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Abstract

We propose a Laplacian structured sparsity
model to study computational branding ana-
lytics. To do this, we collected customer re-
views from Starbucks, Dunkin’ Donuts, and
other coffee shops across 38 major cities
in the Midwest and Northeastern regions of
USA. We study the brand related language
use through these reviews, with focuses on
the brand satisfaction and gender factors. In
particular, we perform three tasks: auto-
matic brand identification from raw text, joint
brand-satisfaction prediction, and joint brand-
gender-satisfaction prediction. This work ex-
tends previous studies in text classification by
incorporating the dependency and interaction
among local features in the form of structured
sparsity in a log-linear model. Our quantita-
tive evaluation shows that our approach which
combines the advantages of graphical model-
ing and sparsity modeling techniques signifi-
cantly outperforms various standard and state-
of-the-art text classification algorithms. In ad-
dition, qualitative analysis of our model re-
veals important features of the language uses
associated with the specific brands.

1 Introduction

In marketing science, branding is a modern market-
ing strategy of creating a unique image for a prod-
uct in the customers’ mind. Establishing the brand
in the broad social context is just as important as
building a good product (Makens, 1965; Lederer
and Hill, 2001; Kim et al., 2013). In fact, blind
taste test experiments have frequently shown how
branding directly leads to the success of products

and companies. Most notably is a continued study
sponsored by Pepsi, known as the Pepsi Challenge1,
where Pepsi demonstrates how even though people
preferred the taste of Pepsi, Coca-Cola’s branding
has made it more popular. Even now, Microsoft
uses similar blind taste tests2 to compare search en-
gines, Bing and Google, showing that although par-
ticipants prefer Bing’s results, Google’s brand might
have strengthened over the years. These studies all
suggest that brand and its associations play impor-
tant roles in the customers’ perceptions and deci-
sions.

To accommodate the market change, companies
frequently adjust branding strategies by analyzing
how their customers receive and respond to brand-
ing messages. So far, such analysis is often done
by using surveys and focus groups (Moon and
Quelch, 2006), which is expensive and not time-
efficient. Recently, with the advance of machine
learning techniques, researchers from the chemistry
and vision communities started to pay attention to
the problem of automatic brand identification from
smell (Luo et al., 2004) and images (Pelisson et al.,
2003). In contrast, even though textual data that
contains hidden branding information is abundantly
available in many forms over the Web, automatic
discovery and computational analysis on such data
are not well studied in the past.

Computational branding analytics (CBA) seeks to
extract information, trends, and demographics about
a brand on the basis of free-form text, e.g. from
blogs, Twitter comments, reviews, or forum posts.
As described in Section 3, in this study we use a sub-

1http://en.wikipedia.org/wiki/Pepsi Challenge
2http://www.bingiton.com/
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set of online Yelp reviews that discuss coffee shops.
The main reason is that this source has the advan-
tage of providing ground truth of multi-labeled data:
each review has meta-information defining a 5-star
rating, the object of the review, and the reviewer’s
name (from which we infer gender). For the pur-
pose of this paper we decompose CBA into three
sub-problems.

• How well can the brand being discussed be
identified by the raw text?

• How well can the joint value of brand and rat-
ing be predicted?

• How well can the joint value of brand, rating,
and gender be predicted?

There are two reasons why one may want to con-
struct text-based classifiers of brand, rating, and gen-
der, when such information is present in the review
header. The first is that trained classifiers can then be
applied to other data sources, such as blogs, where
what is available is only the review itself. The sec-
ond is that by “opening the hood” to the classifier
one can examine which words exhibit high affilia-
tion with the predicted variables. This can be done,
for example, to contrast the preferences of males and
females with respect to evaluating the qualities of a
coffee shop. Examples of such insights are provided
in Section 5.5.

