
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 78–89,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Strongly Incremental Repair Detection

Julian Hough1,2

1Dialogue Systems Group
Faculty of Linguistics

and Literature
Bielefeld University

julian.hough@uni-bielefeld.de

Matthew Purver2

2Cognitive Science Research Group
School of Electronic Engineering

and Computer Science
Queen Mary University of London

m.purver@qmul.ac.uk

Abstract

We present STIR (STrongly Incremen-
tal Repair detection), a system that de-
tects speech repairs and edit terms on
transcripts incrementally with minimal la-
tency. STIR uses information-theoretic
measures from n-gram models as its prin-
cipal decision features in a pipeline of
classifiers detecting the different stages of
repairs. Results on the Switchboard dis-
fluency tagged corpus show utterance-final
accuracy on a par with state-of-the-art in-
cremental repair detection methods, but
with better incremental accuracy, faster
time-to-detection and less computational
overhead. We evaluate its performance us-
ing incremental metrics and propose new
repair processing evaluation standards.

1 Introduction

Self-repairs in spontaneous speech are annotated
according to a well established three-phase struc-
ture from (Shriberg, 1994) onwards, and as de-
scribed in Meteer et al. (1995)’s Switchboard cor-
pus annotation handbook:

John [likes︸ ︷︷ ︸
reparandum

+ {uh}︸ ︷︷ ︸
interregnum

loves]︸ ︷︷ ︸
repair

Mary (1)

From a dialogue systems perspective, detecting re-
pairs and assigning them the appropriate structure
is vital for robust natural language understanding
(NLU) in interactive systems. Downgrading the
commitment ofreparandumphases and assigning
appropriateinterregnumandrepair phases permits
computation of the user’s intended meaning.

Furthermore, the recent focus onincremental
dialogue systems (see e.g. (Rieser and Schlangen,
2011)) means that repair detection should oper-
ate without unnecessary processing overhead, and

function efficiently within an incremental frame-
work. However, such left-to-right operability on
its own is not sufficient: in line with the princi-
ple of strong incremental interpretation (Milward,
1991), a repair detector should givethe best re-
sults possible as early as possible. With one ex-
ception (Zwarts et al., 2010), there has been no
focus on evaluating or improving theincremental
performanceof repair detection.

In this paper we present STIR (Strongly In-
cremental Repair detection), a system which ad-
dresses the challenges of incremental accuracy,
computational complexity and latency in self-
repair detection, by making local decisions based
on relatively simple measures of fluency and sim-
ilarity. Section 2 reviews state-of-the-art methods;
Section 3 summarizes the challenges and explains
our general approach; Section 4 explains STIR in
detail; Section 5 explains our experimental set-up
and novel evaluation metrics; Section 6 presents
and discusses our results and Section 7 concludes.

2 Previous work

Qian and Liu (2013) achieve the state of the art in
Switchboard corpus self-repair detection, with an
F-score for detecting reparandum words of 0.841
using a three-step weighted Max-Margin Markov
network approach. Similarly, Georgila (2009)
uses Integer Linear Programming post-processing
of a CRF to achieve F-scores over 0.8 for reparan-
dum start and repair start detection. However nei-
ther approach can operate incrementally.

Recently, there has been increased interest
in left-to-right repair detection: Rasooli and
Tetreault (2014) and Honnibal and Johnson (2014)
present dependency parsing systems with reparan-
dum detection which perform similarly, the latter
equalling Qian and Liu (2013)’s F-score at 0.841.
However, while operating left-to-right, these sys-
tems are not designed or evaluated for theirincre-
mentalperformance. The use of beam search over

78

different repair hypotheses in (Honnibal and John-
son, 2014) is likely to lead to unstable repair label
sequences, and they report repair hypothesis ‘jit-
ter’. Both of these systems use a non-monotonic
dependency parsing approach that immediately re-
moves the reparandum from the linguistic anal-
ysis of the utterance in terms of its dependency
structure and repair-reparandum correspondence,
which from a downstream NLU module’s perspec-
tive is undesirable. Heeman and Allen (1999) and
Miller and Schuler (2008) present earlier left-to-
right operational detectors which are less accu-
rate and again give no indication of the incremen-
tal performance of their systems. While Heeman
and Allen (1999) rely on repair structure template
detection coupled with a multi-knowledge-source
language model, the rarity of the tail of repair
structures is likely to be the reason for lower per-
formance: Hough and Purver (2013) show that
only 39% of repair alignment structures appear
at least twice in Switchboard, supported by the
29% reported by Heeman and Allen (1999) on
the smaller TRAINS corpus. Miller and Schuler
(2008)’s encoding of repairs into a grammar also
causes sparsity in training: repair is a general pro-
cessing strategy not restricted to certain lexical
items or POS tag sequences.

The model we consider most suitable for in-
cremental dialogue systems so far is Zwarts et
al. (2010)’s incremental version of Johnson and
Charniak (2004)’s noisy channel repair detector,
as it incrementally applies structural repair anal-
yses (rather than just identifying reparanda) and
is evaluated for its incremental properties. Fol-
lowing (Johnson and Charniak, 2004), their sys-
tem uses an n-gram language model trained on
roughly 100K utterances of reparandum-excised
(‘cleaned’) Switchboard data. Its channel model is
a statistically-trained S-TAG parser whose gram-
mar has simple reparandum-repair alignment rule
categories for its non-terminals (copy, delete, in-
sert, substitute) and words for its terminals. The
parser hypothesises all possible repair structures
for the string consumed so far in a chart, before
pruning the unlikely ones. It performs equally
well to the non-incremental model by the end of
each utterance (F-score = 0.778), and can make
detections early via the addition of a speculative
next-word repair completion category to their S-
TAG non-terminals. In terms of incremental per-
formance, they report the novel evaluation met-

ric of time-to-detectionfor correctly identified re-
pairs, achieving an average of 7.5 words from the
start of the reparandum and 4.6 from the start of
the repair phase. They also introducedelayed ac-
curacy, a word-by-word evaluation against gold-
standard disfluency tags up to the word before the
current word being consumed (in their terms, the
prefix boundary), giving a measure of the stability
of the repair hypotheses. They report an F-score
of 0.578 at one word back from the current prefix
boundary, increasing word-by-word until 6 words
back where it reaches 0.770. These results are the
point-of-departure for our work.

