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Abstract

In this paper, we focus on the problem
of using sentence compression techniques
to improve multi-document summariza-
tion. We propose an innovative sentence
compression method by considering every
node in the constituent parse tree and de-
ciding its status – remove or retain. In-
teger liner programming with discrimina-
tive training is used to solve the problem.
Under this model, we incorporate various
constraints to improve the linguistic qual-
ity of the compressed sentences. Then we
utilize a pipeline summarization frame-
work where sentences are first compressed
by our proposed compression model to ob-
tain top-n candidates and then a sentence
selection module is used to generate the
final summary. Compared with state-of-
the-art algorithms, our model has simi-
lar ROUGE-2 scores but better linguistic
quality on TAC data.

1 Introduction

Automatic summarization can be broadly divided
into two categories: extractive and abstractive
summarization. Extractive summarization focuses
on selecting salient sentences from the document
collection and concatenating them to form a sum-
mary; while abstractive summarization is gener-
ally considered more difficult, involving sophisti-
cated techniques for meaning representation, con-
tent planning, surface realization, etc.

There has been a surge of interest in recent years
on generating compressed document summaries as

a viable step towards abstractive summarization.
These compressive summaries often contain more
information than sentence-based extractive sum-
maries since they can remove insignificant sen-
tence constituents and make space for more salient
information that is otherwise dropped due to the
summary length constraint. Two general strate-
gies have been used for compressive summariza-
tion. One is a pipeline approach, where sentence-
based extractive summarization is followed or pro-
ceeded by sentence compression (Lin, 2003; Zajic
et al., 2007; Vanderwende et al., 2007; Wang et al.,
2013). Another line of work uses joint compres-
sion and summarization. Such methods have been
shown to achieve promising performance (Daumé,
2006; Chali and Hasan, 2012; Almeida and Mar-
tins, 2013; Qian and Liu, 2013), but they are typi-
cally computationally expensive.

In this study, we propose an innovative sen-
tence compression model based on expanded con-
stituent parse trees. Our model uses integer lin-
ear programming (ILP) to search the entire space
of compression, and is discriminatively trained.
It is built based on the discriminative sentence
compression model from (McDonald, 2006) and
(Clarke and Lapata, 2008), but our method uses
an expanded constituent parse tree rather than only
the leaf nodes in previous work. Therefore we
can extract rich features for every node in the con-
stituent parser tree. This is an advantage of tree-
based compression technique (Knight and Marcu,
2000; Galley and McKeown, 2007; Wang et al.,
2013). Similar to (Li et al., 2013a), we use a
pipeline summarization framework where multi-
ple compression candidates are generated for each
pre-selected important sentence, and then an ILP-
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based summarization model is used to select the
final compressed sentences. We evaluate our pro-
posed method on the TAC 2008 and 2011 data
sets using the standard ROUGE metric (Lin, 2004)
and human evaluation of the linguistic quality.
Our results show that using our proposed sentence
compression model in the summarization system
can yield significant performance gain in linguis-
tic quality, without losing much performance on
the ROUGE metric.

2 Related Work

Summarization research has seen great develop-
ment over the last fifty years (Nenkova and McKe-
own, 2011). Compared to the abstractive counter-
part, extractive summarization has received con-
siderable attention due to its clear problem for-
mulation: to extract a set of salient and non-
redundant sentences from the given document
set. Both unsupervised and supervised approaches
have been explored for sentence selection. Su-
pervised approaches include the Bayesian classi-
fier (Kupiec et al., 1995), maximum entropy (Os-
borne, 2002), skip-chain CRF (Galley, 2006), dis-
criminative reranking (Aker et al., 2010), among
others. The extractive summary sentence selec-
tion problem can also be formulated in an opti-
mization framework. Previous methods include
using integer linear programming (ILP) and sub-
modular functions to solve the optimization prob-
lem (Gillick et al., 2009; Li et al., 2013b; Lin and
Bilmes, 2010).

