
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 425–429,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Aligning English Strings with Abstract Meaning Representation Graphs

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, Kevin Knight
Information Sciences Institute

Department of Computer Science
University of Southern California

{damghani,yanggao,ulf,knight}@isi.edu

Abstract

We align pairs of English sentences and
corresponding Abstract Meaning Repre-
sentations (AMR), at the token level. Such
alignments will be useful for downstream
extraction of semantic interpretation and
generation rules. Our method involves
linearizing AMR structures and perform-
ing symmetrized EM training. We obtain
86.5% and 83.1% alignment F score on de-
velopment and test sets.

1 Introduction

Banarescu et al. (2013) describe a semantics bank
of English sentences paired with their logical
meanings, written in Abstract Meaning Represen-
tation (AMR). The designers of AMR leave open
the question of how meanings are derived from
English sentences (and vice-versa), so there are
no manually-annotated alignment links between
English words and AMR concepts. This paper
studies how to build such links automatically, us-
ing co-occurrence and other information. Auto-
matic alignments may be useful for downstream
extraction of semantic interpretation and genera-
tion rules.

AMRs are directed, acyclic graphs with labeled
edges, e.g., the sentence The boy wants to go is
represented as:

(w / want-01
:arg0 (b / boy)
:arg1 (g / go-01

:arg0 b))

We have hand-aligned a subset of the 13,050
available AMR/English pairs. We evaluate our
automatic alignments against this gold standard.
A sample hand-aligned AMR is here (“˜n” speci-
fies a link to the nth English word):

the boy wants to go
(w / want-01˜3

:arg0 (b / boy˜2)
:arg1 (g / go-01˜5

:arg0 b))

This alignment problem resembles that of statisti-
cal machine translation (SMT). It is easier in some
ways, because AMR and English are highly cog-
nate. It is harder in other ways, as AMR is graph-
structured, and children of an AMR node are un-
ordered. There are also fewer available training
pairs than in SMT.

One approach is to define a generative model
from AMR graphs to strings. We can then use
EM to uncover hidden derivations, which align-
ments weakly reflect. This approach is used in
string/string SMT (Brown et al., 1993). How-
ever, we do not yet have such a generative graph-
to-string model, and even if we did, there might
not be an efficient EM solution. For exam-
ple, in syntax-based SMT systems (Galley et al.,
2004), the generative tree/string transduction story
is clear, but in the absence of alignment con-
straints, there are too many derivations and rules
for EM to efficiently consider.

We therefore follow syntax-based SMT custom
and use string/string alignment models in align-
ing our graph/string pairs. However, while it is
straightforward to convert syntax trees into strings
data (by taking yields), it is not obvious how to do
this for unordered AMR graph elements. The ex-
ample above also shows that gold alignment links
reach into the internal nodes of AMR.

Prior SMT work (Jones et al., 2012) describes
alignment of semantic graphs and strings, though
their experiments are limited to the GeoQuery do-
main, and their methods are not described in de-
tail. Flanigan et al (2014) describe a heuristic
AMR/English aligner. While heuristic aligners
can achieve good accuracy, they will not automat-
ically improve as more AMR/English data comes

425



online.
The contributions of this paper are:

• A set of gold, manually-aligned
AMR/English pairs.

• An algorithm for automatically aligning
AMR/English pairs.

• An empirical study establishing alignment
accuracy of 86.5% and 83.1% F score for de-
velopment and test sets respectively.

2 Method

We divide the description of our method into three
parts: preprocessing, training, and postprocessing.
In the preprocessing phase, we linearize the AMR
graphs to change them into strings, clean both the
AMR and English sides by removing stop words
and simple stemming, and add a set of correspond-
ing AMR/English token pairs to the corpus to help
the training phase. The training phase is based
on IBM models, but we modify the learning algo-
rithm to learn the parameters symmetrically. Fi-
nally, in the postprocessing stage we rebuild the
aligned AMR graph. These components are de-
scribed in more detail below.

