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Abstract
Sentence level evaluation in MT has turned out
far more difficult than corpus level evaluation.
Existing sentence level metrics employ a lim-
ited set of features, most of which are rather
sparse at the sentence level, and their intricate
models are rarely trained for ranking. This pa-
per presents a simple linear model exploiting
33 relatively dense features, some of which are
novel while others are known but seldom used,
and train it under the learning-to-rank frame-
work. We evaluate our metric on the stan-
dard WMT12 data showing that it outperforms
the strong baseline METEOR. We also ana-
lyze the contribution of individual features and
the choice of training data, language-pair vs.
target-language data, providing new insights
into this task.

1 Introduction
Evaluating machine translation (MT) output at the sen-
tence/ segment level has turned out far more challeng-
ing than corpus/ system level. Yet, sentence level
evaluation can be useful because it allows fast, fine-
grained analysis of system performance on individual
sentences.

It is instructive to contrast two widely used metrics,
METEOR (Michael Denkowski and Alon Lavie, 2014)
and BLEU (Papineni et al., 2002), on sentence level
evaluation. METEOR constantly shows better corre-
lation with human ranking than BLEU (Papineni et
al., 2002). Arguably, this shows that sentence level
evaluation demands finer grained and trainable models
over less sparse features. Ngrams, the core of BLEU,
are sparse at the sentence level, and a mismatch for
longer ngrams implies that BLEU falls back on shorter
ngrams. In contrast, METEOR has a trainable model
and incorporates a small, yet wider set of features that
are less sparse than ngrams. We think that METEOR’s
features and its training approach only suggest that sen-
tence level evaluation should be treated as a modelling
challenge. This calls for questions such as what model,
what features and what training objective are better
suited for modelling sentence level evaluation.

We start out by explicitly formulating sentence level
evaluation as the problem of ranking a set of compet-

ing hypothesis. Given data consisting of human ranked
system outputs, the problem then is to formulate an
easy to train model for ranking. One particular exist-
ing approach (Ye et al., 2007) looks especially attrac-
tive because we think it meshes well with a range of
effective techniques for learning-to-rank (Li, 2011).

We deliberately select a linear modelling approach
inspired by RankSVM (Herbrich et al., 1999), which is
easily trainable for ranking and allows analysis of the
individual contributions of features. Besides presenting
a new metric and a set of known, but also a set of novel
features, we target three questions of interest to the MT
community:

• What kind of features are more helpful for sen-
tence level evaluation?

• How does a simple linear model trained for rank-
ing compare to the well-developed metric ME-
TEOR on sentence level evaluation?

• Should we train the model for each language pair
separately or for a target language?

Our new metric dubbed BEER1 outperforms ME-
TEOR on WMT12 data showing the effectiveness of
dense features in a learning-to-rank framework. The
metric and the code are available as free software2.

2 Model
Our model is a linear combination of features trained
for ranking similar to RankSVM (Herbrich et al., 1999)
or, to readers familiar with SMT system tuning, to PRO
tuning (Hopkins and May, 2011):

score(sys) = ~w · ~xsys

where ~w represents a weight vector and ~xsys a vec-
tor of feature values for system output sys. Look-
ing at evaluation as a ranking problem, we con-
trast (at least) two system translations good and
bad for the same source sentence. Assuming that
humanRank(good) > humanRank(bad) as ranked

1BEER participated on WMT14 evaluation metrics task
where it was the highest scoring sentence level evaluation
metric on average over all language pairs (Stanojević and
Sima’an, 2014)

2https://github.com/stanojevic/beer
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by human judgement, we expect metric score(·) to ful-
fill score(good) > score(bad):

~w · ~xgood > ~w · ~xbad ⇔
~w · ~xgood − ~w · ~xbad > 0 ⇔

~w · (~xgood − ~xbad) > 0 ∧
~w · (~xbad − ~xgood) < 0

The two feature vectors (~xgood − ~xbad) and (~xbad −
~xgood) can be considered as positive and negative in-
stances for training our linear classifier. For training
this model, we use Logistic Regression from the Weka
toolkit (Hall et al., 2009).

3 Features

Generally speaking we identify adequacy and fluency
features. For both types we devise far less sparse fea-
tures than word ngrams.