Compressive summarization receives increas-
ing attention in recent years, since it offers a vi-
able step towards abstractive summarization. The
compressed summaries can be generated through a
joint model of the sentence selection and compres-
sion processes, or through a pipeline approach that
integrates a sentence compression model with a
summary sentence pre-selection or post-selection
step.

Many studies have explored the joint sentence
compression and selection setting. Martins and
Smith (2009) jointly performed sentence extrac-
tion and compression by solving an ILP prob-
lem. Berg-Kirkpatrick et al. (2011) proposed an
approach to score the candidate summaries ac-
cording to a combined linear model of extrac-
tive sentence selection and compression. They
trained the model using a margin-based objec-
tive whose loss captures the final summary qual-

ity. Woodsend and Lapata (2012) presented an-
other method where the summary’s informative-
ness, succinctness, and grammaticality are learned
separately from data but optimized jointly using an
ILP setup. Yoshikawa et al. (2012) incorporated
semantic role information in the ILP model.

Our work is closely related with the pipeline
approach, where sentence-based extractive sum-
marization is followed or proceeded by sentence
compression. There have been many studies on
sentence compression, independent of the summa-
rization task. McDonald (2006) firstly introduced
a discriminative sentence compression model to
directly optimize the quality of the compressed
sentences produced. Clarke and Lapata (2008)
improved the above discriminative model by us-
ing ILP in decoding, making it convenient to
add constraints to preserve grammatical structure.
Nomoto (2007) treated the compression task as
a sequence labeling problem and used CRF for
it. Thadani and McKeown (2013) presented an
approach for discriminative sentence compression
that jointly produces sequential and syntactic rep-
resentations for output text. Filippova and Altun
(2013) presented a method to automatically build
a sentence compression corpus with hundreds of
thousands of instances on which deletion-based
compression algorithms can be trained.

In addition to the work on sentence compres-
sion as a stand-alone task, prior studies have also
investigated compression for the summarization
task. Knight and Marcu (2000) utilized the noisy
channel and decision tree method to perform sen-
tence compression in the summarization task. Lin
(2003) showed that pure syntactic-based compres-
sion may not significantly improve the summariza-
tion performance. Zajic et al. (2007) compared
two sentence compression approaches for multi-
document summarization, including a ‘parse-and-
trim’ and a noisy-channel approach. Galanis and
Androutsopoulos (2010) used the maximum en-
tropy model to generate the candidate compres-
sions by removing branches from the source sen-
tences. Woodsend and Lapata (2010) presented a
joint content selection and compression model for
single-document summarization. They operated
over a phrase-based representation of the source
document which they obtained by merging infor-
mation from PCFG parse trees and dependency
graphs. Liu and Liu (2013) adopted the CRF-
based sentence compression approach for summa-
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rizing spoken documents. Unlike the word-based
operation, some of these models e.g (Knight and
Marcu, 2000; Siddharthan et al., 2004; Turner
and Charniak, 2005; Galanis and Androutsopou-
los, 2010; Wang et al., 2013), are tree-based ap-
proaches that operate on the parse trees and thus
the compression decision can be made for a con-
stituent, instead of a single word.

3 Sentence Compression Method

Sentence compression is a task of producing a
summary for a single sentence. The compressed
sentence should be shorter, contain important con-
tent from the original sentence, and be grammat-
ical. In some sense, sentence compression can
be described as a ‘scaled down version of the
text summarization problem’ (Knight and Marcu,
2002). Here similar to much previous work on
sentence compression, we just focus on how to re-
move/select words in the original sentence without
using operation like rewriting sentence.

3.1 Discriminative Compression Model by
ILP

McDonald (2006) presented a discriminative com-
pression model, and Clarke and Lapata (2008) im-
proved it by using ILP for decoding. Since our
proposed method is based upon this model, in
the following we briefly describe it first. Details
can be found in (Clarke and Lapata, 2008). In
this model, the following score function is used
to evaluate each compression candidate:

s(x, y) =
|y|∑

j=2

s(x, L(yj−1), L(yj)) (1)

wherex = x1x2, ..., xn represents an original sen-
tence andy = y1y2, ..., ym denotes a compressed
sentence. Because the sentence compression prob-
lem is defined as a word deletion task,yj must oc-
cur inx. FunctionL(yi) ∈ [1...n] maps wordyi in
the compression to the word index in the original
sentencex. Note thatL(yi) < L(yi+1) is required,
that is, each word inx can only occur at most
once in compressiony. In this model, a first or-
der Markov assumption is used for the score func-
tion. Decoding this model is to find the combina-
tion of bigrams that maximizes the score function
in Eq (1). Clarke and Lapata (2008) introduced the
following variables and used ILP to solve it:

δi =

{
1 if xi is in the compression

0 otherwise

∀i ∈ [1..n]

αi =

{
1 if xi starts the compression

0 otherwise

∀i ∈ [1..n]

βi =

{
1 if xi ends the compression

0 otherwise

∀i ∈ [1..n]

γij =

{
1 if xi, xj are in the compression

0 otherwise

∀i ∈ [1..n − 1]∀j ∈ [i + 1..n]

Using these variables, the objective function can
be defined as:

max z =
n∑

i=1

αi · s(x, 0, i)

+
n−1∑
i=1

n∑
j=i+1

γij · s(x, i, j)

+
n∑

i=1

βi · s(x, i, n + 1) (2)

The following four basic constraints are used to
make the compressed result reasonable:

n∑
i=1

αi = 1 (3)

δj − αj −
j∑

i=1

γij = 0 ∀j ∈ [1..n] (4)

δi −
n∑

j=i+1

γij − βi = 0 ∀i ∈ [1..n] (5)

n∑
i=1

βi = 1 (6)

Formula (3) and (6) denote that exactly one
word can begin or end a sentence. Formula (4)
means if a word is in the compressed sentence, it
must either start the compression or follow another
word; formula (5) represents if a word is in the
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compressed sentence, it must either end the sen-
tence or be followed by another word.

Furthermore, discriminative models are used for
the score function:

s(x, y) =
|y|∑

j=2

w · f(x, L(yj−1), L(yj)) (7)

High dimensional features are used and their cor-
responding weights are trained discriminatively.

Above is the basic supervised ILP formula-
tion for sentence compression. Linguistically and
semantically motivated constraints can be added
in the ILP model to ensure the correct grammar
structure in the compressed sentence. For exam-
ple, Clarke and Lapata (2008) forced the introduc-
ing term of prepositional phrases and subordinate
clauses to be included in the compression if any
word from within that syntactic constituent is also
included, and vice versa.

3.2 Compression Model based on Expanded
Constituent Parse Tree

In the above ILP model, variables are defined for
each word in the sentence, and the task is to pre-
dict each word’s status. In this paper, we propose
to adopt the above ILP framework, but operate di-
rectly on the nodes in the constituent parse tree,
rather than just the words (leaf nodes in the tree).
This way we can remove or retain a chunk of the
sentence rather than isolated words, which we ex-
pect can improve the readability and grammar cor-
rectness of the compressed sentences.

The top part of Fig1 is a standard constituent
parse tree. For some levels of the tree, the nodes
at that same level can not represent a sentence. We
extend the parse tree by duplicating non-POS con-
stituents so that leaf nodes (words and their corre-
sponding POS tags) are aligned at the bottom level
as shown in bottom of as Fig1. In the example tree,
the solid lines represent relationship of nodes from
the original parse tree, the long dot lines denote the
extension of the duplication nodes from the up-
per level to the lower level, and the nodes at the
same level are connected (arrowed lines) to repre-
sent that is a sequence. Based on this expanded
constituent parse tree, we can consider every level
as a ‘sentence’ and the tokens are POS tags and
parse tree labels. We apply the above compression
model in Section 3.1 on every level to decide every
node’s status in the final compressed sentence. In
order to make the compressed parsed tree reason-
able, we model the relationship of nodes between
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Figure 1: A regular constituent parse tree and its
Expanded constituent tree.

adjacent levels as following: if the parent node is
labeled as removed, all of its children will be re-
moved; one node will retain if at least one of its
children is kept.

