.

We explain the operation of the resulting Inside-
Outside Recursive Neural Network in terms of the
same example parse tree (p2 (p1 x y) z) (see Fig-
ure 4). Each node u in the syntactic tree carries
two vectors ou and iu, the outer representation and
inner representation of the constituent that is cov-
ered by the node.

Computing inner representations Inner repre-
sentations are computed from the bottom up. We
assume for every word w an inner representation
iw ∈ Rn. The inner representation of a non-
terminal node, say p1, is given by

ip1 = f(Wi
1ix + Wi

2iy + bi)

where Wi
1,W

i
2 are n × n real matrices, bi is a

bias vector, and f is an activation function, e.g.
tanh. (This is the same as the computation of
non-terminal vectors in the RNNs.) The inner rep-
resentation of a parent node is thus a function of
the inner representations of its children.

Computing outer representations Outer repre-
sentations are computed from the top down. For a
node which is not the root, say p1, the outer repre-
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sentation is given by

op1 = g(Wo
1op2 + Wo

2iz + bo)

where Wo
1,W

o
2 are n × n real matrices, bo is a

bias vector, and g is an activation function. The
outer representation of a node is thus a function of
the outer representation of its parent and the inner
representation of its sisters.

If there is information about the external context
of the utterance that is being processed, this infor-
mation determines the outer representation of the
root node oroot. In our first experiments reported
here, no such information was assumed to be avail-
able. In this case, a random value o∅ is chosen at
initialisation and assigned to the root nodes of all
utterances; this value is then adjusted by the learn-
ing process discussed below.

Training Training the IORNN is to minimise an
objective function J(θ) which depends on the pur-
pose of usage where θ is the set of parameters. To
do so, we compute the gradient ∂J/∂θ and ap-
ply the gradient descent method. The gradient is
effectively computed thanks to back-propagation
through structure (Goller and Küchler, 1996). Fol-
lowing Socher et al. (2013), we use AdaGrad
(Duchi et al., 2011) to update the parameters.

4.3 The∞-order Model with IORNN
The RNN and IORNN are defined for context-
free trees. To apply the IORNN architecture to
dependency parses we need to adapt the defini-
tions somewhat. In particular, in the generative
dependency model, every step in the generative
story involves the decision to generate a specific
word while the span of the subtree that this word
will dominate only becomes clear when all depen-
dents are generated. We therefore introduce par-
tial outer representation as a representation of the
current context of a word in the generative pro-
cess, and compute the final outer representation
only when all its siblings have been generated.

Consider an example of head h and its depen-
dents x, y (we ignore directions for simplicity) in
Figure 5. Assume that we are in the state in the
generative process where the generation of h is
complete, i.e. we know its inner and outer rep-
resentations ih and oh. Now, when generating h’s
first dependent x (see Figure 5-a), we first com-
pute x’s partial outer representation (representing
its context at this stage in the process), which is
a function of the outer representation of the head

(representing the head’s context) and the inner rep-
resentation of the head (representing the content of
the head word):

ō1 = f(Whiih + Whooh + bo)

where Whi,Who are n × n real matrices, bo is a
bias vector, f is an activation function.

With the context of the first dependent deter-
mined, we can proceed and generate its content.
For this purpose, we assume a separate weight ma-
trix W, trained (as explained below) to predict a
specific word given a (partial) outer representa-
tion. To compute a proper probability for word
x, we use the softmax function:

softmax(x, ō1) =
eu(x,ō1)∑

w∈V e
u(w,ō1)

where
[
u(w1, ō1), ..., u(w|V |, ō1)

]T = Wō1 + b
and V is the set of all possible dependents.

Note that since oh, the outer representation of
h, represents the entire dependency structure gen-
erated up to that point, ō1 is a vectorial represen-
tation of the ∞-order context generating the first
dependent (like the fragment enclosed in the red
dashed contour in Figure 2). The softmax func-
tion thus estimates the probability P (D = x|C∞D ).