Adequacy features We use precision P , recallR and
F1-score F as follows:

Pfunc, Rfunc, Ffunc on matched function words

Pcont, Rcont, Fcont on matched content words

Pall, Rall, Fall on matched words of any type

Pchar, Rchar, Fchar matching of the char ngrams

By differentiating between function and non-function
words, our metric weighs each kind of words accord-
ing to importance for evaluation. Matching character
ngrams, originally proposed in (Yang et al., 2013), re-
wards certain translations even if they did not get the
morphology completely right. Existing metrics use
stemmers for this, but using character ngrams is inde-
pendent of the availability of a good quality stemmer.
Higher-order character ngrams have less risk of sparse
counts than word ngrams. In our experiments we used
char ngrams for n up to 6, which makes the total num-
ber of adequacy features 27.

Fluency features To evaluate word order we follow
(Isozaki et al., 2010; Birch and Osborne, 2010) in rep-
resenting reordering as a permutation π over [1..n] and
then measuring the distance to the ideal monotone per-
mutation 〈1, 2, · · · , n〉. We present a novel approach
based on factorization into permutation trees (PETs)
(Zhang and Gildea, 2007), and contrast it with Kendall
τ (Birch and Osborne, 2010; Isozaki et al., 2010). PETs
are factorizations of permutations, which allows for an
abstract and less sparse view of word order as exempli-
fied next. Kendall score was regularly shown to have
high correlation with human judgment on distant lan-
guage pairs (Isozaki et al., 2010; Birch and Osborne,
2010).

Features based on PETs We informally review
PETs in order to exploit them for novel ordering fea-
tures. We refer the reader to (Zhang and Gildea, 2007)
and (Maillette de Buy Wenniger and Sima’an, 2011)
for a formal treatment of PETs and efficient factoriza-
tion algorithms.

A PET of permutation π is a tree organization of π’s
unique, atomic building blocks, called operators. Ev-
ery operator on a PET node is an atomic permutation
(not factorizing any further),3 and it stands for the per-
mutation of the direct children of that node. Figure 1a
shows an example PET that has one 4-branching node
with operator 〈2, 4, 1, 3〉, two binary branching nodes
of which one decorated with the inverted operator 〈2, 1〉
and another with the monotone 〈1, 2〉.

PETs have two important properties making them at-
tractive for measuring order difference: firstly, order
difference is measured on the operators – the atomic
reordering building blocks of the permutation, and sec-
ondly, the operators on higher level nodes capture hid-
den ordering patterns that cannot be observed without
factorization. Statistics over ordering patterns in PETs
are far less sparse than word or character ngram statis-
tics.

Intuitively, among the atomic permutations, the bi-
nary monotone operator 〈1, 2〉 signifies no ordering dif-
ference at all, whereas the binary inverted 〈2, 1〉 signi-
fies the shortest unit of order difference. Operators of
length four like 〈2, 4, 1, 3〉 (Wu, 1997) are presumably
more complex than 〈2, 1〉, whereas operators longer
than four signify even more complex order difference.
Therefore, we devise possible branching feature func-
tions over the operator length for the nodes in PETs:

• factor 2 - with two features: ∆[ ] and ∆<> (there
are no nodes with factor 3 (Wu, 1997))

• factor 4 - feature ∆=4

• factor bigger than 4 - feature ∆>4

Consider permutations 〈2, 1, 4, 3〉 and 〈4, 3, 2, 1〉, none
of which has exactly matching ngrams beyond uni-
grams. Their PETs are in Figures 1b and 1c. Intuitively,
〈2, 1, 4, 3〉 is somewhat less scrambled than 〈4, 3, 2, 1〉
because it has at least some position in correct order.
These “abstract ngrams” pertaining to correct order-
ing of full phrases could be counted using ∆[ ] which
would recognize that on top of the PET in 1b there is
a binary monotone node, unlike the PET in Figure 1c
which has no monotone nodes at all.