Therefore, the objective function in the new ILP
formulation is:

max z =
height∑
l=1

(
nl∑

i=1

αl
i · s(x, 0, li)

+
nl−1∑
i=1

nl∑
j=i+1

γl
ij · s(x, li, lj)

+
nl∑

i=1

βl
i · s(x, li, nl + 1) ) (8)

where height is the depth for a parse tree (starting
from level 1 for the tree), andnl means the length
of level l (for example,n5 = 6 in the example
in Fig1). Then every level will have a set of pa-
rametersδl

i, α
l
i, β

l
i , andγl

ij, and the corresponding
constraints as shown in Formula (3) to (6). The re-
lationship between nodes from adjacent levels can
be expressed as:

δl
i ≥ δ

(l+1)
j (9)

δl
i ≤

∑
δ
(l+1)
j (10)

in which nodej at level(l+1) is the child of node
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i at level l. In addition, 1 ≤ l ≤ height − 1,
1 ≤ i ≤ nl and1 ≤ j ≤ nl+1.

3.3 Linguistically Motivated Constraints

In our proposed model, we can jointly decide the
status of every node in the constituent parse tree
at the same time. One advantage is that we can
add constraints based on internal nodes or rela-
tionship in the parse tree, rather than only using
the relationship based on words. In addition to
the constraints proposed in (Clarke and Lapata,
2008), we introduce more linguistically motivated
constraints to keep the compressed sentence more
grammatically correct. The following describes
the constraints we used based on the constituent
parse tree.

• If a node’s label is ‘SBAR’, its parent’s label
is ‘NP’ and its first child’s label is ‘WHNP’ or
‘WHPP’ or ‘IN’, then if we can find a noun
in the left siblings of ‘SBAR’, this subordi-
nate clause could be an attributive clause or
appositive clause. Therefore the found noun
node should be included in the compression
if the ‘SBAR’ is also included, because the
node ‘SBAR’ decorates the noun. For exam-
ple, the top part of Fig 2 is part of expanded
constituent parse tree of sentence ‘Those who
knew David were all dead.’ The nodes in el-
lipse should share the same status.

• If a node’s label is ‘SBAR’, its parent’s label
is ‘VP’ and its first child’s label is ‘WHNP’,
then if we can find a verb in the left siblings
of ‘SBAR’, this subordinate clause could be
an objective clause. Therefore, the found
verb node should be included in the compres-
sion if the ‘SBAR’ node is also included, be-
cause the node ‘SBAR’ is the object of that
verb. An example is shown in the bottom part
of Fig 2. The nodes in ellipse should share the
same status.

• If a node’s label is ‘SBAR’, its parent’s
label is ‘VP’ and its first child’s label is
‘WHADVP’, then if the first leaf for this node
is a wh-word (e.g., ‘where, when, why’) or
‘how’, this clause may be an objective clause
(when the word is ‘why, how, where’) or at-
tributive clause (when the word is ‘where’) or
adverbial clause (when the word is ‘when’).
Therefore, similar to above, if a verb or noun
is found in the left siblings of ‘SBAR’, the

VBD/ 

knew 

NNP/ 

David 

NP 

DT 

DT 

DT 

VP 

WP 

WP/ 

who 

DT/ 

Those 

VBD 

S 

NP 

PRP/ 

he 
PRP/ 

    I 

VBP/ 

believe  

PRP VBP 

 WP/ 

what 

WHNP S PRP 

 

VBP 

VBD/ 

said 

SBAR 

VP NP 

NP VP WP PRP 

 

VBP 

NP 

SBAR 

WHNP 

WHNP 

 

S 

Figure 2: Expanded constituent parse tree for ex-
amples.

found verb or noun node should be included
in the compression if the ‘SBAR’ node is also
included.

• If a node’s label is ‘SBAR’ and its parent’s la-
bel is ‘ADJP’, then if we can find a ‘JJ’, ‘JJR’,
or ‘JJS’ in the left siblings of ‘SBAR’, the
‘SBAR’ node should be included in the com-
pression if the found ‘JJ’, ‘JJR’ or ’JJS’ node
is also included because the node ‘SBAR’ is
decorated by the adjective.