The next step, now that x is generated, is to
compute the partial outer representation for the
second dependent (see Figure 5-b)

ō2 = f(Whiih + Whooh + Wdr(x)ix + bo)

where Wdr(x) is a n × n real matrix specific for
the dependency relation of x with h.

Next y is generated (using the softmax function
above), and the partial outer representation for the
third dependent (see Figure 5-c) is computed:

ō3 = f(Whiih + Whooh+
1
2
(
Wdr(x)ix + Wdr(y)iy

)
+ bo)

Since the third dependent is the End-of-
Children symbol (EOC), the process of generat-
ing dependents for h stops. We can then return
to x and y to replace the partial outer represen-
tations with complete outer representations1 (see

1According to the IORNN architecture, to compute the
outer representation of a node, the inner representations of
the whole fragments rooting at its sisters must be taken into
account. Here, we replace the inner representation of a frag-
ment by the inner representation of its root since the meaning
of a phrase is often dominated by the meaning of its head.

733



Figure 5: Example of applying IORNN to dependency parsing. Black, grey, white boxes are respectively
inner, partial outer, and outer representations. For simplicity, only links related to the current computation
are drawn (see text).

Figure 5-d,e):

ox = f(Whiih + Whooh + Wdr(y)iy + bo)

oy = f(Whiih + Whooh + Wdr(x)ix + bo)

In general, if u is the first dependent of h then

ōu = f(Whiih + Whooh + bo)

otherwise

ōu = f(Whiih + Whooh + bo+
1

|S̄(u)|
∑

v∈S̄(u)

Wdr(v)iv)

where S̄(u) is the set of u’s sisters generated be-
fore it. And, if u is the only dependent of h (ig-
noring EOC) then

ou = f(Whiih + Whooh + bo)

otherwise

ou = f(Whiih + Whooh + bo+
1

|S(u)|
∑

v∈S(u)

Wdr(v)iv)

where S(u) is the set of u’s sisters.
We then continue this process to generate de-

pendents for x and y until the process stops.

Inner Representations In the calculation of the
probability of generating a word, described above,
we assumed inner representations of all possible
words to be given. These are, in fact, themselves a
function of vector representations for the words (in
our case, the word vectors are initially borrowed
from Collobert et al. (2011)), the POS-tags and
capitalisation features. That is, the inner represen-
tation at a node h is given by:

ih = f (Wwwh + Wpph + Wcch)

where Ww ∈ Rn×dw , Wp ∈ Rn×dp , Wc ∈
Rn×dc , wh is the word vector of h, and ph, ch are
respectively binary vectors representing the POS-
tag and capitalisation feature of h.

Training Training this IORNN is to minimise
the following objective function which is the reg-
ularised cross-entropy

J(θ) =− 1
m

∑
T∈D

∑
w∈T

log(P (w|ōw))

+
1
2
(
λW ‖θW ‖2 + λL‖θL‖2

)
where D is the set of training dependency parses,
m is the number of dependents; θW , θL are
the weight matrix set and the word embeddings
(θ = (θW , θL)); λW , λL are regularisation hyper-
parameters.

Implementation We decompose a dependent D
into four features: dependency relation, POS-tag,
lowercase version of word, capitalisation feature
of word. We then factorise P (D|C∞D ) similarly to
Section 3, where each component is estimated by
a softmax function.

5 Experiments

In our experiments, we convert the Penn Treebank
to dependencies using the Universal dependency
annotation (McDonald et al., 2013)2; this yields
a dependency tree corpus we label PTB-U. In or-
der to compare with other systems, we also ex-
periment with an alternative conversion using the
head rules of Yamada and Matsumoto (2003)3;
this yields a dependency tree corpus we label PTB-
YM. Sections 2-21 are used for training, section
22 for development, and section 23 for testing. For
the PTB-U, the gold POS-tags are used. For the
PTB-YM, the development and test sets are tagged
by the Stanford POS-tagger4 trained on the whole

2https://code.google.com/p/uni-dep-tb/
3http://stp.lingfil.uu.se/˜nivre/

research/Penn2Malt.html
4http://nlp.stanford.edu/software/

tagger.shtml
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Perplexity
3rd-order model 1736.73
∞-order model 236.58

Table 1: Perplexities of the two models on PTB-
U-22.

training data, whereas 10-way jackknifing is used
to generate tags for the training set.

