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Abstract

This paper introduces IQPs (Integer Quadratic
Programs) as a way to model joint inference
for the task of concept recognition in clinical
domain. IQPs make it possible to easily in-
corporate soft constraints in the optimization
framework and still support exact global infer-
ence. We show that soft constraints give statis-
tically significant performance improvements
when compared to hard constraints.

1 Introduction
In this paper, we study the problem of concept

recognition in the clinical domain. State-of-the-art
approaches (de Bruijn et al., 2011; Patrick et al.,
2011; Torii et al., 2011; Minard et al., 2011; Jiang
et al., 2011; Xu et al., 2012; Roberts and Harabagiu,
2011; Jindal and Roth, 2013) for concept recogni-
tion in clinical domain (Uzuner et al., 2011) use
sequence-prediction models like CRF (Lafferty et
al., 2001), MEMM (McCallum et al., 2000) etc.
These approaches are limited by the fact that they
can model only local dependencies (most often,
first-order models like linear chain CRFs are used
to allow tractable inference).

Clinical narratives, unlike newswire data, provide
a domain with significant knowledge that can be ex-
ploited systematically to improve the accuracy of
the prediction task. Knowledge in this domain can
be thought of as belonging to two categories: (1)
Background Knowledge captured in medical ontolo-
gies like UMLS (Url1, 2013), MeSH and SNOMED
CT and (2) Discourse Knowledge driven by the
fact that the narratives adhere to a specific writing
style. While the former can be used by generating
more expressive knowledge-rich features, the lat-
ter is more interesting from our current perspective,

since it provides global constraints on what output
structures are likely and what are not. We exploit
this structural knowledge in our global inference for-
mulation.

Integer Linear Programming (ILP) based ap-
proaches have been used for global inference in
many works (Roth and Yih, 2004; Punyakanok et
al., 2004; Punyakanok et al., 2008; Marciniak and
Strube, 2005; Bramsen et al., 2006; Barzilay and
Lapata, 2006; Riedel and Clarke, 2006; Clarke and
Lapata, 2007; Clarke and Lapata, 2008; Denis et al.,
2007; Chang et al., 2011). However, in most of these
works, researchers have focussed only on hard con-
straints while formulating the inference problem.

Formulating all the constraints as hard constraints
is not always desirable because the constraints are
not perfect in many cases. In this paper, we pro-
pose Integer Quadratic Programs (IQPs) as a way
of formulating the inference problem. IQPs is a
richer family of models than ILPs and it enables
us to easily incorporate soft constraints into the in-
ference procedure. Our experimental results show
that soft constraints indeed give much better perfor-
mance than hard constraints.

2 Identifying Medical Concepts
Task Description Our input consists of clinical re-
ports in free-text (unstructured) format. The task is:
(1) to identify the boundaries of medical concepts
and (2) to assign types to such concepts. Each con-
cept can have 3 possible types: (1) Test, (2) Treat-
ment, and (3) Problem. We would refer to these
three types by TEST, TRE and PROB in the follow-
ing discussion.

Our Approach In the first step, we identify the
concept boundaries using a CRF (with BIO encod-
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[Chest x-ray] gave positive evidence for [atelectasis] and [sarcoidosis].
Test Problem Problem

(a) Example 1

No [hemoptysis], [hematemesis], [urgency], [abdominal pain], [black or tarry stools], [dysuria].
Problem ProblemProblem ProblemProblemProblem

(b) Example 2

Figure 1: This figure motivates the global inference procedure we used. For discussion, please refer to §2.

ing). Features used by the CRF include the con-
stituents given by MetaMap (Aronson and Lang,
2010; Url2, 2013), shallow parse constituents, sur-
face form and part-of-speech (Url3, 2013) of words
in a window of size 3. We also use conjunctions of
the features.

After finding concept boundaries, we determine
the probability distribution for each concept over 4
possible types (TEST, TRE, PROB or NULL). These
probability distributions are found using a multi-
class SVM classifier (Chang and Lin, 2011). Fea-
tures used for training this classifier include con-
cept tokens, full text of concept, bi-grams, head-
word, suffixes of headword, capitalization pattern,
shallow parse constituent, Metamap type of concept,
MetaMap type of headword, occurrence of concept
in MeSH (Url4, 2013) and SNOMED CT (Url5,
2013), MeSH and SNOMED CT descriptors.