• The node with a label of ‘PRN’ can be re-
moved without other constraints.

We also include some other constraints based on
the Stanford dependency parse tree. Table 1 lists
the dependency relations we considered.

• For type I relations, the parent and child node
with those relationships should have the same
value in the compressed result (both are kept
or removed).

• For type II relations, if the child node in
those relations is retained in the compressed
sentence, the parent node should be also re-
tained.
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Dependency Relation Example

prt: phrase verb particle They shut down the station. prt(shut,down)
prep: prepositional modifier He lives in a small village. prep(lives,in)

I pobj: object of a preposition I sat on the chair. pobj(on,chair)
nsubj: nominal subject The boy is cute. nsubj(cute,boy)
cop: copula Bill is big. cop(big,is)

partmod: participial modifier Truffles picked during the spring are tasty. partmod(truffles,picked)
II nn: noun compound modifier Oil price futures. nn(futures,oil)

acomp: adjectival complement She looks very beautiful. acomp(looks,beautiful)

pcomp: prepositional complement He felt sad after learning that tragedy. pcomp(after,learning)
III ccomp: clausal complement I am certain that he did it. ccomp(certain,did)

tmod: temporal modifier Last night I swam in the pool. tmod(swam,night)

Table 1: Some dependency relations used for extra constraints. All the examples are from (Marneffe and
Manning, 2002)

• For type III relations, if the parent node in
these relations is retained, the child node
should be kept as well.

3.4 Features

So far we have defined the decoding process
and related constraints used in decoding. These
all rely on the score functions(x, y) = w ·
f(x, L(yj−1), L(yj)) for every level in the con-
stituent parse tree. We included all the features in-
troduced in (Clarke and Lapata, 2008) (those fea-
tures are designed for leaves). Table 2 lists the
additional features we used in our system.

General Features for Every Node
1. individual node label and concatenation of a pair of
nodes
2. distance of two nodes at the same level
3. is the node at beginning or end at that level?
4. do the two nodes have the same parent?
5. if two nodes do not have the same parent, then is the left
node the rightmost child of its parent? is the right node the
leftmost child of its parent?
6. combination of parent label if the node pair are not
under the same parent
7. number of node’s children: 1/0/>1
8. depth of nodes in the parse tree
Extra Features for Leaf nodes
1. word itself and concatenation of two words
2. POS and concatenation of two words’ POS
3. whether the word is a stopword
4. node’s named entity tag
5. dependency relationship between two leaves

Table 2: Features used in our system besides those
used in (Clarke and Lapata, 2008).

3.5 Learning

To learn the feature weights during training, we
perform ILP decoding on every sentence in the
training set, to find the best hypothesis for each
node in the expanded constituent parse tree. If
the hypothesis is incorrect, we update the feature

weights using the structured perceptron learning
strategy (Collins, 2002). The reference label for
every node in the expanded constituent parse tree
is obtained automatically from the bottom to the
top of the tree. Since every leaf node (word) is
human annotated (removed or retain), we annotate
the internal nodes as removed if all of its children
are removed. Otherwise, the node is annotated as
retained.

During perceptron training, a fixed learning rate
is used and parameters are averaged to prevent
overfitting. In our experiment, we observe sta-
ble convergence using the held-out development
corpus, with best performance usually obtained
around 10-20 epochs.

4 Summarization System

Similar to (Li et al., 2013a), our summarization
system is , which consists of three key compo-
nents: an initial sentence pre-selection module
to select some important sentence candidates; the
above compression model to generate n-best com-
pressions for each sentence; and then an ILP sum-
marization method to select the best summary sen-
tences from the multiple compressed sentences.

The sentence pre-selection model is a simple su-
pervised support vector regression (SVR) model
that predicts a salience score for each sentence and
selects the top ranked sentences for further pro-
cessing (compression and summarization). The
target value for each sentence during training is
the ROUGE-2 score between the sentence and the
human written abstracts. We use three common
features: (1) sentence position in the document;
(2) sentence length; and (3) interpolated n-gram
document frequency as introduced in (Ng et al.,
2012).