The vocabulary for both models, the third-order
model and the ∞-order model, is taken as a list
of words occurring more than two times in the
training data. All other words are labelled ‘UN-
KNOWN’ and every digit is replaced by ‘0’. For
the IORNN used by the ∞-order model, we set
n = 200, and define f as the tanh activation func-
tion. We initialise it with the 50-dim word embed-
dings from Collobert et al. (2011) and train it with
the learning rate 0.1, λW = 10−4, λL = 10−10.

5.1 Perplexity

We firstly evaluate the two models on PTB-U-22
using the perplexity-per-word metric

ppl(P ) = 2−
1
N

∑
T∈D log2 P (T )

where D is a set of dependency parses, N is the
total number of words. It is worth noting that,
the better P estimates the true distribution P ∗ of
D, the lower its perplexity is. Because Eisner’s
model with the dist(H,D) feature (Equation 2)
is leaky (the model allocates some probability to
events that can never legally arise), this feature is
discarded (only in this experiment).

Table 1 shows results. The perplexity of the
third-order model is more than seven times higher
than the∞-order model. This reflects the fact that
data sparsity is more problematic for counting than
for the IORNN.

To investigate why the perplexity of the third-
order model is so high, we compute the percent-
ages of events extracted from the development
set appearing more than twice in the training set.
Events are grouped according to the reduction lists
in Equation 2 (see Table 2). We can see that re-
ductions at level 0 (the finest) for dependency re-
lations and words seriously suffer from data spar-
sity: more than half of the events occur less than
three times, or not at all, in the training data. We
thus conclude that counting-based models heavily
rely on carefully designed reduction lists for back-
off.

back-off level d t w c
0 47.4 61.6 43.7 87.7
1 69.8 98.4 77.8 97.3
2 76.0, 89.5 99.7
3 97.9

total 76.1 86.6 60.7 92.5

Table 2: Percentages of events extracted from
PTB-U-22 appearing more than twice in the train-
ing set. Events are grouped according to the reduc-
tion lists in Equation 2. d, t, w, c stand for depen-
dency relation, POS-tag, word, and capitalisation
feature.

5.2 Reranking
In the second experiment, we evaluate the two
models in the reranking framework proposed by
Sangati et al. (2009) on PTB-U. We used the MST-
Parser (with the 2nd-order feature mode) (McDon-
ald et al., 2005) to generate k-best lists. Two
evaluation metrics are labelled attachment score
(LAS) and unlabelled attachment score (UAS), in-
cluding punctuation.

Rerankers Given D(S), a k-best list of parses
of a sentence S, we define the generative reranker

T ∗ = arg max
T∈D(S)

P (T (ROOT ))

which is identical to Sangati et al. (2009).
Moreover, as in many mixture-model-based ap-
proaches, we define the mixture reranker as a com-
bination of the generative model and the MST dis-
criminative model (Hayashi et al., 2011)

T ∗ = arg max
T∈D(S)

α logP (T (ROOT ))+(1−α)s(S, T )

where s(S, T ) is the score given by the MST-
Parser, and α ∈ [0, 1].

Results Figure 6 shows UASs of the generative
reranker on the development set. The MSTParser
achieves 92.32% and the Oracle achieve 96.23%
when k = 10. With the third-order model, the
generative reranker performs better than the MST-
Parser when k < 6 and the maximum improve-
ment is 0.17%. Meanwhile, with the ∞-order
model, the generative reranker always gains higher
UASs than the MSTParser, and with k = 6, the
difference reaches 0.7%. Figure 7 shows UASs of
the mixture reranker on the same set. α is opti-
mised by searching with the step-size 0.005. Un-
surprisingly, we observe improvements over the
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Figure 6: Performance of the generative reranker
on PTB-U-22.