2.1 Preprocessing
The first step of the preprocessing component is to
linearize the AMR structure into a string. In this
step we record the original structure of nodes in
the graph for later reconstruction of AMR. AMR
has a rooted graph structure. To linearize this
graph we run a depth first search from the root and
print each node as soon as it it visited. We print
but not expand the nodes that are seen previously.
For example the AMR:

(w / want-01
:arg0 (b / boy)
:arg1 (g / go-01

:arg0 b))

is linearized into this order: w / want-01 :arg0 b /
boy :arg1 g / go-01 :arg0 b.

Note that semantically related nodes often stay
close together after linearization.

After linearizing the AMR graph into a string,
we perform a series of preprocessing steps includ-
ing lowercasing the letters, removing stop words,
and stemming.

The AMR and English stop word lists are gen-
erated based on our knowledge of AMR design.

We know that tokens like an, the or to be verbs
will very rarely align to any AMR token; similarly,
AMR role tokens like :arg0, :quant, :opt1 etc. as
well as the instance-of token /, and tokens like
temporal-quantity or date-entity rarely align to any
English token. We remove these tokens from the
parallel corpus, but remember their position to be
able to convert the resulting string/string align-
ment back into a full AMR graph/English string
alignment. Although some stopwords participate
in gold alignments, by removing them we will buy
a large precision gain for some recall cost.

We remove the word sense indicator and quo-
tation marks for AMR concepts. For instance we
will change want-01 to want and “ohio” to ohio.
Then we stem AMR and English tokens into their
first four letters, except for role tokens in AMR.
The purpose of stemming is to normalize English
morphological variants so that they are easier to
match to AMR tokens. For example English to-
kens wants, wanting, wanted, and want as well as
the AMR token want-01 will all convert to want
after removing the AMR word sense indicator and
stemming.

In the last step of preprocessing, we benefit
from the fact that AMR concepts and their cor-
responding English ones are frequently cognates.
Hence, after stemming, an AMR token often can
be translated to a token spelled similarly in En-
glish. This is the case for English token want and
AMR token want in the previous paragraph. To
help the training model learn from this fact, we
extend our sentence pair corpus with the set of
AMR/English token pairs that are spelled identi-
cally after preprocessing. Also, for English tokens
that can be translated into multiple AMR tokens,
like higher and high :degree more we add the cor-
responding string/string pairs to the corpus. This
set is extracted from existing lexical resources, in-
cluding lists of comparative/superlative adjectives,
negative words, etc.

After preprocessing, the AMR at the start of
this section will change into: want boy go and
the sentence The boy wants to go changes into boy
want to go, and we will also add the identity pairs
want/want, boy/boy, and go/go to the corpus.

2.2 Training

Our training method is based on IBM word align-
ment models (Brown et al., 1993). We modify
the objective functions of the IBM models to en-

426



courage agreement between learning parameters
in English-to-AMR and AMR-to-English direc-
tions of EM. The solution of this objective func-
tion can be approximated in an extremely simple
way that requires almost no extra coding effort.

Assume that we have a set of sentence pairs
{(E,A)}, where each E is an English sentence
and each A is a linearized AMR. According to
IBM models, A is generated from E through a
generative story based on some parameters.

For example, in IBM Model 2, given E we
first decide the length of A based on some prob-
ability l = p(len(A)|len(E)), then we decide
the distortions based on a distortion table: d =
p(i|j, len(A), len(E)). Finally, we translate En-
glish tokens into AMR ones based on a translation
table t = p(a|e) where a and e are AMR and En-
glish tokens respectively.

IBM models estimate these parameters to max-
imize the conditional likelihood of the data:
θA|E = argmaxLθA|E (A|E) or θE|A =
argmaxLθE|A(E|A) where θ denotes the set of
parameters. The conditional likelihood is intrinsic
to the generative story of IBM models. However,
word alignment is a symmetric problem. Hence it
is more reasonable to estimate the parameters in a
more symmetric manner.