3 Challenges and Approach

In this section we summarize the challenges for
incremental repair detection: computational com-
plexity, repair hypothesis stability, latency of de-
tection and repair structure identification. In 3.1
we explain how we address these.

Computational complexity Approaches to de-
tecting repair structures often use chart storage
(Zwarts et al., 2010; Johnson and Charniak, 2004;
Heeman and Allen, 1999), which poses a com-
putational overhead: if considering all possible
boundary points for a repair structure’s 3 phases
beginning on any word, for prefixes of lengthn
the number of hypotheses can grow in the order
O(n4). Exploring a subset of this space is nec-
essary for assigning entire repair structures as in
(1) above, rather than just detecting reparanda:
the (Johnson and Charniak, 2004; Zwarts et al.,
2010) noisy-channel detector is the only system
that applies such structures but the potential run-
time complexity in decoding these with their S-
TAG repair parser isO(n5). In their approach,
complexity is mitigated by imposing a maximum
repair length (12 words), and also by using beam
search with re-ranking (Lease et al., 2006; Zwarts
and Johnson, 2011). If we wish to include full
decoding of the repair’s structure (as argued by
Hough and Purver (2013) as necessary for full in-
terpretation) whilst taking a strictly incremental
and time-critical perspective, reducing this com-
plexity by minimizing the size of this search space
is crucial.

Stability of repair hypotheses and latency Us-
ing a beam search of n-best hypotheses on a word-
by-word basis can cause ‘jitter’ in the detector’s
output. While utterance-final accuracy is desired,

79

for a truly incremental system good intermedi-
ate results are equally important. Zwarts et al.
(2010)’s time-to-detection results show their sys-
tem is only certain about a detection after process-
ing the entire repair. This may be due to the string
alignment-inspired S-TAG that matches repair and
reparanda: a ‘rough copy’ dependency only be-
comes likely once the entire repair has been con-
sumed. The latency of 4.6 words to detection and
a relatively slow rise to utterance-final accuracy up
to 6 words back is undesirable given repairs have
a mean reparandum length of≈1.5 words (Hough
and Purver, 2013; Shriberg and Stolcke, 1998).

Structural identification Classifying repairs
has been ignored in repair processing, despite the
presence of distinct categories (e.g. repeats, sub-
stitutions, deletes) with different pragmatic effects
(Hough and Purver, 2013).1 This is perhaps due to
lack of clarity in definition: even for human anno-
tators, verbatim repeats withstanding, agreement
is often poor (Hough and Purver, 2013; Shriberg,
1994). Assigning and evaluating repair (not just
reparandum) structures will allow repair interpre-
tation in future; however, work to date evaluates
only reparandum detection.

3.1 Our approach

To address the above, we propose an alternative
to (Johnson and Charniak, 2004; Zwarts et al.,
2010)’s noisy channel model. While the model
elegantly captures intuitions about parallelism in
repairs and modelling fluency, it relies on string-
matching, motivated in a similar way to automatic
spelling correction (Brill and Moore, 2000): it as-
sumes a speaker chooses to utter fluent utterance
X according to some prior distributionP (X), but
a noisy channel causes them instead to utter a
noisy Y according to channel modelP (Y |X).
EstimatingP (Y |X) directly from observed data
is difficult due to sparsity of repair instances, so a
transducer is trained on the rough copy alignments
between reparandum and repair. This approach
succeeds because repetition and simple substitu-
tion repairs are very common; but repair as a psy-
chological process is not driven by string align-
ment, and deletes, restarts and rarer substitution
forms are not captured. Furthermore, the noisy
channel model assumes an inherently utterance-
global process for generating (and therefore find-

1Though see (Germesin et al., 2008) for one approach,
albeit using idiosyncratic repair categories.

ing) an underlying ‘clean’ string — much as sim-
ilar spelling correction models are word-global —
we instead take a very local perspective here.

In accordance with psycholinguistic evidence
(Brennan and Schober, 2001), we assume charac-
teristics of the repair onset allow hearers to detect
it very quickly and solve thecontinuation prob-
lem (Levelt, 1983) of integrating the repair into
their linguistic context immediately, before pro-
cessing or even hearing the end of the repair phase.
While repair onsets may take the form of inter-
regna, this is not a reliable signal, occurring in
only ≈15% of repairs (Hough and Purver, 2013;
Heeman and Allen, 1999). Our repair onset de-
tection is therefore driven by departures from flu-
ency, via information-theoretic features derived
incrementally from a language model in line with
recent psycholinguistic accounts of incremental
parsing – see (Keller, 2004; Jaeger and Tily, 2011).