In this paper, we propose a Laplacian structured
sparsity model for computational branding analyt-
ics. Our main contributions are two-fold: first, in
the novel task of automatic brand identification from
text, we show that by incorporating the dependency
structure and graphical interactions among local
features, our model significantly outperforms vari-
ous text classification algorithms such as the stan-
dard logistic regression, principle component anal-
ysis (PCA), linear kernel support vector machine
(SVM), sparse, non-sparse, and mixed-penalty log-
linear models. These improvements could also be
seen from a joint brand-satisfaction prediction task
and a gender-specific joint brand-satisfaction predic-
tion task. In addition, our Laplacian augmented L1-
ball projection experiment shows that the advantage
of Laplacian structured sparsity is robust across dif-
ferent parameter settings in a L1-constrained prob-
lem. Secondly, the qualitative analysis of our ma-
chine learning model shows the interesting features

and language use that relate to brand and its associ-
ated pragmatics.

In the next section, we outline related work in
CBA, sparsity, and spectral graph learning. In Sec-
tion 3, we describe the corpus in this study. The
Laplacian structured sparsity model is introduced in
Section 4. The experimental setup and results are
presented in Section 5. A short discussion is fol-
lowed in Section 6 and we conclude in Section 7.

2 Related Work

Early work on statistical brand analysis in the
marketing community dates back to the work of
Kuehn (1962), where he first hypothesizes that
brand choice could be described as a learning pro-
cess. Guadagni and Little (1983) further empiri-
cally tested the hypothesis by building a calibrated
multinomial logistic regression model to predict the
purchase of ground coffee, using the data from the
optical scanning of product code in supermarkets.
Outside the marketing community, statistical brand
analysis is rarely seen. More recently, a study (Luo
et al., 2004) applies neural networks to identify
cigarette brands, with the hope of detecting illegal
cigarettes from smell features. In image process-
ing, researchers have studied the problem of brand
identification from image using histogram compar-
ison (Pelisson et al., 2003). However, to the best
of our knowledge, even though textual data is vastly
available, the problems of automatic brand identi-
fication from raw text and computational branding
analytics, are new.

Although the domain of our data is on branding,
our work also aligns with previous work in text and
language classification. Over the years, logistic re-
gression and linear kernel SVM have shown to be
very successful in various regression and classifi-
cation tasks in NLP (Chahuneau et al., 2012; Bi-
adsy et al., 2011). Recently, sparse discriminative
methods that model the sparse nature of text be-
come attractive, because unlike dense models, they
are less likely to overfit to the training data, easier
to interpret, and often lead to state-of-the-art results.
For example, Eisenstein et al. (2011b) use the L1,∞
sparsity model to discover sociolinguistic patterns.
Wang et al. (2012a) compare lasso, ridge, and elas-
tic net models to predict impoliteness behaviors in
teenager conversations. Martins et al. (2011) inves-
tigate the tree-structured overlapping group lasso for
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structured prediction problems. Chen et al. (2013)
study the use of element-wise, group-wise, and hi-
erarchical sparsity models for dialogue act classif-
cation. Sparse inducing priors are also investigated
and shown to be effective in generative models for
topic modeling (Eisenstein et al., 2011a; Wang et
al., 2012b; Paul and Dredze, 2012).

Besides lacking sparsity, since the traditional dis-
criminative methods in NLP often use interdepen-
dent features such as n-grams tokens, and part-of-
speech tags, they also suffer from the problem of not
explicitly modeling the complex dependency struc-
ture and interaction of local features from a global
perspective. To solve this problem, graph meth-
ods seem to be a good solution, because they are
simple, generalizable, and are often used to model
such complex dependency structures (Cohen, 2012).
However, combining the sparse modeling and spec-
tral graphical modeling approaches in a principled
way is challenging. Belkin et al. (2006) and Wein-
berger et al. (2007) are among the first to investi-
gate graph Laplacians as a manifold regularization
method for statistical learning. Recently, Gao et
al. (2012) propose a histogram intersection based
kNN method to construct a Laplacian matrix for a
least-square sparse coding problem in image pro-
cessing. Unfortunately, this method might be too
specific to the SIFT-based image coding tasks, thus
might not be applicable to the text classification
problem that utilizes n-gram lexical features.