The final sentence selection process follows the
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ILP method introduced in (Gillick et al., 2009).
Word bi-grams are used as concepts, and their doc-
ument frequency is used as weights. Since we use
multiple compressions for one sentence, an addi-
tional constraint is used: for each sentence, only
one of its n-best compressions may be included in
the summary.

For the compression module, using the ILP
method described above only finds the best com-
pression result for a given sentence. To generate
n-best compression candidates, we use an iterative
approach – we add one more constraints to prevent
it from generating the same answer every time af-
ter getting one solution.

5 Experimental Results

5.1 Experimental Setup

Summarization Data For summarization experi-
ments, we use the standard TAC data sets1, which
have been used in the NIST competitions. In par-
ticular, we used the TAC 2010 data set as train-
ing data for the SVR sentence pre-selection model,
TAC 2009 data set as development set for parame-
ter tuning, and the TAC 2008 and 2011 data as the
test set for reporting the final summarization re-
sults. The training data for the sentence compres-
sion module in the summarization system is sum-
mary guided compression corpus annotated by (Li
et al., 2013a) using TAC2010 data. In the com-
pression module, for each word we also used its
document level feature.2

Compression Data We also evaluate our com-
pression model using the data set from (Clarke
and Lapata, 2008). It includes 82 newswire arti-
cles with manually produced compression for each
sentence. We use the same partitions as (Martins
and Smith, 2009), i.e., 1,188 sentences for training
and 441 for testing.

Data Processing We use Stanford CoreNLP
toolkit3 to tokenize the sentences, extract name en-
tity tags, and generate the dependency parse tree.
Berkeley Parser (Petrov et al., 2006) is adopted
to obtain the constituent parse tree for every sen-
tence and POS tag for every token. We use Pocket

1http://www.nist.gov/tac/data/index.html
2Document level features for a word include information

such as the word’s document frequency in a topic. These
features cannot be extracted from a single sentence, as in the
standard sentence compression task, and are related to the
document summarization task.

3http://nlp.stanford.edu/software/corenlp.shtml

CRF4 to implement the CRF sentence compres-
sion model. SVMlight5 is used for the summary
sentence pre-selection model. Gurobi ILP solver6

does all ILP decoding.

5.2 Summarization Results

We compare our summarization system against
four recent studies, which have reported some of
the highest published results on this task. Berg-
Kirkpatrick et al. (2011) introduced a joint model
for sentence extraction and compression. Wood-
send and Lapata (2012) learned individual sum-
mary aspects from data, e.g., informativeness, suc-
cinctness, grammaticalness, stylistic writing con-
ventions, and jointly optimized the outcome in
an ILP framework. Ng et al. (2012) exploited
category-specific information for multi-document
summarization. Almeida and Martins (2013) pro-
posed compressive summarization method by dual
decomposition and multi-task learning. Our sum-
marization framework is the same as (Li et al.,
2013a), except they used a CRF-based compres-
sion model. In addition to the four previous stud-
ies, we also report the best achieved results in the
TAC competitions.

Table 3 shows the summarization results of our
method and others. The top part contains the re-
sults for TAC 2008 data and bottom part is for
TAC 2011 data. We use the ROUGE evaluation
metrics (Lin, 2004), with R-2 measuring the bi-
gram overlap between the system and reference
summaries and R-SU4 measuring the skip-bigram
with the maximum gap length of 4. In addition,
we evaluate the linguistic quality (LQ) of the sum-
maries for our system and (Li et al., 2013a).7 The
linguistic quality consists of two parts. One eval-
uates the grammar quality within a sentence. For
this, annotators marked if a compressed sentence
is grammatically correct. Typical grammar errors
include lack of verb or subordinate clause. The
other evaluates the coherence between sentences,
including the order of sentences and irrelevant sen-
tences. We invited 3 English native speakers to do
this evaluation. They gave every compressed sen-
tence a grammar score and a coherence score for

4http://sourceforge.net/projects/pocket-crf-1/
5http://svmlight.joachims.org/
6http://www.gurobi.com
7We chose to evaluate the linguistic quality for this system

because of two reasons: one is that we have an implementa-
tion of that method; the other more important one is that it
has the highest reported ROUGE results among the compared
methods.