Considering the time-linear way a repair is pro-
cessed and the fact speakers are exponentially less
likely to trace one word further back in repair as
utterance length increases (Shriberg and Stolcke,
1998), backwards search seems to be the most ef-
ficient reparandum extent detection method.2 Fea-
tures determining the detection of the reparan-
dum extent in the backwards search can also be
information-theoretic: entropy measures of dis-
tributional parallelism can characterize not only
rough copy dependencies, but distributionally sim-
ilar or dissimilar correspondences between se-
quences. Finally, when detecting the repair end
and structure, distributional information allows
computation of the similarity between reparan-
dum and repair. We argue a local-detection-
with-backtracking approach is more cognitively
plausible than string-based left-to-right repair la-
belling, and using this insight should allow an im-
provement in incremental accuracy, stability and
time-to-detection over string-alignment driven ap-
proaches in repair detection.

4 STIR: Strongly Incremental Repair
detection

Our system, STIR (Strongly Incremental Repair
detection), therefore takes a local incremental ap-

2We acknowledge a purely position-based model for
reparandum extent detection under-estimates prepositions,
which speakers favour as the retrace start and over-estimates
verbs, which speakers tend to avoid retracing back to, prefer-
ring to begin the utterance again, as (Healey et al., 2011)’s
experiments also demonstrate.

80

“John” “likes”

S0 S1 S2
T0

“John” “likes” “uh”

ed

S0 S1 S2 S3

ed

T1

“John” “likes” “uh”

ed

“loves”

rpstart

S0 S1 S2 S3

ed
?

S4

rpstart

T2

“John” “likes”

rmstart rmend

“uh”

ed

“loves”

rpstart

S0 S1

S2

rmstart

rmend

S3

ed

S4

rpstart

T3

“John” “likes”

rmstart rmend

“uh”

ed

“loves”

rpstart rpsub
end

S0 S1

S2

rmstart

rmend

S3

ed

S4

rpstart

rpsub
end

T4

“John” “likes”

rmstart rmend

“uh”

ed

“loves”

rpstart rpsub
end

“Mary”

S0 S1

S2

rmstart

rmend

S3

ed

S4

rpstart

rpsub
end

S5

T5

Figure 1: Strongly Incremental Repair Detection

proach to detecting repairs and isolated edit terms,
assigning words the structures in (2). We in-
clude interregnum recognition in the process, due
to the inclusion of interregnum vocabulary within
edit term vocabulary (Ginzburg, 2012; Hough and
Purver, 2013), a useful feature for repair detection
(Lease et al., 2006; Qian and Liu, 2013).

{

...[rmstart ...rmend + {ed}rpstart ...rpend]...

...{ed}... (2)

Rather than detecting the repair structure in its
left-to-right string order as above, STIR functions
as in Figure 1: first detecting edit terms (possibly
interregna) at step T1; then detecting repair onsets
rpstart at T2; if one is found, backwards searching
to find rmstart at T3; then finally finding the re-
pair endrpend at T4. Step T1 relies mainly on
lexical probabilities from an edit term language
model; T2 exploits features of divergence from a
fluent language model; T3 uses fluency of hypoth-
esised repairs; and T4 the similarity between dis-
tributions after reparandum and repair. However,
each stage integrates these basic insights via mul-
tiple related features in a statistical classifier.

4.1 Enriched incremental language models

We derive the basic information-theoretic features
required using n-gram language models, as they
have a long history of information theoretic anal-
ysis (Shannon, 1948) and provide reproducible re-
sults without forcing commitment to one partic-
ular grammar formalism. Following recent work
on modelling grammaticality judgements (Clark
et al., 2013), we implement several modifications
to standard language models to develop our basic
measures of fluency and uncertainty.

For our main fluent language models we train
a trigram model with Kneser-Ney smoothing
(Kneser and Ney, 1995) on the words and POS
tags of the standard Switchboard training data
(all files with conversation numbers beginning
sw2*,sw3* in the Penn Treebank III release), con-
sisting of≈100K utterances,≈600K words. We
follow (Johnson and Charniak, 2004) by clean-
ing the data of disfluencies (i.e. edit terms and
reparanda), to approximate a ‘fluent’ language
model. We call these probabilitiesplex

kn , ppos
kn be-

low.3

3We suppress thepos andlex superscripts below where we
refer to measures from either model.

81

We then derivesurprisalas our principal default
lexical uncertainty measurements (equation 3) in
both models; and, following (Clark et al., 2013),
the (unigram) Weighted Mean Log trigram prob-
ability (WML, eq. 4)– the trigram logprob of the
sequence divided by the inverse summed logprob
of the component unigrams (apart from the first
two words in the sequence, which serve as the
first trigram history). As here we use a local ap-
proach we restrict the WML measures to single
trigrams (weighted by the inverse logprob of the
final word). While use of standard n-gram prob-
ability conflates syntactic with lexical probability,
WML gives us an approximation toincremental
syntactic probabilityby factoring out lexical fre-
quency.

s(wi−2 . . . wi) = − log2 pkn(wi | wi−2, wi−1) (3)

WML(w0 . . . wn) =

∑i=n
i=2 log2 pkn(wi | wi−2, wi−1)

−∑n
j=2 log2 pkn(wj)

(4)

Distributional measures To approximate un-
certainty, we also derive the entropyH(w | c) of
the possible word continuationsw given a context
c, from p(wi | c) for all wordswi in the vocabu-
lary – see (5). Calculating distributions over the
entire lexicon incrementally is costly, so we ap-
proximate this by constraining the calculation to
words which are observed at least once in context
c in training,wc = {w|count(c, w) ≥ 1} , assum-
ing a uniform distribution over the unseen suffixes
by using the appropriate smoothing constant, and
subtracting the latter from the former – see eq. (6).