Inference Procedure: The final assignment of
types to concepts is determined by an inference pro-
cedure. The basic principle behind our inference
procedure is: “Types of concepts which appear close
to one another are often closely related. For some
concepts, type can be determined with more confi-
dence. And relations between concepts’ types guide
the inference procedure to determine the types of
other concepts.” We will now explain it in more de-
tail with the help of examples. Figure 1 shows two
sentences in which the concepts are shown in brack-
ets and correct (gold) types of concepts are shown
above them.

First, consider first and second concepts in Fig-
ure 1a. These concepts follow the pattern: [Con-
cept1] gave positive evidence for [Concept2]. In
clinical narratives, such a pattern strongly suggests
that Concept1 is of type TEST and Concept2 is of
type PROB. Table 1 shows additional such patterns.
Next, consider different concepts in Figure 1b. All

Pattern
1 using [TRE] for [PROB]
2 [TEST] showed [PROB]
3 Patient presents with [PROB] status post

[TRE]
4 use [TRE] to correct [PROB]
5 [TEST] to rule out [PROB]
6 Unfortunately, [TRE] has caused [PROB]

Table 1: Some patterns that were used in constraints.

these concepts are separated by commas and hence,
form a list. It is highly likely that such concepts
should have the same type.

3 Modeling Global Inference
Inference is done at the level of sentences. Sup-

pose there are m concepts in a sentence. Each of
the m concepts has to be assigned one of the follow-
ing types: TEST, TRE, PROB or NULL. To represent
this as an inference problem, we define the indicator
variables xi,j where i takes values from 1 to m (cor-
responding to concepts) and j takes values from 1 to
4 (corresponding to 4 possible types). pi,j refers to
the probability that the ith concept has type j.

We can now write the following optimization
problem to find the optimal concept types:

max
x

m∑
i=1

4∑
j=1

xi,j · pi,j (1)

subject to
4∑

j=1

xi,j = 1 ∀i (2)

xi,j ∈ {0, 1} ∀i, j (3)

The objective function in Equation (1) expresses
the fact that we want to maximize the expected num-
ber of correct predictions in each sentence. Equa-
tion (2) enforces the constraint that each concept has
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a unique type. We would refer to these as Type-1
constraints.
3.1 Constraints Used

In this subsection, we will describe two addi-
tional types of constraints (Type-2 and Type-3)
that were added to the optimization procedure de-
scribed above. Whereas Type-1 constraints de-
scribed above were formulated as hard constraints,
Type-2 and Type-3 constraints are formulated as
soft constraints.
3.1.1 Type-2 Constraints

Certain constructs like comma, conjunction, etc.
suggest that the 2 concepts appearing in them should
have the same type. Figure 1b shows an example of
such a constraint. Suppose that there are n2 such
constraints. Also, assume that the lth constraint says
that the concepts Rl and Sl should have the same
type. To model this, we define a variable wl as fol-
lows:

wl =

4∑
m=1

(xRl,m − xSl,m)2 (4)

Now, if the concepts Rl and Sl have the same
type, then wl would be equal to 0; otherwise, wl

would be equal to 2. So, the lth constraint can be
enforced by subtracting (ρ2 · wl

2 ) from the objective
function given by Equation (1). Thus, a penalty of
ρ2 would be enforced iff this constraint is violated.
3.1.2 Type-3 Constraints

Some short patterns suggest possible types for the
concepts which appear in them. Each such pattern,
thus, enforces a constraint on the types of corre-
sponding concepts. Figure 1a shows an example
of such a constraint. Suppose that there are n3

such constraints. Also, assume that the kth con-
straint says that the concept A1,k should have the
type B1,k and that the concept A2,k should have
the type B2,k. Equivalently, the kth constraint can
be written as follows in boolean algebra notation:
(xA1,k,B1,k

= 1)∧(xA2,k,B2,k
= 1). For the kth con-

straint, we introduce one more variable zk ∈ {0, 1}
which satisfies the following condition:

zk = 1⇔ xA1,k,B1,k
∧ xA2,k,B2,k

(5)