697



System R-2 R-SU4 Gram Cohere

TAC’08 Best System 11.03 13.96 n/a n/a
(Berg-Kirk et al., 2011) 11.70 14.38 n/a n/a
(Woodsend et al., 2012)11.37 14.47 n/a n/a
(Almeida et al.,2013) 12.30 15.18 n/a n/a
(Li et al., 2013a) 12.35 15.27 3.81 3.41
Our System 12.23 15.47 4.29 4.11

TAC’11 Best System 13.44 16.51 n/a n/a
(Ng et al., 2012) 13.93 16.83 n/a n/a
(Li et al., 2013a) 14.40 16.89 3.67 3.32
Our System 14.04 16.67 4.18 4.07

Table 3: Summarization results on the TAC 2008
and 2011 data sets.

each topic. The score is scaled and ranges from 1
(bad) to 5 (good). Therefore, in table 3, the gram-
mar score is the average score for each sentence
and coherence score is the average for each topic.
We measure annotators’ agreement in the follow-
ing way: we consider the scores from each anno-
tator as a distribution and we find that these three
distributions are not statistically significantly dif-
ferent each other (p> 0.05 based on paired t-test).

We can see from the table that in general, our
system achieves better ROUGE results than most
previous work except (Li et al., 2013a) on both
TAC 2008 and TAC 2011 data. However, our
system’s linguistic quality is better than (Li et
al., 2013a). The CRF-based compression model
used in (Li et al., 2013a) can not well model the
grammar. Particularly, our results (ROUGE-2) are
statistically significantly (p< 0.05) higher than
TAC08 Best system, but are not statistically signif-
icant compared with (Li et al., 2013a) (p> 0.05).
The pattern is similar in TAC 2011 data. Our result
(R-2) is statistically significantly (p< 0.05) better
than TAC11 Best system, but not statistically (p>
0.05) significantly different from (Li et al., 2013a).
However, for the grammar and coherence score,
our results are statistically significantly (p< 0.05)
than (Li et al., 2013a). All the above statistics are
based on paired t-test.

5.3 Compression Results

The results above show that our summarization
system is competitive. In this section we focus
on the evaluation of our proposed compression
method. We compare our compression system
against four other models. HedgeTrimmer in Dorr
et al. (2003) applied a variety of linguistically-
motivated heuristics to guide the sentences com-

System C Rate (%) Uni-F1 Rel-F1

HedgeTrimmer 57.64 0.64 0.50
McDonald (2006) 70.95 0.77 0.55
Martins (2009) 71.35 0.77 0.56
Wang (2013) 68.06 0.79 0.59
Our System 71.19 0.77 0.58

Table 4: Sentence compression results. The hu-
man compression rate of the test set is 69%.

pression; McDonald (2006) used the output of two
parsers as features in a discriminative model that
decomposes over pairs of consecutive words; Mar-
tins and Smith (2009) built the compression model
in the dependency parse and utilized the relation-
ship between the head and modifier to preserve the
grammar relationship; Wang et al. (2013) devel-
oped a novel beam search decoder using the tree-
based compression model on the constituent parse
tree, which could find the most probable compres-
sion efficiently.

Table 4 shows the compression results of vari-
ous systems, along with the compression ratio (C
Rate) of the system output. We adopt the com-
pression metrics as used in (Martins and Smith,
2009) that measures the macro F-measure for the
retained unigrams (Uni-F1), and the one used
in (Clarke and Lapata, 2008) that calculates the
F1 score of the grammatical relations labeled by
(Briscoe and Carroll, 2002) (Rel-F1). We can see
that our proposed compression method performs
well, similar to the state-of-the-art systems.