Manual inspection showed this approximation
to be very close, and the trie structure of our n-
gram models allows efficient calculation. We also
make use of the Zipfian distribution of n-grams
in corpora by storing entropy values for the 20%
most common trigram contexts observed in train-
ing, leaving entropy values of rare or unseen con-
texts to be computed at decoding time with little
search cost due to their small or emptywc sets.

H(w | c) = −
∑

w∈V ocab

pkn(w | c) log2 pkn(w | c) (5)

H(w | c) ≈
[

−
∑

w∈wc

pkn(w | c) log2 pkn(w | c)
]

− [n× λ log2 λ]

wheren = |V ocab| − |wc|

andλ =
1−∑

w∈wc
pkn(w | c)

n

(6)

Given entropy estimates, we can also sim-
ilarly approximate the Kullback-Leibler (KL)
divergence (relative entropy) between distribu-
tions in two different contextsc1 and c2, i.e.
θ(w|c1) and θ(w|c2), by pair-wise computing
p(w|c1) log2(

p(w|c1)
p(w|c2)) only for words w ∈ wc1 ∩

wc2 , then approximating unseen values by assum-
ing uniform distributions. Usingpkn smoothed es-
timates rather than raw maximum likelihood es-
timations avoids infinite KL divergence values.
Again, we found this approximation sufficiently
close to the real values for our purposes. All such
probability and distribution values are stored in
incrementally constructed directed acyclic graph
(DAG) structures (see Figure 1), exploiting the
Markov assumption of n-gram models to allow ef-
ficient calculation by avoiding re-computation.

4.2 Individual classifiers

This section details the features used by the 4 indi-
vidual classifiers. To investigate the utility of the
features used in each classifier we obtain values
on the standard Switchboard heldout data (PTB III
files sw4[5-9]*: 6.4K utterances, 49K words).

4.2.1 Edit term detection

In the first component, we utilise the well-known
observation that edit terms have a distinctive
vocabulary (Ginzburg, 2012), training a bigram
model on a corpus of all edit words annotated in
Switchboard’s training data. The classifier simply
uses the surprisalslex from this edit word model,
and the trigram surprisalslex from the standard
fluent model of Section 4.1. At the current position
wn, one, both or none of wordswn andwn−1 are
classified as edits. We found this simple approach
effective and stable, although some delayed deci-
sions occur in cases whereslex andWMLlex are
high in both models before the end of the edit, e.g.
“I like” → “I {like} want...”. Words classified as
ed are removed from the incremental processing
graph (indicated by the dotted line transition in
Figure 1) and the stack updated if repair hypothe-
ses are cancelled due to a delayed edit hypothesis
of wn−1.

4.2.2 Repair start detection

Repair onset detection is arguably the most crucial
component: the greater its accuracy, the better the
input for downstream components and the lesser
the overhead of filtering false positives required.

82

i havent had any good really very good experience with child care−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

W
M
L

Figure 2:WMLlex values for trigrams for a repaired utterance exhibiting thedrop at the repair onset

We use Section 4.1’s information-theoretic fea-
turess,WML,H for words and POS, and intro-
duce 5 additional information-theoretic features:
∆WML is the difference between the WML val-
ues atwn−1 andwn; ∆H is the difference in en-
tropy betweenwn−1 and wn; InformationGain
is the difference between expected entropy at
wn−1 and observeds at wn, a measure that
factors out the effect of naturally high entropy
contexts;BestEntropyReduce is the best reduc-
tion in entropy possible by an early rough hy-
pothesis of reparandum onsets within 3 words;
andBestWMLBoost similarly speculates on the
best improvement ofWML possible by positing
rmstart positions up to 3 words back. We also in-
clude simple alignment features: binary features
which indicate if the wordwi−x is identical to the
current wordwi for x ∈ {1, 2, 3}. With 6 align-
ment features, 16 N-gram features and a single
logical featureedit which indicates the presence
of an edit word at positionwi−1, rpstart detection
uses 23 features– see Table 1.

We hypothesised repair onsetsrpstart would
have significantly lower plex (lower lexical-
syntactic probability) andWMLlex (lower syntac-
tic probability) than other fluent trigrams. This
was the case in the Switchboard heldout data
for both measures, with the biggest difference
obtained forWMLlex (non-repair-onsets: -0.736
(sd=0.359); repair onsets: -1.457 (sd=0.359)). In
the POS model, entropy of continuationHpos was
the strongest feature (non-repair-onsets: 3.141
(sd=0.769); repair onsets: 3.444 (sd=0.899)). The
trigram WMLlex measure for the repaired utter-

ance “I haven’t had any [good + really very good
] experience with child care” can be seen in Fig-
ure 2. The steep drop at the repair onset shows the
usefulness ofWML features for fluency measures.

To compare n-gram measures against other lo-
cal features, we ranked the features by Informa-
tion Gain using 10-fold cross validation over the
Switchboard heldout data– see Table 1. The lan-
guage model features are far more discriminative
than the alignment features, showing the potential
of a general information-theoretic approach.

4.2.3 Reparandum start detection

In detectingrmstart positions given a hypothe-
sisedrpstart (stage T3 in Figure 1), we use the
noisy channel intuition that removing the reparan-
dum (from rmstart to rpstart) increases fluency
of the utterance, expressed here asWMLboost as
described above. When using gold standard in-
put we found this was the case on the heldout
data, with a meanWMLboost of 0.223 (sd=0.267)
for reparandum onsets and -0.058 (sd=0.224) for
other words in the 6-word history- the negative
boost for non-reparandum words captures the in-
tuition that backtracking from those points would
make the utterance less grammatical, and con-
versely the boost afforded by the correctrmstart

detection helps solve the continuation problem for
the listener (and our detector).