Figure 7: Performance of the mixture reranker on
PTB-U-22. For each k, α was optimized with the
step-size 0.005.

LAS UAS
MSTParser 89.97 91.99
Oracle (k = 10) 93.73 96.24
Generative reranker with
3rd-order (k = 3) 90.27 (+0.30) 92.27 (+0.28)
∞-order (k = 6) 90.76 (+0.79) 92.83 (+0.84)
Mixture reranker with
3rd-order (k = 6) 90.62 (+0.65) 92.62 (+0.63)
∞-order (k = 9) 91.02 (+1.05) 93.08 (+1.09)

Table 3: Comparison based on reranking on PTB-
U-23. The numbers in the brackets are improve-
ments over the MSTParser.

generative reranker as the mixture reranker can
combine the advantages of the two models.

Table 3 shows scores of the two rerankers on the
test set with the parameters tuned on the develop-
ment set. Both the rerankers, either using third-
order or ∞-order models, outperform the MST-
Parser. The fact that both gain higher improve-
ments with the ∞-order model suggests that the
IORNN surpasses counting.

Figure 9: F1-scores of binned HEAD distance
(PTB-U-23).

5.3 Comparison with other systems

We first compare the mixture reranker using the
∞-order model against the state-of-the-art depen-
dency parser TurboParser (with the full mode)
(Martins et al., 2013) on PTB-U-23. Table 4 shows
LASs and UASs. When taking labels into account,
the TurboParser outperforms the reranker. But
without counting labels, the two systems perform
comparably, and when ignoring punctuation the
reranker even outperforms the TurboParser. This
pattern is also observed when the exact match met-
rics are used (see Table 4). This is due to the fact
that the TurboParser performs significantly better
than the MSTParser, which generates k-best lists
for the reranker, in labelling: the former achieves
96.03% label accuracy score whereas the latter
achieves 94.92%.

One remarkable point is that reranking with
the ∞-order model helps to improve the exact
match scores 4% - 6.4% (see Table 4). Because
the exact match scores correlate with the ability
to handle global structures, we conclude that the
IORNN is able to capture∞-order contexts. Fig-
ure 8 shows distributions of correct-head accuracy
over CPOS-tags and Figure 9 shows F1-scores of
binned HEAD distance. Reranking with the ∞-
order model is clearly helpful for all CPOS-tags
and dependent-to-head distances, except a minor
decrease on PRT.

We compare the reranker against other systems
on PTB-YM-23 using the UAS metric ignoring
punctuation (as the standard evaluation for En-
glish) (see Table 5). Our system performs slightly
better than many state-of-the-art systems such as
Martins et al. (2013) (a.k.a. TurboParser), Zhang
and McDonald (2012), Koo and Collins (2010).
It outperforms Hayashi et al. (2011) which is a
reranker using a combination of third-order gen-
erative models with a variational model learnt

736



LAS (w/o punc) UAS (w/o punc) LEM (w/o punc) UEM (w/o punc)
MSTParser 89.97 (90.54) 91.99 (92.82) 32.37 (34.19) 42.80 (45.24)
w. ∞-order (k = 9) 91.02 (91.51) 93.08 (93.84) 37.58 (39.16) 49.17 (51.53)
TurboParser 91.56 (92.02) 93.05 (93.70) 40.65 (41.72) 48.05 (49.83)

Table 4: Comparison with the TurboParser on PTB-U-23. LEM and UEM are respectively the labelled
exact match score and unlabelled exact match score metrics. The numbers in brackets are scores com-
puted excluding punctuation.

Figure 8: Distributions of correct-head accuracy over CPOS-tags (PTB-U-23).