To evaluate the power of using the expanded
parse tree in our model, we conducted another ex-
periment where we only consider the bottom level
of the constituent parse tree. In some sense, this
could be considered as the system in (Clarke and
Lapata, 2008). Furthermore, we use two differ-
ent setups: one uses the lexical features (about the
words) and the other does not. Table 5 shows the
results using the data in (Clarke and Lapata, 2008).
For a comparison, we also include the results us-
ing the CRF-based compression model (the one
used in (Nomoto, 2007; Li et al., 2013a)). We
report results using both the automatically calcu-
lated compression metrics and the linguistic qual-
ity score. Three English native speaker annotators
were asked to judge two aspects of the compressed
sentence compared with the gold result: one is the
content that looks at whether the important words
are kept and the other is the grammar score which
evaluates the sentence’s readability. Each of these
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two scores ranges from 1(bad) to 5(good).
Table 5 shows that when using lexical features,

our system has statistically significantly (p< 0.05)
higher Grammar value and content importance
value than the CRF and the leaves only system.
When no lexical features are used, default system
can achieve statistically significantly (p< 0.01)
higher results than the CRF and the leaves only
system.

We can see that using the expanded parse tree
performs better than using the leaves only, espe-
cially when lexical features are not used. In ad-
dition, we observe that our proposed compression
method is more generalizable than the CRF-based
model. When our system does not use lexical
features in the leaves, it achieves better perfor-
mance than the CRF-based model. This is impor-
tant since such a model is more robust and may be
used in multiple domains, whereas a model rely-
ing on lexical information may suffer more from
domain mismatch. From the table we can see our
proposed tree based compression method consis-
tently has better linguistic quality. On the other
hand, the CRF compression model is the most
computationally efficient one among these three
compression methods. It is about 200 times faster
than our model using the expanded parse tree. Ta-
ble 6 shows some examples using different meth-
ods.

System C Rate(%) Uni-F1 Rel-F1 Gram Imp
Using lexical features

CRF 79.98 0.80 0.51 3.9 4.0
ILP(I) 80.54 0.79 0.57 4.0 4.2
ILP(II) 79.90 0.80 0.57 4.2 4.4

No lexical features
CRF 77.75 0.78 0.51 3.35 3.5
ILP(I) 77.77 0.78 0.56 3.7 3.9
ILP(II) 77.78 0.80 0.58 4.1 4.2

Table 5: Sentence compression results: effect of
lexical features and expanded parse tree. ILP(I)
represents the system using only bottom nodes in
constituent parse tree. ILP(II) is our system. Imp
means the content importance value.

6 Conclusion

In this paper, we propose a discriminative ILP sen-
tence compression model based on the expanded
constituent parse tree, which aims to improve the
linguistic quality of the compressed sentences in
the summarization task. Linguistically motivated
constraints are incorporated to improve the sen-
tence quality. We conduct experiments on the TAC

Using lexical features
Source:
Apart from drugs, detectives believe money is laun-
dered from a variety of black market deals involving
arms and high technology.
Human compress:
detectives believe money is laundered from a variety of
black market deals.
CRF result :
Apart from drugs detectives believe money is laundered
from a black market deals involving arms and technol-
ogy.
ILP(I) Result:
detectives believe money is laundered from a variety of
black deals involving arms.
ILP(II) Result:
detectives believe money is laundered from black mar-
ket deals.

No lexical features
Source:
Mrs Allan’s son disappeared in May 1989, after a party
during his back packing trip across North America.
Human compress:
Mrs Allan’s son disappeared in 1989, after a party dur-
ing his trip across North America.
CRF result :
Mrs Allan’s son disappeared May 1989, after during his
packing trip across North America.
ILP(I) Result:
Mrs Allan’s son disappeared in May, 1989, after a party
during his packing trip across North America .
ILP(II) Result:
Mrs Allan’s son disappeared in May 1989, after a party
during his trip.

Table 6: Examples of original sentences and their
compressed sentences from different systems.

2008 and 2011 summarization data sets and show
that by incorporating this sentence compression
model, our summarization system can yield signif-
icant performance gain in linguistic quality with-
out losing much ROUGE results. The analysis
of the compression module also demonstrates its
competitiveness, in particular the better linguistic
quality and less reliance on lexical cues.
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