Even though the set of operators that describe a per-
mutation is unique for the given permutation, the ways
in which operators are combined (the derivation tree)
is not unique. For example, for the fully monotone

3For example 〈2, 4, 1, 3〉 is atomic whereas 〈4, 3, 2, 1〉 is
not. The former does not contain any contiguous sub-ranges
of integers whereas the latter contains sub-range {2, 3, 4} in
reverse order 〈4, 3, 2〉, which factorizes into two binary in-
verting nodes cf. Fig. 1c.
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〈2, 4, 1, 3〉

2 〈2, 1〉
〈1, 2〉
5 6

4

1 3

(a) Complex PET

〈1, 2〉
〈2, 1〉
2 1

〈2, 1〉
4 3

(b) PET with inversions

〈2, 1〉
〈2, 1〉

〈2, 1〉
4 3

2

1

(c) Canonical fully
inverted PET

〈2, 1〉

〈2, 1〉
4 〈2, 1〉

3 2

1

(d) Alternative fully
inverted PET

〈2, 1〉
〈2, 1〉
4 3

〈2, 1〉
2 1

(e) Alternative fully
inverted PET

〈2, 1〉

4 〈2, 1〉
〈2, 1〉
3 2

1

(f) Alternative fully
inverted PET

〈2, 1〉
4 〈2, 1〉

3 〈2, 1〉
2 1

(g) Alternative fully
inverted PET

Figure 1: Examples of PETs

permutation 〈4, 3, 2, 1〉 there are 5 possible derivations
(PETs) presented in Figures 1c, 1d, 1e, 1f and 1g. The
features on PETs that we described so far look at the
operators independently (they treat a derivation as a
set of operators) so differenct derivations do not influ-
ence the score–whichever derviation we use we will
get the same feature score. However, the number of
derivations might say something about the goodness of
the permutation. Similar property of permutations was
found to be helpful earlier in (Mylonakis and Sima’an,
2008) as an ITG prior for learning translation rule prob-
abilities.

Permutations like 〈3, 2, 1, 4〉 and 〈2, 4, 3, 1〉 have the
same set of operators, but the former factorizes into
more PETs than the latter because 〈4, 3〉 must group
first before grouping it with 2 and then 1 in 〈2, 4, 3, 1〉.
The “freedom to bracket” in different ways could be a
signal of better grouping of words (even if they have
inverted word order). Hence we exploit one more fea-
ture:

∆count the ratio between the number of alternative
PETs for the given permutation, to the number of
PETs that could be built if permutation was per-
fectly grouped (fully monotone or fully inverted).

Finding the number of PETs that could be built does
not require building all PETs or encoding them in the
chart. The number can be computed directly from the
canonical left-branching PET. Since multiple different
PETs appear only in cases when there is a sequence of
more than one node that is either 〈1, 2〉 or 〈2, 1〉 (Zhang
et al., 2008), we can use these sequences to predict the
number of PETs that could be built. Let X represent a
set of sequences of the canonical derivation. The num-
ber of PETs is computed in the following way:

#PETs =
∏
x∈X

Cat(|x|) (1)

Cat(n) =
1

n+ 1

(
2n
n

)
(2)

whereCat(·) is a Catalan number. The proof for this
formula is beyond the scope of this paper. The reader
can consider the example of the PET in Figure 1c. That
derivation has one sequence of monotone operators of
length 3. So the number of PETs that could be built is
Cat(3) = 5.

4 Experiments

We use human judgments from the WMT tasks:
WMT13 is used for training whereas WMT12 for test-
ing. The baseline is METEOR’s latest version (Michael
Denkowski and Alon Lavie, 2014), one of the best met-
rics on sentence level. To avoid contaminating the re-
sults with differences with METEOR due to resources,
we use the same alignment, tokenization and lower-
casing (-norm in METEOR) algorithms, and the same
tables of function words, synonyms, paraphrases and
stemmers.

Kendall τ correlation is borrowed from WMT12
(Callison-Burch et al., 2012):

τ =
#concordant−#discordant−#ties
#concordant+ #discordant+ #ties

#concordant represents the number of pairs or-
dered in the same way by metric and by human,
#discordant the number of opposite orderings and
#ties the number of tied rankings by metric.

Beside testing our full metric BEER, we perform ex-
periments where we remove one kind of the following
features at a time:

1. char n-gram features (P, R and F-score)

2. all word features (P, R and F-score for all, function
and content words),

3. all function and content words features

4. all F-scores (all words, function words, content
words, char ngrams)
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metric en-cs en-fr en-de en-es cs-en fr-en de-en es-en avg τ
BEER without char features 0.124 0.178 0.168 0.149 0.121 0.17 0.179 0.078 0.146
BEER without all word features 0.184 0.237 0.223 0.217 0.192 0.209 0.243 0.199 0.213
BEER without all F-scores 0.197 0.243 0.219 0.22 0.177 0.227 0.254 0.211 0.219
METEOR 0.156 0.252 0.173 0.202 0.208 0.249 0.273 0.246 0.22
BEER without PET features 0.202 0.248 0.243 0.225 0.198 0.249 0.268 0.234 0.233
BEER without function words 0.2 0.245 0.231 0.227 0.189 0.268 0.267 0.253 0.235
BEER without fluency features 0.201 0.248 0.236 0.223 0.202 0.257 0.283 0.243 0.237
BEER without Kendall τ 0.205 0.246 0.244 0.227 0.202 0.257 0.282 0.248 0.239
BEER full 0.206 0.245 0.244 0.23 0.198 0.263 0.283 0.245 0.239