Using boolean algebra, it is easy to show that
Equation (5) can be reduced to a set of linear in-
equalities. Thus, we can incorporate the kth con-

max
x

m∑
i=1

4∑
j=1

xi,j · pi,j −
n3∑

k=1

ρ3(1− zk)

−
n2∑
l=1

(
ρ2 ·

∑4
m=1(xRl,m − xSl,m)2

2

) (6)

subject to
4∑

j=1

xi,j = 1 ∀i (7)

xi,j ∈ {0, 1} ∀i, j (8)
zk = 1⇔ xA1,k,B1,k

∧ xA2,k,B2,k
∀k ∈ {1...n3} (9)

Figure 2: Final Optimization Problem (an IQP)

straint in the optimization problem by adding to it
the constraint given by Equation (5) and by subtract-
ing (ρ3(1 − zk)) from the objective function given
by Equation (1). Thus, a penalty of ρ3 is imposed iff
kth constraint is not satisfied (zk = 0).

3.2 Final Optimization Problem - An IQP
After incorporating all the constraints mentioned

above, the final optimization problem (an IQP) is
shown in Figure 2. We used Gurobi toolkit (Url6,
2013) to solve such IQPs. In our case, it solves
76 IQPs per second on a quad-core server with In-
tel Xeon X5650 @ 2.67 GHz processors and 50 GB
RAM.

4 Experiments and Results
4.1 Datasets and Evaluation Metrics

For our experiments, we used the datasets pro-
vided by i2b2/VA team as part of 2010 i2b2/VA
shared task (Uzuner et al., 2011). The datasets
used for this shared task contained de-identied clin-
ical reports from three medical institutions: Part-
ners Healthcare (PH), Beth-Israel Deaconess Med-
ical Center (BIDMC) and the University of Pitts-
burgh Medical Center (UPMC). UPMC data was di-
vided into 2 sections, namely discharge (UPMCD)
and progress notes (UPMCP). A total of 349 train-
ing reports and 477 test reports were made available
to the participants. However, data which came from
UPMC (more than 50% data) was not made avail-
able for public use. As a result, we had only 170
clinical reports for training and 256 clinical reports
for testing. Table 3 shows the number of clinical re-
ports made available by different institutions. The
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B BK BC BKC
P R F1 P R F1 P R F1 P R F1

TEST 92.4 79.4 85.4 91.9 80.2 85.7 92.7 79.6 85.7 92.1 80.4 85.8
TRE 92.1 73.6 81.8 92.0 79.5 85.3 92.3 76.8 83.8 92.0 80.2 85.7
PROB 83.6 83.6 83.6 88.9 83.7 86.3 85.9 83.8 84.8 89.6 83.9 86.7

OVERALL 88.4 79.4 83.6 90.7 81.4 85.8 89.6 80.5 84.8 91.0 81.7 86.1

Table 2: Our final system, BKC, consistently performed the best among all 4 systems (B, BK, BC and BKC).

PH BIDMC UPMCD UPMCP
Train 97 73 98 81
Test 133 123 102 119

Table 3: Dataset Characteristics

strikethrough text in this table indicates that the data
was not made available for public use and hence, we
couldn’t use it. We used about 20% of the training
data as a development set. For evaluation, we report
precision, recall and F1 scores.

4.2 Results
In this section, we would refer to following 4

systems: (1) Baseline (B), (2) Baseline + Knowl-
edge (BK), (3) Baseline + Constraints (BC) and
(4) Baseline + Knowledge + Constraints (BKC).
Please note that the difference between B and
BK is that B does not use the features derived
from domain-specific knowledge sources (namely
MetaMap, UMLS, MeSH and SNOMED CT) for
training the classifiers. Both B and BK do not use
the inference procedure. BKC uses all the features
and also the inference procedure. In addition to
these 4 systems, we would refer to another system,
namely, BKC-HARD. This is similar to BKC sys-
tem. However, it sets ρ2 = ρ3 = 1 which effectively
turns Type-2 and Type-3 constraints into hard con-
straints by imposing very high penalty.
4.2.1 Importance of Soft Constraints

Figures 3a and 3b show the effect of varying the
penalties (ρ2 and ρ3) for Type-2 and Type-3 con-
straints respectively. These figures show the F1-
score of BKC on the development set. Penalty of
0 means that the constraint is not active. As we in-
crease the penalty, the constraint becomes stronger.
As the penalty becomes 1, the constraint becomes
hard in the sense that final assignments must respect
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Figure 3: These figures show the result of tuning the
penalty parameters (ρ2 and ρ3) for soft constraints.