Parallelism in the onsets ofrpstart and
rmstart can also help solve the continuation
problem, and in fact the KL divergence be-
tweenθpos(w | rmstart, rmstart−1) and θpos(w |
rpstart, rpstart−1) is the second most useful fea-
ture with average merit 0.429 (+- 0.010) in cross-

83

validation. The highest ranked feature is∆WML
(0.437 (+- 0.003)) which here encodes the drop in
theWMLboost from one backtracked position to
the next. In ranking the 32 features we use, again
information-theoretic ones are higher ranked than
the logical features.

average merit average rank attribute
0.139 (+- 0.002) 1 (+- 0.00) Hpos

0.131 (+- 0.001) 2 (+- 0.00) WMLpos

0.126 (+- 0.001) 3.4 (+- 0.66) WMLlex

0.125 (+- 0.003) 4 (+- 1.10) spos

0.122 (+- 0.001) 5.9 (+- 0.94) wi−1 = wi

0.122 (+- 0.001) 5.9 (+- 0.70) BestWMLBoostlex

0.122 (+- 0.002) 5.9 (+- 1.22) InformationGainpos

0.119 (+- 0.001) 7.9 (+- 0.30) BestWMLBoostpos

0.098 (+- 0.002) 9 (+- 0.00) H lex

0.08 (+- 0.001) 10.4 (+- 0.49) ∆WMLpos

0.08 (+- 0.003) 10.6 (+- 0.49) ∆Hpos

0.072 (+- 0.001) 12 (+- 0.00) POS i−1 = POS i

0.066 (+- 0.003) 13.1 (+- 0.30) slex

0.059 (+- 0.000) 14.2 (+- 0.40) ∆WMLlex

0.058 (+- 0.005) 14.7 (+- 0.64) BestEntropyReducepos

0.049 (+- 0.001) 16.3 (+- 0.46) InformationGainlex

0.047 (+- 0.004) 16.7 (+- 0.46) BestEntropyReducelex

0.035 (+- 0.004) 18 (+- 0.00) ∆H lex

0.024 (+- 0.000) 19 (+- 0.00) wi−2 = wi

0.013 (+- 0.000) 20 (+- 0.00) POS i−2 = POS i

0.01 (+- 0.000) 21 (+- 0.00) wi−3 = wi

0.009 (+- 0.000) 22 (+- 0.00) edit
0.006 (+- 0.000) 23 (+- 0.00) POS i−3 = POS i

Table 1: Feature ranker (Information Gain) for
rpstart detection- 10-fold x-validation on Switch-
board heldout data.

4.2.4 Repair end detection and structure
classification

For rpend detection, using the notion of paral-
lelism, we hypothesise an effect of divergence be-
tween θlex at the reparandum-final wordrmend

and the repair-final wordrpend : for repetition re-
pairs, KL divergence will trivially be 0; for substi-
tutions, it will be higher; for deletes, even higher.
Upon inspection of our feature ranking this KL
measure ranked 5th out of 23 features (merit=
0.258 (+- 0.002)).

We introduce another feature encoding paral-
lelismReparandumRepairDifference : the differ-
ence in probability between an utterance cleaned
of the reparandum and the utterance with its
repair phase substituting its reparandum. In
both the POS (merit=0.366 (+- 0.003)) and word
(merit=0.352 (+- 0.002)) LMs, this was the most
discriminative feature.

4.3 Classifier pipeline

STIR effects a pipeline of classifiers as in Fig-
ure 3, where theed classifier only permits non
ed words to be passed on torpstart classification
and for rpend classification of the active repair
hypotheses, maintained in a stack. Therpstart

classifier passes positive repair hypotheses to the
rmstart classifier, which backwards searches up
to 7 words back in the utterance. If armstart is
classified, the output is passed on forrpend clas-
sification at the end of the pipeline, and if not re-
jected this is pushed onto the repair stack. Repair
hypotheses are are popped off when the string is
7 words beyond itsrpstart position. Putting limits
on the stack’s storage space is a way of controlling
for processing overhead and complexity. Embed-
ded repairs whosermstart coincide with another’s
rpstart are easily dealt with as they are added to
the stack as separate hypotheses.4

Classifiers Classifiers are implemented using
Random Forests (Breiman, 2001) and we use dif-
ferent error functions for each stage using Meta-
Cost (Domingos, 1999). The flexibility afforded
by implementing adjustable error functions in a
pipelined incremental processor allows control of
the trade-off of immediate accuracy against run-
time and stability of the sequence classification.

Processing complexity This pipeline avoids an
exhaustive search all repair hypotheses. If we limit
the search to within the〈rmstart, rpstart〉 possibil-
ities, this number of repairs grows approximately
in the triangular number series– i.e.n(n+1)

2 , a
nested loop over previous words asn gets incre-
mented – which in terms of a complexity class is
a quadraticO(n2). If we allow more than one
〈rmstart, rpstart〉 hypothesis per word, the com-
plexity goes up toO(n3), however in the tests that
we describe below, we are able to achieve good de-
tection results without permitting this extra search
space. Under our assumption that reparandum on-
set detection is only triggered after repair onset de-
tection, and repair extent detection is dependent
on positive reparandum onset detection, a pipeline
with accurate components will allow us to limit
processing to a small subset of this search space.

4We constrain the problem not to include embedded
deletes which may share theirrpstart word with another re-
pair – these are in practice very rare.