Our objective function in the training phase is:

θA|E , θE|A = argmaxLθA|E (A|E)+LθE|A(E|A)

subject to θA|EθE = θE|AθA = θA,E

We approximate the solution of this objective
function with almost no change to the existing
implementation of the IBM models. We relax
the constraint to θA|E = θE|A, then apply the
following iterative process:

1. Optimize the first part of the objective func-
tion: θA|E = argmaxLθA|E (A|E) using EM

2. Satisfy the constraint: set θE|A ∝ θA|E
3. Optimize the second part of the objective

function: θE|A = argmaxLθE|A(E|A)
using EM

4. Satisfy the constraint: set θA|E ∝ θE|A
5. Iterate
Note that steps 1 and 3 are nothing more than

running the IBM models, and steps 2 and 4 are
just initialization of the EM parameters, using ta-
bles from the previous iteration. The initialization

steps only make sense for the parameters that in-
volve both sides of the alignment (i.e., the transla-
tion table and the distortion table). For the trans-
lation table we set tE|A(e|a) = tA|E(a|e) for En-
glish and AMR tokens e and a and then normalize
the t table. The distortion table can also be initial-
ized in a similar manner. We initialize the fertility
table with its value in the previous iteration.

Previously Liang et al. (2006) also presented a
symmetric method for training alignment parame-
ters. Similar to our work, their objective function
involves summation of conditional likelihoods in
both directions; however, their constraint is on
agreement between predicted alignments while we
directly focus on agreement between the parame-
ters themselves. Moreover their method involves a
modification of the E step of EM algorithm which
is very hard to implement for IBM Model 3 and
above.

After learning the parameters, alignments are
computed using the Viterbi algorithm in both di-
rections of the IBM models. We tried merging
the alignments of the two directions using meth-
ods like grow-diag-final heuristic or taking inter-
section of the alignments and adding some high
probability links in their union. But these methods
did not help the alignment accuracy.

2.3 Postprocessing

The main goal of the postprocessing component is
to rebuild the aligned AMR graph. We first insert
words removed as stop words into their positions,
then rebuild the graph using the recorded original
structure of the nodes in the AMR graph.

We also apply a last modification to the align-
ments in the postprocessing. Observing that pairs
like worker and person :arg0-of work-01 appear
frequently, and in all such cases, all the AMR to-
kens align to the English one, whenever we see
any of AMR tokens person, product, thing or com-
pany is followed by arg0-of, arg1-of or arg2-of
followed by an AMR concept, we align the two
former tokens to what the concept is aligned to.

3 Experiments

3.1 Data Description

Our data consists of 13,050 publicly available
AMR/English sentence pairs1. We have hand

1LDC AMR release 1.0, Release date: June 16, 2014
https://catalog.ldc.upenn.edu/LDC2014T12

427



aligned 200 of these pairs to be used as develop-
ment and test sets2. We train the parameters on
the whole data. Table 1 presents a description of
the data. We do not count parenthesis, slash and
AMR variables as AMR tokens. Role tokens are
those AMR tokens that start with a colon. They
do not represent any concept, but provide a link
between concepts. For example in:
(w / want-01

:arg0 (b / boy)
:arg1 (g / go-01

:arg0 b))

the first :arg0 states that the first argument of the
concept wanting is the boy and the second argu-
ment is going.

train dev test
Sent. pairs 13050 100 100

AMR tokens 465 K 3.8 K (52%) 2.3 K (%55)
AMR role tokens 226 K 1.9 K (23%) 1.1 K (%22)
ENG tokens 248 K 2.3 K (76%) 1.7 K (%74)

Table 1: AMR/English corpus. The number in
parentheses is the percent of the tokens aligned in
gold annotation. Almost half of AMR tokens are
role tokens, and less than a quarter of role tokens
are aligned.