3 Datasets

We collected Yelp reviews from 1,860 Starbucks,
Dunkin’ Donuts3, and other coffee shops all over
the Midwest and Northeast regions in the period of
2009. A detail statistics of our data can be found
in Table 1. The Midwest region includes 12 states4

and 19 major cities, and the Northeast region in-
cludes 9 states5 and 19 major cities. For each region,
we divide the coffee shops into 60% training, 20%
development, and 20% test, and there are no over-
laps of coffee shops among these subsets. There are
three values for the brand label: Starbucks, Dunkin’
Donuts, and all other coffee shop brands. The ma-

3We chose these two brands because they are reported as
the leading coffee shops by WSJ (Ovide, 2011) and Forbes (Di-
Carlo, 2004).

4IL, WI, SD, ND, MN, MO, OH, NE, KS, IA, IN, and MI.
5CT, ME, MA, NH, RI, VT, NJ, NY and PA.

Coffee Shops Reviews
Train Dev. Test Train Dev. Test

1 451 150 150 3,513 1,087 1,424
2 665 222 222 6,982 2,530 2,358

T. 1,116 372 372 10,495 3,617 3,782

Table 1: Dataset statistics. 1: midwest region. 2: north-
east region. T.: total.

jority class is “all other coffee shop brands”, and
the majority baseline is shown in Table 2. In the
task of joint brand-satisfaction prediction, we utilize
the review scores to approximate user satisfaction:
scores 1-2 as the unsatisfactory label, 3 as moder-
ate, and 4-5 as satisfactory. Since the Yelp reviews
do not reveal the reviewer’s gender, we use a similar
method that U.S. Census Bureau used (OConnell
and Gooding, 2006): we first automatically match
the first name of the reviewer with the prior name-
gender distributions in the census records, then man-
ually examine the no-match cases and a subsample
of the matched cases. For those who we cannot
determine the gender, the review will be dropped
from the gender-specific brand-satisfaction predic-
tion task. After filtering, there are 8,528 documents
for training, 2,928 for development, and, 3,046 for
testing. Since the focus of this paper is not on fea-
ture engineering, we use unigram features to repre-
sent each review. Below is an example of positive
review from a male Starbucks customer from Mid-
west.

My favorite place for my iced vanilla lattes.
They have screwed up my order before: instead
of a grande, I got a venti. Not a fan of their
pastries though. I got a donut once, and ended
up feeding it to a pigeon in city garden. Friendly
and fast service. Not open Sundays.

The coffee shop dataset is freely available6 for re-
search purposes.

4 Our Approach

4.1 Problem Formulation and Predictive Tasks
The automatic brand identification problem could
be considered as a traditional multiclass classifica-

6http://www.cs.cmu.edu/˜yww/data/emnlp2013.zip
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tion problem where the estimated label Ŷ could
be drawn from Mult(Γ), where Γ is the parame-
ter for the multinomial distribution. To solve this,
a simple but accurate solution is to decompose the
multiclass problem into multiple binary classifica-
tion problems (Rifkin and Klautau, 2004) by train-
ing k one-vs-all binary classifiers, and then use the
argmax criteria to select the best hypothesis from the
k posteriors. As for a binary classifier, we need to
infer the posterior from a Bernoulli distribution that
is parametrized by θ̂y. Similarly, we can derive k
binary classifiers:

θ̂(1)
y , θ̂(2)

y , ..., θ̂(k)
y . (1)

So, instead of drawing Ŷ from a multinomial distri-
bution Mult(Γ), we can draw the final label Ŷ that
has the largest posterior across all k classifiers:

Ŷ = argmax
Y,i=1,2,...,k

Pr(Y |θ̂(i)
y , ~Xt) (2)

where ~Xt is the testing vector, and Pr(Y |θ̂(i)
y , ~Xt) is

the posterior probability given the learned classifiers
and the testing vector.

In this paper, we investigate three multiclass clas-
sification tasks: first, we perform a 3-way classi-
fication task for automatic brand identification. In
the task of brand-satisfaction prediction, we model
the brand and the satisfaction label at the same
time (Chahuneau et al., 2012): we perform the task
of jointly predicting aggregate brand-satisfaction
score for a review using 9-way classification. Sim-
ilarly, we perform 18-way classification for the
gender-specific joint brand-satisfaction prediction
task.