84

Figure 3: Classifier pipeline

5 Experimental set-up

We train STIR on the Switchboard data described
above, and test it on the standard Switchboard test
data (PTB III files 4[0-1]*). In order to avoid over-
fitting of classifiers to the basic language models,
we use a cross-fold training approach: we divide
the corpus into 10 folds and use language mod-
els trained on 9 folds to obtain feature values for
the 10th fold, repeating for all 10. Classifiers are
then trained as standard on the resulting feature-
annotated corpus. This resulted in better feature
utility for n-grams and better F-score results for
detection in all components in the order of 5-6%.5

Training the classifiers Each Random Forest
classifier was limited to 20 trees of maximum
depth 4 nodes, putting a ceiling on decoding time.
In making the classifiers cost-sensitive, MetaCost
resamples the data in accordance with the cost
functions: we found using 10 iterations over a re-
sample of 25% of the training data gave the most
effective trade-off between training time and accu-
racy.6 We use 8 different cost functions inrpstart

with differing costs for false negatives and posi-
tives of the form below, whereR is a repair ele-
ment word andF is a fluent onset:

(

Rhyp F hyp

Rgold 0 2
F gold 1 0

)

We adopt a similar technique inrmstart using 5
different cost functions and inrpend using 8 dif-
ferent settings, which when combined gives a to-
tal of 320 different cost function configurations.
We hypothesise that higher recall permitted in the
pipeline’s first components would result in better
overall accuracy as these hypotheses become re-
fined, though at the cost of the stability of the hy-

5Zwarts and Johnson (2011) take a similar approach on
Switchboard data to train a re-ranker of repair analyses.

6As (Domingos, 1999) demonstrated, there are only rela-
tively small accuracy gains when using more than this, with
training time increasing in the order of the re-sample size.

potheses of the sequence and extra downstream
processing in pruning false positives.

We also experiment with the number of repair
hypotheses permitted per word, using limits of 1-
best and 2-best hypotheses. We expect that allow-
ing 2 hypotheses to be explored perrpstart should
allow greater final accuracy, but with the trade-off
of greater decoding and training complexity, and
possible incremental instability.

As we wish to explore the incrementality versus
final accuracy trade-off that STIR can achieve we
now describe the evaluation metrics we employ.

5.1 Incremental evaluation metrics

Following (Baumann et al., 2011) we divide our
evaluation metrics intosimilarity metrics (mea-
sures of equality with or similarity to a gold stan-
dard), timing metrics(measures of the timing of
relevant phenomena detected from the gold stan-
dard) anddiachronic metrics(evolution of incre-
mental hypotheses over time).

Similarity metrics For direct comparison to
previous approaches we use the standard measure
of overall accuracy, the F-score over reparandum
words, which we abbreviateFrm (see 7):

precision=
rmcorrect

rmhyp

recall=
rmcorrect

rmgold

Frm = 2× precision× recall
precision+ recall

(7)

We are also interested in repair structural clas-
sification, we also measure F-score overall repair
components (rm words, ed words as interregna
and rp words), a metric we abbreviateFs. This
is not measured in standard repair detection on
Switchboard. To investigate incremental accuracy
we evaluate thedelayed accuracy(DA) introduced
by (Zwarts et al., 2010), as described in section
2 against the utterance-final gold standard disflu-
ency annotations, and use the mean of the 6 word
F-scores.

85

Input and current repair labels edits

John

John likes

rm rp
(⊕rm) (⊕rp)

John likes uh

ed
(⊖rm) (⊖rp)⊕ed

John likes uh loves

rm ed rp
⊕rm⊕rp

John likes uh loves Mary

rm ed rp

Figure 4: Edit Overhead- 4 unnecessary edits

Timing and resource metrics Again for com-
parative purposes we use Zwarts et al’stime-to-
detectionmetrics, that is the two average distances
(in numbers of words) consumed before first de-
tection of gold standard repairs, one fromrmstart ,
TDrm and one fromrpstart , TDrp. In our 1-best
detection system, before evaluation we know a pri-
ori TDrp will be 1 token, and TDrm will be 1 more
than the average length ofrmstart− rpstart repair
spans correctly detected. However when we in-
troduce a beam where multiplermstarts are pos-
sible perrpstart with the most likely hypothesis
committed as the current output, the latency may
begin to increase: the initially most probable hy-
pothesis may not be the correct one. In addition
to output timing metrics, we account for intrinsic
processing complexity with the metricprocessing
overhead(PO), which is the number of classifica-
tions made by all components per word of input.

Diachronic metrics To measure stability of re-
pair hypotheses over time we use (Baumann et al.,
2011)’sedit overhead(EO) metric. EO measures
the proportion of edits (add, revoke, substitute) ap-
plied to a processor’s output structure that are un-
necessary. STIR’s output is the repair label se-
quence shown in Figure 1, however rather than
evaluating its EO against the current gold stan-
dard labels, we use a new mark-up we term thein-
cremental repair gold standard: this does not pe-
nalise lack of detection of a reparandum wordrm
as a bad edit until the correspondingrpstart of that
rm has been consumed. While Frm, Fs and DA
evaluate against what Baumann et al. (2011) call
the current gold standard, the incremental gold
standard reflects the repair processing approach
we set out in 3. An example of a repaired utterance
with an EO of 44% (49) can be seen in Figure 4: of
the 9 edits (7 repair annotations and 2 correct flu-
ent words), 4 are unnecessary (bracketed). Note

Figure 6: Delayed Accuracy Curves

the final⊕rm is not counted as a bad edit for the
reasons just given.