Table 1: Kendall τ scores on WMT12 data

5. PET features

6. Kendall τ features

7. all fluency features (PET and Kendall τ )

Table 1 shows the results sorted by their average
Kendall τ correlation with human judgment.

5 Analysis
Given these experimental results, we are coming back
to the questions we asked in the introduction.

5.1 What kind of features are more helpful for
sentence level evaluation?

Fluency vs. Adequacy The fluency features play a
smaller role than adequacy features. Apparently, many
SMT systems participating in this task have rather sim-
ilar reordering models, trained on similar data, which
makes the fluency features not that discriminative rel-
ative to adequacy features. Perhaps in a different ap-
plication, for example MT system tuning, the reorder-
ing features would be far more relevant because ignor-
ing them would basically imply disregarding the im-
portance of the reordering model in MT.

Character vs. Word features We observe that, pre-
cision, recall and F-score on character ngrams are cru-
cial. We think that this shows that less sparse features
are important for sentence level evaluation. The sec-
ond best features are word features. Without word
features, BEER scores just below METEOR, which
suggests that word boundaries play a role as well. In
contrast, differentiating between function and content
words does not seem to be important.

PETs vs. Kendall τ Despite the smaller role for
reordering features we can make a few observations.
Firstly, while PETs and Kendall seem to have simi-
lar effect on English-Foreign cases, in all four cases of
Foreign-English PETs give better scores. We hypoth-
esize that the quality of the permutations (induced be-
tween system output and reference) is better for English
than for the other target languages. Discarding PET
features has far larger impact than discarding Kendall.
Most interestingly, for de-en it makes the difference
in outperforming METEOR. In many cases discarding
Kendall τ improves the BEER score, likely because it

conflicts with the PET features that are found more ef-
fective.

5.2 Is a linear model sufficient?

A further insight, from our perspective, is that F-score
features constitute a crucial set of features, even when
the corresponding precision and recall features are in-
cluded. Because our model merely allows for linear in-
terpolation, whereas F-score is a non-linear function of
precision and recall, we think this suggests that a non-
linear interpolation of precision and recall is useful.4

By formulating the evaluation as a ranking problem it is
relatively easy to “upgrade” for using non-linear mod-
els while using the same (or larger) set of features.

5.3 Train for the language pair or only for the
target language?

All our models were trained for each language pair.
This is not the case with many other metrics which
train their models for each target language instead of
language pair. We contrast these two settings in Table
2. Training for each language pair separately does not
give significant improvement over training for the tar-
get language only. A possible reason could be that by
training for the target language we have more training
data (in this case four times more).

Train for cs-en fr-en de-en es-en avg τ
target lang 0.199 0.257 0.273 0.248 0.244
lang pair 0.198 0.263 0.283 0.245 0.247

Table 2: Kendall τ scores on WMT12 for different
training data

5.4 BEER vs. METEOR

The results across individual language pairs are mostly
consistent with the averages with a few exceptions.
BEER outperforms METEOR in five out of eight lan-
guage pairs, ties at one (the difference is only 0.001 on
es-en) and loses in two (en-fr and cs-en). In some cases
BEER is better than METEOR by a large margin (see,
e.g., en-cs, en-de).

4Interestingly, METEOR tunes β in Fβ .
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6 Conclusion
In this work we show that combining less sparse fea-
tures at the sentence level into a linear model that is
trained on ranking we can obtain state-of-the-art re-
sults. The analysis of the results shows that features on
character ngrams are crucial, besides the standard word
level features. The reordering features, while rather
important, are less effective within this WMT task, al-
beit the more abstract PET features have larger impact
than the often used Kendall. Good performance of F-
score features leads to the conclusion that linear models
might not be sufficient for modeling human sentence
level ranking and to learn the right relation between
precision and recall it could be worthwhile exploring
non-linear models.
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