4.2 The Log-Linear Framework and Its
Regularized Variants

If we consider the standard logistic regression model
as the binary classifier in this log-linear framework7,
then each classifier can be written as:

θ̂y =
exp

(
~W> ~Xj

)
1 + exp

(
~W> ~Xj

) (3)

here, ~Xj is the j-th observed feature vector, label
y ∈ {0, 1}, and ~W is a vector of the coefficients. To

7We thank Jacob Eisenstein for the initial derivation of the
logistic regression model.

estimate the model parameters in equation (3), we
only need to set the weights ~W . We can obtain the
following log likelihood, and its gradient function
by taking the first-order partial derivative of ~W :

` =
∑

j

yj log θ̂yj + (1− yj) log(1− θ̂yj ) (4)

∂`

∂ ~W
=
∑

j

(
∂θ̂yj

∂ ~W

)(
yj

θ̂yj

− 1− yj

1− θ̂yj

)
(5)

∂θ̂yj

∂ ~W
=
(
θ̂yj − (θ̂yj )2

)
~X, (6)

since the log likelihood objective function (4) is con-
cave, using standard gradient ascent with maximum
likelihood estimation can solve the problem. How-
ever, this model does not penalize the noisy features
and unreliable features that might overfit to the train-
ing data. To address this issue, we introduce the L1

norm from lasso technique (Tibshirani, 1996) to reg-
ularize the above likelihood function. Thus, instead
of maximizing the likelihood, we can minimize the
loss function of the negative log-likelihood with a
linear penalty:

min
(
− `+ λ1|| ~W ||

)
(7)

where λ1 is the regularization coefficient. The bene-
fit of L1 penalty in a discriminative model is sim-
ilar to the double exponential distribution of the
sparse priors in generative models (Eisenstein et al.,
2011a): they both push the weights of many noisy
features into zeros, revealing only the important fea-
tures. However, since the L1 penalty can intro-
duce discontinuities to the original convex function,
we can also consider an alternative non-sparse ridge
estimator (Le Cessie and Van Houwelingen, 1992)
with log loss and L2 norm, and has the convex prop-
erty:

min
(
− `+ λ2|| ~W ||2

)
(8)

Another option that balances the sparsity and
smoothness would be the elastic net model (Zou and
Hastie, 2005) that uses the composite penalty:

min
(
− `+ λ1|| ~W ||+ λ2|| ~W ||2

)
(9)

4.3 The Laplacian Structured Sparsity Model
So far, none of the above element-wise penalty mod-
els in the previous subsection takes into account the
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dependency structure of the local features. Inspired
by Gao et al.(2012), we group the local features that
have similar distributions together. The intuition is
that, for features that have very similar empirical dis-
tributions in the training set, their weights should not
be drastically different after the learning process in
the same task. In our new objective function, it is
desirable to introduce a new component that struc-
turally penalize these cases where features that are
very similar to each other, but have learned com-
pletely different weights, probably due to the noise
or the data sparsity issue in the training data.
The Objective Function: To do this, we first define
an inter-feature affinity matrix A, where A(p,q) mea-
sures the similarity between a pair of features p and
q. In the spectral graph theory, this affinity matrix
can be viewed as a weighted undirected graph G =
(V,E), where each node Vp denotes a feature p, and
each edge E(p,q) indicates the closeness among the
features p and q. We also introduce a weighted di-
agonal degree matrix D, of which each element in
the diagonal D(p,p) is the sum of all weighted con-
nections of node Vp: D(p,p) =

∑Q
q=1A(p,q). We

propose the following objective function:

min
(
− `+ λ1|| ~W ||+ λ2|| ~W ||2 (10)

+ α
∑
(p,q)

|| ~Wp − ~Wq||2A(p,q)

)
(11)

We then denote a graph Laplacian matrix L = D −
A (Belkin and Niyogi, 2001), and rewrite the objec-
tive function as:

min
(
− `+ λ1|| ~W ||+ λ2|| ~W ||2 (12)

+ α( ~W>L ~W )
)

(13)

where α is the regularization parameter for the
Laplacian structured sparsity term. Intuitively, the
objective function can be interpreted as the sum of
a negative log loss function, the sparsity-inducing
penalty, the quadratic penalty, and the Laplacian
structured penalty. Or, another view of this new
model could be seen as a Laplacian augmented elas-
tic net model where structured sparsity and feature
interaction are considered.
The Laplacian Matrix: In this model, a key aspect
is to derive the Laplacian matrix L. We propose the
following three steps to learn the Laplacian matrix:

Figure 1: An example of the graph G, the corresponding
affinity matrixA, and the corresponding Laplacian matrix
L.