System UAS
Huang and Sagae (2010) 92.1
Koo and Collins (2010) 93.04
Zhang and McDonald (2012) 93.06
Martins et al. (2013) 93.07
Bohnet and Kuhn (2012) 93.39
Reranking
Hayashi et al. (2011) 92.89
Hayashi et al. (2013) 93.12
MST+∞-order (k = 12) 93.12

Table 5: Comparison with other systems on PTB-
YM-23 (excluding punctuation).

on the fly; performs equally with Hayashi et al.
(2013) which is a discriminative reranker using the
stacked technique; and slightly worse than Bohnet
and Kuhn (2012), who develop a hybrid transition-
based and graphical-based approach.

6 Related Work

Using neural networks to process trees was first
proposed by Pollack (1990) in the Recursive Au-
toassociative Memory model which was used for
unsupervised learning. Socher et al. (2010) later
introduced the Recursive Neural Network archi-
tecture for supervised learning tasks such as syn-
tactic parsing and sentiment analysis (Socher et
al., 2013). Our IORNN is an extension of
the RNN: the former can process trees not only

bottom-up like the latter but also top-down.
Elman (1990) invented the simple recurrent

neural network (SRNN) architecture which is ca-
pable of capturing very long histories. Mikolov
et al. (2010) then applied it to language mod-
elling and gained state-of-the-art results, outper-
forming the the standard n-gram techniques such
as Kneser-Ney smoothed 5-gram. Our IORNN
architecture for dependency parsing bears a re-
semblance to the SRNN in the sense that it can
also capture long ‘histories’ in context represen-
tations (i.e., outer representations in our terminol-
ogy). Moreover, the IORNN can be seen as a gen-
eralization of the SRNN since a left-branching tree
is equivalent to a chain and vice versa.

The idea of letting parsing decisions depend
on arbitrarily long derivation histories is also ex-
plored in Borensztajn and Zuidema (2011) and
is related to parsing frameworks that allow arbi-
trarily large elementary trees (e.g., Scha (1990),
O’Donnell et al. (2009), Sangati and Zuidema
(2011), and van Cranenburgh and Bod (2013)).

Titov and Henderson (2007) were the first
proposing to use deep networks for dependency
parsing. They introduced a transition-based gen-
erative dependency model using incremental sig-
moid belief networks and applied beam pruning
for searching best trees. Differing from them,
our work uses the IORNN architecture to rescore
k-best candidates generated by an independent
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graph-based parser, namely the MSTParser.
Reranking k-best lists was introduced by

Collins and Koo (2005) and Charniak and Johnson
(2005). Their rerankers are discriminative and for
constituent parsing. Sangati et al. (2009) proposed
to use a third-order generative model for reranking
k-best lists of dependency parses. Hayashi et al.
(2011) then followed this idea but combined gen-
erative models with a variational model learnt on
the fly to rerank forests. In this paper, we also
followed Sangati et al. (2009)’s idea but used an
∞-order generative model, which has never been
used before.

7 Conclusion

In this paper, we proposed a new neural network
architecture, the Inside-Outside Recursive Neural
Network, that can process trees both bottom-up
and top-down. The key idea is to extend the RNN
such that every node in the tree has two vectors
associated with it: an inner representation for its
content, and an outer representation for its context.
Inner and outer representations of any constituent
can be computed simultaneously and interact with
each other. This way, information can flow top-
down, bottom-up, inward and outward. Thanks to
this property, by applying the IORNN to depen-
dency parses, we have shown that using an ∞-
order generative model for dependency parsing,
which has never been done before, is practical.

Our experimental results on the English section
of the Universal Dependency Treebanks show that
the ∞-order generative model approximates the
true dependency distribution better than the tradi-
tional third-order model using counting, and tends
to choose more accurate parses in k-best lists.
In addition, reranking with this model even out-
performs the state-of-the-art TurboParser on unla-
belled score metrics.

Our source code is available at: github.
com/lephong/iornn-depparse.
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