BKC-HARD BKC
TEST 84.7 85.8
TRE 84.7 85.7
PROB 85.6 86.7

OVERALL 85.1 86.1

Table 4: Soft constraints (BKC) consistently perform
much better than hard constraints (BKC-HARD).

the constraint. We observe from Figures 3a and 3b
that for Type-2 and Type-3 constraints, global max-
ima is attained at ρ2 = 0.6 and ρ3 = 0.3 respec-
tively.

Hard vs Soft Constraints Table 4 compares the
performance of BKC-HARD with that of BKC.
First 3 rows in this table show the performance of
both systems for the individual categories (TEST,
TRE and PROB). The fourth row shows the overall
score of both systems. BKC outperformed BKC-
HARD on all the categories by statistically signifi-
cant differences at p = 0.05 according to Bootstrap
Resampling Test (Koehn, 2004). For the OVERALL
category, BKC improved over BKC-HARD by 1.0
F1 points.
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Figure 4: This figure shows the effect of training data
size on performance of concept recognition.

4.2.2 Comparing with state-of-the-art baseline
In the 2010 i2b2/VA shared task, majority of

top systems were CRF-based models, motivating
the use of CRF as our baseline. Table 2 com-
pares the performance of 4 systems: B, BK, BC
and BKC. As pointed out before, our BK system
uses CRF for boundary detection, employs all the
knowledge-based features and is very similar to the
top-performing systems in i2b2 challenge. We see
from Table 2 that BKC consistently performed the
best for individual as well as overall categories1.
This result is statistically significant at p = 0.05
according to Bootstrap Resampling Test (Koehn,
2004). It should also be noted that BC performed
significantly better than B for all the categories.
Thus, the constraints are helpful even in the ab-
sence of knowledge-based features. Since we report
results on publicly available datasets, future works
would be able to compare their results with ours.
4.2.3 Effect of training data size

In Figure 4, we report the overall F1-score on a
part of the development set as we vary the size of the
training data from 40 documents to 130 documents.
We notice that the performance increases steadily as
more and more training data is provided. This sug-
gests that if we could train on full training data as
was made available in the challenge, the final scores
could be much higher. We also notice from the fig-
ure that BKC consistently outperforms the state-of-
the-art BK system as we vary the size of the training
data, indicating the robustness of the joint inference
procedure.

1Please note that the results reported in Table 2 can not be
directly compared with those reported in the challenge because
we only had a fraction of the original training and testing data.

5 Discussion and Related Work
In this paper, we chose to train a rather simple se-

quential model (using CRF), and focused on incor-
porating global constraints only at inference time2.
While it is possible to jointly train the model with
the global constraints (as illustrated by Chang et al.
(2007), Mann and McCallum (2007), Mann and Mc-
Callum (2008), Ganchev et al. (2010) etc.), this pro-
cess will be a lot less efficient, and prior work (Roth
and Yih, 2005) has shown that it may not be benefi-
cial.

Roth and Yih (2004, 2007) suggested the use of
integer programs to model joint inference in a fully
supervised setting. Our paper follows their concep-
tual approach. However, they used only hard con-
straints in their inference formulation. Chang et
al. (2012) extended the ILP formulation and used
soft constraints within the Constrained Conditional
Model formulation (Chang, 2011). However, their
implementation performed only approximate infer-
ence. In this paper, we extended the integer lin-
ear programming to a quadratic formulation, argu-
ing that it simplifies the modeling step3, and showed
that it is possible to do exact inference efficiently.

Conclusion
This paper presented a global inference strategy

(using IQP) for concept recognition which allows
us to model structural knowledge of the clinical do-
main as soft constraints in the optimization frame-
work. Our results showed that soft constraints are
more effective than hard constraints.
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