1. Construct the distance matrix Dist. To con-
struct the distance matrix between each fea-
ture, we first transpose the instance-feature ma-
trix, I =

∑
j
~Xj , and assume that each feature

(e.g. unigram in our task) is a random variable
that has a multinomial distribution over the in-
stances in the training set. Then, we compare
each pair of features, and calculate the inter-
feature distance matrix Dist with Euclidean
distance as a measure, and use the k-nearest
neighbors (kNN) method (Beyer et al., 1999)
to select the top neighbors of each feature.

2. Derive the affinity matrix A. To assign the
weight on the edge E(p,q) for each connected
nodes (the kNN of V in Dist), we use the
cosine similarity cosine(Vp, Vq) metric (Wang
and Hirschberg, 2011).

3. Generate the degree matrix D and Lapla-
cian matrix L. As discussed earlier, we sum
up the symmetric affinity matrix by row, and
obtain a diagonal degree matrix D, and we fur-
ther define a Laplacian matrix L = D −A.

To calculate the above matrices in an efficient man-
ner, we partition the covariate into blocks, and pro-
cess each block in parallel (Chen et al., 2011). An
intuitive example of the graphG, its associated affin-
ity matrix A, and Laplacian matrix L, is shown in
Figure 1.
Parameter Estimation: Regarding the optimiza-
tion of objective function in (12-13), a notable prob-
lem is that the sparsity inducing L1 term is non-
differentiable, whereas this is not the case for the L2

norm and the Laplacian structured sparsity term. If
we first take the derivative of the latter two terms,
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and we can derive the following gradient compo-
nents:

∂(λ2|| ~W ||2 + α( ~W>L ~W ))

∂ ~W
(14)

= 2λ2
~W + α( ~W>L> + ~W>L) (15)

= 2λ2
~W + α(L> + L) ~W (16)

since our Laplacian matrix is symmetric, we can
rewrite (16) as

2(λ2
~W + αL ~W ) (17)

Then, we combine the gradient of the log loss func-
tion in (5) with (17), and apply a bound-constrained
re-formulation (Schmidt et al., 2007) and the lim-
ited memory BFGS (L-BFGS) method (Liu and No-
cedal, 1989) to solve the L1 regularized problem.
The L-BFGS method has relatively low space com-
plexity, and does not require the calculation of full
Hessian matrix, thus it is often used for L1 optimiza-
tion problems.
Augmented Laplacian for an L1-Constrained
Problem: Instead of formulating the L1-regularized
problem by adding the L1 norm, an alternative so-
lution is to formulate a L1-constrained problem by
fixing the sum of all weights τ in the weight vector
~W . The reason is because adding the L1 norm will
make the objective function not continuously differ-
entiable, where as the L1 constraint could be just a
simple linear constraint (Lee et al., 2006). Thus, the
alternative L1-constrained problem could be defined
as:

min(−`), s.t.
∑

p

~Wp ≤ τ (18)

To test the robustness of Laplacian structured spar-
sity term in the setup of a L1-constrained problem,
we can incorporate the Laplacian penalty term into
the above formula, and derive:

min
(
− `+ α( ~W>L ~W )

)
, s.t.