6 Results and Discussion

We evaluate on the Switchboard test data; Ta-
ble 2 shows results of the best performing settings
for each of the metrics described above, together
with the setting achieving the highest total score
(TS)– the average % achieved of the best per-
forming system’s result in each metric.7 The set-
tings found to achieve the highest Frm (the metric
standardly used in disfluency detection), and that
found to achieve the highest TS for each stage in
the pipeline are shown in Figure 5.

Our experiments showed that different system
settings perform better in different metrics, and
no individual setting achieved the best result in
all of them. Our best utterance-final Frm reaches
0.779, marginally though not significantly exceed-
ing (Zwarts et al., 2010)’s measure and STIR
achieves 0.736 on the previously unevaluated Fs.
The setting with the best DA improves on (Zwarts
et al., 2010)’s result significantly in terms of mean
values (0.718 vs. 0.694), and also in terms of the
steepness of the curves (Figure 6). The fastest av-
erage time to detection is 1 word for TDrp and 2.6
words for TDrm (Table 3), improving dramatically
on the noisy channel model’s 4.6 and 7.5 words.

Incrementality versus accuracy trade-off We
aimed to investigate how well a system could do
in terms of achieving both good final accuracy and
incremental performance, and while the best Frm

setting had a large PO and relatively slow DA in-
crease, we find STIR can find a good trade-off set-

7We do not include time-to-detection scores in TS as it
did not vary enough between settings to be significant, how-
ever there was a difference in this measure between the 1-best
stack condition and the 2-best stack condition – see below.

86

rphyp
start F hyp

rpgold
start 0 64

F gold 1 0

rmhyp
start F hyp

rmgold
start 0 8

F gold 1 0

rphyp
end F hyp

rpgold
end 0 2

F gold 1 0

Stack depth = 2

rphyp
start F hyp

rpgold
start 0 2

F gold 1 0

rmhyp
start F hyp

rmgold
start 0 16

F gold 1 0

rphyp
end F hyp

rpgold
end 0 8

F gold 1 0

Stack depth = 1

Figure 5: The cost function settings for the MetaCost classifiers for each component, for the best Frm

setting (top row) and best total score (TS) setting (bottom row)

Frm Fs DA EO PO
Best Finalrm F-score (Frm) 0.779 0.735 0.698 3.946 1.733
Best Final repair structure F-score (Fs) 0.772 0.736 0.707 4.477 1.659
Best Delayed Accuracy ofrm (DA) 0.767 0.721 0.718 1.483 1.689
Best (lowest) Edit Overhead (EO) 0.718 0.674 0.6750.864 1.230
Best (lowest) Processing Overhead (PO) 0.716 0.671 0.673 0.875 1.229
Best Total Score (mean % of best scores) (TS)0.754 0.708 0.711 0.931 1.255

Table 2: Comparison of the best performing system settings using different measures

Frm Fs DA EO PO TDrp TDrm

1-bestrmstart 0.745 0.707 0.699 3.780 1.650 1.0 2.6
2-bestrmstart 0.758 0.721 0.701 4.319 1.665 1.1 2.7

Table 3: Comparison of performance of systems with different stack capacities

ting: the highest TS scoring setting achieves an
Frm of 0.754 whilst also exhibiting a very good
DA (0.711) – over 98% of the best recorded score
– and low PO and EO rates – over 96% of the best
recorded scores. See the bottom row of Table 2.
As can be seen in Figure 5, the cost functions for
these winning settings are different in nature. The
best non-incremental Frm measure setting requires
high recall for the rest of the pipeline to work on,
using the highest cost, 64, for false negativerpstart

words and the highest stack depth of 2 (similar to a
wider beam); but the best overall TS scoring sys-
tem uses a less permissive setting to increase in-
cremental performance.

We make a preliminary investigation into the
effect of increasing the stack capacity by com-
paring stacks with 1-bestrmstart hypotheses per
rpstart and 2-best stacks. The average differences
between the two conditions is shown in Table 3.
Moving to the 2-stack condition results in gain in
overall accuracy in Frm and Fs, but at the cost of
EO and also time-to-detection scores TDrm and
TDrp. The extent to which the stack can be in-
creased without increasing jitter, latency and com-
plexity will be investigated in future work.

7 Conclusion

We have presented STIR, an incremental repair
detector that can be used to experiment with in-
cremental performance and accuracy trade-offs. In
future work we plan to include probabilistic and
distributional features from a top-down incremen-
tal parser e.g. Roark et al. (2009), and use STIR’s
distributional features to classify repair type.

Acknowledgements

We thank the three anonymous EMNLP review-
ers for their helpful comments. Hough is sup-
ported by the DUEL project, financially supported
by the Agence Nationale de la Research (grant
number ANR-13-FRAL-0001) and the Deutsche
Forschungsgemainschaft. Much of the work was
carried out with support from an EPSRC DTA
scholarship at Queen Mary University of Lon-
don. Purver is partly supported by ConCreTe:
the project ConCreTe acknowledges the financial
support of the Future and Emerging Technologies
(FET) programme within the Seventh Framework
Programme for Research of the European Com-
mission, under FET grant number 611733.

87

References

T. Baumann, O. Buß, and D. Schlangen. 2011. Eval-
uation and optimisation of incremental processors.
Dialogue & Discourse, 2(1):113–141.

Leo Breiman. 2001. Random forests.Machine learn-
ing, 45(1):5–32.

S.E. Brennan and M.F. Schober. 2001. How listeners
compensate for disfluencies in spontaneous speech.
Journal of Memory and Language, 44(2):274–296.

Eric Brill and Robert C Moore. 2000. An improved er-
ror model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Associa-
tion for Computational Linguistics, pages 286–293.
Association for Computational Linguistics.