3.2 Experiment Results
We use MGIZA++ (Gao and Vogel, 2008) as
the implementation of the IBM models. We run
Model 1 and HMM for 5 iterations each, then run
our training algorithm on Model 4 for 4 iterations,
at which point the alignments become stable. As
alignments are usually many to one from AMR to
English, we compute the alignments from AMR to
English in the final step.

Table 2 shows the alignment accuracy for
Model 1, HMM, Model 4, and Model 4 plus the
modification described in section 2.2 (Model 4+).

The alignment accuracy on the test set is lower
than the development set mainly because it is in-
trinsically a harder set, as we only made small
modifications to the system based on the develop-
ment set. Recall error due to stop words is one
difference.

2The development and test AMR/English pairs can be
found in /data/split/dev/amr-release-1.0-dev-consensus.txt
and /data/split/test/amr-release-1.0-test-consensus.txt, re-
spectively. The gold alignments are not included in these
files but are available separately.

model precision recall F score

Dev
Model 1 70.9 71.1 71.0
HMM 87.6 80.1 83.7
Model 4 89.7 80.4 84.8
Model 4+ 94.1 80.0 86.5

Test
Model 1 74.8 71.8 73.2
HMM 83.8 73.8 78.5
Model 4 85.8 74.9 80.0
Model 4+ 92.4 75.6 83.1

Table 2: Results on different models. Our training
method (Model 4+) increases the F score by 1.7
and 3.1 points on dev and test sets respectively.

Table 3 breaks down precision, recall, and
F score for role and non-role AMR tokens, and
also shows in parentheses the amount of recall er-
ror that was caused by removing either side of the
alignment as a stop word.

token type precision recall F score

Dev
role 77.1 48.7 59.7
non-role 97.2 88.2 92.5
all 94.1 80.0 (34%) 86.5

Test
role 71.0 37.8 49.3
non-role 95.5 84.7 89.8
all 92.4 75.6 (36%) 83.1

Table 3: Results breakdown into role and non-
role AMR tokens. The numbers in the parentheses
show the percent of recall errors caused by remov-
ing aligned tokens as stop words.

While the alignment method works very well on
non-role tokens, it works poorly on the role tokens.
Role tokens are sometimes matched with a word
or part of a word in the English sentence. For ex-
ample :polarity is matched with the un part of the
word unpopular, :manner is matched with most
adverbs, or even in the pair:

thanks
(t / thank-01

:arg0 (i / i)
:arg1 (y / you))

all AMR tokens including :arg0 and :arg1 are
matched to the only English word thanks. Incon-
sistency in aligning role tokens has made this a
hard problem even for human experts.

428



4 Conclusions and Future Work

In this paper we present the first set of manually
aligned English/AMR pairs, as well as the first
published system for learning the alignments be-
tween English sentences and AMR graphs that
provides a strong baseline for future research in
this area. As the proposed system learns the
alignments automatically using very little domain
knowledge, it can be applied in any domain and
for any language with minor adaptations.

Computing the alignments between English
sentences and AMR graphs is a first step for ex-
traction of semantic interpretation and generation
rules. Hence, a natural extension to this work
will be automatically parsing English sentences
into AMR and generating English sentences from
AMR.

Acknowledgments

This work was supported by DARPA con-
tracts HR0011-12-C-0014 and FA-8750-13-2-
0045. The authors would like to thank David Chi-
ang, Tomer Levinboim, and Ashish Vaswani (in
no particular order) for their comments and sug-
gestions.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Linguistic Annotation Workshop
(LAW VII-ID), ACL.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation:
Parameter estimation. Computational linguistics,
19(2):263–311.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In ACL.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In HLT-NAACL.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing Workshop, ACL.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.

Semantics-based machine translation with hyper-
edge replacement grammars. In COLING.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In HLT-NAACL.

429