Alexander Clark, Gianluca Giorgolo, and Shalom Lap-
pin. 2013. Statistical representation of grammat-
icality judgements: the limits of n-gram models.
In Proceedings of the Fourth Annual Workshop on
Cognitive Modeling and Computational Linguistics
(CMCL), pages 28–36, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

Pedro Domingos. 1999. Metacost: A general method
for making classifiers cost-sensitive. InProceed-
ings of the fifth ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 155–164. ACM.

Kallirroi Georgila. 2009. Using integer linear pro-
gramming for detecting speech disfluencies. InPro-
ceedings of Human Language Technologies: The
2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, Companion Volume: Short Papers, pages
109–112. Association for Computational Linguis-
tics.

Sebastian Germesin, Tilman Becker, and Peter Poller.
2008. Hybrid multi-step disfluency detection.
In Machine Learning for Multimodal Interaction,
pages 185–195. Springer.

Jonathan Ginzburg. 2012.The Interactive Stance:
Meaning for Conversation. Oxford University
Press.

P. G. T. Healey, Arash Eshghi, Christine Howes, and
Matthew Purver. 2011. Making a contribution: Pro-
cessing clarification requests in dialogue. InPro-
ceedings of the 21st Annual Meeting of the Society
for Text and Discourse, Poitiers, July.

Peter Heeman and James Allen. 1999. Speech repairs,
intonational phrases, and discourse markers: model-
ing speakers’ utterances in spoken dialogue.Com-
putational Linguistics, 25(4):527–571.

Matthew Honnibal and Mark Johnson. 2014. Joint
incremental disfluency detection and dependency
parsing. Transactions of the Association of Com-
putational Linugistics (TACL), 2:131–142.

Julian Hough and Matthew Purver. 2013. Modelling
expectation in the self-repair processing of annotat-,
um, listeners. InProceedings of the 17th SemDial
Workshop on the Semantics and Pragmatics of Di-
alogue (DialDam), pages 92–101, Amsterdam, De-
cember.

T Florian Jaeger and Harry Tily. 2011. On language
utility: Processing complexity and communicative
efficiency. Wiley Interdisciplinary Reviews: Cogni-
tive Science, 2(3):323–335.

Mark Johnson and Eugene Charniak. 2004. A TAG-
based noisy channel model of speech repairs. In
Proceedings of the 42nd Annual Meeting on Asso-
ciation for Computational Linguistics, pages 33–39,
Barcelona. Association for Computational Linguis-
tics.

Frank Keller. 2004. The entropy rate principle as a
predictor of processing effort: An evaluation against
eye-tracking data. InEMNLP, pages 317–324.

Reinhard Kneser and Hermann Ney. 1995. Im-
proved backing-off for m-gram language modeling.
In Acoustics, Speech, and Signal Processing, 1995.
ICASSP-95., 1995 International Conference on, vol-
ume 1, pages 181–184. IEEE.

Matthew Lease, Mark Johnson, and Eugene Charniak.
2006. Recognizing disfluencies in conversational
speech.Audio, Speech, and Language Processing,
IEEE Transactions on, 14(5):1566–1573.

W.J.M. Levelt. 1983. Monitoring and self-repair in
speech.Cognition, 14(1):41–104.

M. Meteer, A. Taylor, R. MacIntyre, and R. Iyer. 1995.
Disfluency annotation stylebook for the switchboard
corpus. ms. Technical report, Department of Com-
puter and Information Science, University of Penn-
sylvania.

Tim Miller and William Schuler. 2008. A syntactic
time-series model for parsing fluent and disfluent
speech. InProceedings of the 22nd International
Conference on Computational Linguistics-Volume 1,
pages 569–576. Association for Computational Lin-
guistics.

David Milward. 1991. Axiomatic Grammar, Non-
Constituent Coordination and Incremental Interpre-
tation. Ph.D. thesis, University of Cambridge.

Xian Qian and Yang Liu. 2013. Disfluency detection
using multi-step stacked learning. InProceedings of
NAACL-HLT, pages 820–825.

Mohammad Sadegh Rasooli and Joel Tetreault. 2014.
Non-monotonic parsing of fluent umm I mean dis-
fluent sentences.EACL 2014, pages 48–53.

Hannes Rieser and David Schlangen. 2011. Introduc-
tion to the special issue on incremental processing in
dialogue.Dialogue & Discourse, 2(1):1–10.

88

Brian Roark, Asaf Bachrach, Carlos Cardenas, and
Christophe Pallier. 2009. Deriving lexical and
syntactic expectation-based measures for psycholin-
guistic modeling via incremental top-down parsing.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume
1-Volume 1, pages 324–333. Association for Com-
putational Linguistics.

Claude E. Shannon. 1948. A mathematical theory
of communication. technical journal.AT & T Bell
Labs.

Elizabeth Shriberg and Andreas Stolcke. 1998. How
far do speakers back up in repairs? A quantitative
model. InProceedings of the International Confer-
ence on Spoken Language Processing, pages 2183–
2186.

Elizabeth Shriberg. 1994.Preliminaries to a Theory
of Speech Disfluencies. Ph.D. thesis, University of
California, Berkeley.

Simon Zwarts and Mark Johnson. 2011. The impact of
language models and loss functions on repair disflu-
ency detection. InProceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies - Volume
1, HLT ’11, pages 703–711, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Simon Zwarts, Mark Johnson, and Robert Dale. 2010.
Detecting speech repairs incrementally using a noisy
channel approach. InProceedings of the 23rd Inter-
national Conference on Computational Linguistics,
COLING ’10, pages 1371–1378, Stroudsburg, PA,
USA. Association for Computational Linguistics.

89