∑
p

~Wp ≤ τ (19)

Note that the Laplacian matrix is positive-
semidefinite,

~W>L ~W = ~W>
∑
(p,q)

L(p,q)
~W (20)

=
∑
(p,q)

~W>L(p,q)
~W (21)

=
∑
(p,q)

|| ~Wp − ~Wq||2A(p,q) (22)

because this graph Laplacian penalty can be viewed
as a quadratic term, and the objective function
in equation 19 is now convex differentiable and
will produce sparse estimates, so that we are able
to use a limited-memory projected quasi-Newton
method (Schmidt et al., 2009) to solve the dual form
of this problem. The Lagrangian dual form of the
problem in equation 19 can be written as:

L( ~W, ξ) = −`+ α( ~W>L ~W ) (23)

+ β

(∑
p

~Wp − τ

)
− ξ ~W (24)

where β ∈ R is a Lagrange multiplier, and ξ ∈ Rp
+

is a p-dimensional vector of non-negative Lagrange
multipliers. And then we can take first-order partial
derivative with regard to ~W , and set it to zero to de-
rive the optimality:

∂L
∂ ~W

= −
∑

j

(
θ̂yj − (θ̂yj )2

)
~X

(
yj

θ̂yj

− 1− yj

1− θ̂yj

)
(25)

+ 2αL ~W + β − ξ = 0 (26)

To speed up the training, we use the linear-time L1-
ball projection method from Duchi et al. (2008) in
our implementation.

5 Experiments

We first compare our model to various baselines in
the 3-way automatic brand identification task. Be-
sides the logistic regression, lasso, ridge and elas-
tic net model that we introduced in Section 4.2, we
also compare with a PCA-based logistic regression
model where the dimensions of the feature space is
reduced in half before the classification. A state-of-
the-art linear kernel SVM model (Chang and Lin,
2011) is also taken into the comparison. In the
second part, we perform 9-way joint classification
of the brand-satisfaction labels. Similarly, we also
perform a 18-way joint classification of the brand-
gender-satisfaction labels. To test the robustness
of our model, we vary the levels of sparsity of our
Laplacian augmented method in a L1-constrained
problem. Finally, we analyze the identified features
for CBA. Throughout this section, we use classifi-
cation accuracy to report the results. We tune the
regularization parameters of log-linear models and
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Method Dev. Test

Majority class 75.67 78.08
Logistic regression 91.98 91.06
Linear SVM 92.45 91.75
PCA 91.67 91.20
Lasso 92.81 91.96
Ridge 92.56 91.67
Elastic net 92.81 91.83
Laplacian structured sparsity 93.17* 92.44*

Table 2: The automatic brand identification (3-way) per-
formances. The best result is highlighted in bold. * indi-
cates p < .001 comparing to the second best result.

the cost parameter of the SVM on the development
set, and report results on both the development set
and the held-out test set. The parameter for kNN
was set to 5 according to previous literature (Gao et
al., 2012). A paired two-tailed t-test is used to test
the statistical differences among various models.

5.1 Automatic Brand Identification from Text

Given any piece of raw text from the Web (e.g.
blogs, tweets, news, or forum posts), the first task
for CBA is to identify which brand this text is re-
lated to. Our customer review data set is useful for
this task, because the ground truth of the brand label
is attached to each review. Table 2 shows the re-
sult of our model in this automatic brand identifica-
tion task. In this 3-way classification task, the over-
all results indicate that it is relatively easy to iden-
tify the related brand from customer reviews. When
evaluating our Laplacian structured sparsity model,
our proposed model obtains the best performances
of 93.17% and 92.44%, which are statistically bet-
ter than the second best results (p < .001) in both
datasets.

5.2 Joint Brand-Satisfaction Prediction

In our training data set, we observe a subtle correla-
tion between the brand and satisfaction labels (r =
0.09, p < .001), which suggests us that it might be
interesting to perform a joint prediction task for the
brand-satisfaction labels. This task is also attractive
from the business perspective, because it would be
very useful for the companies to directly identify
user’s level of satisfaction about their brands. Ta-
ble 3 shows that we achieve 69.56% accuracy on the

Method Dev. Test

Majority class 55.43 55.18
Logistic regression 65.80 65.80
Linear SVM 67.67 65.44
PCA 63.92 62.53
Lasso 68.37 66.84
Ridge 67.79 65.55
Elastic net 68.79 66.82
Laplacian structured sparsity 69.56* 67.32*

Table 3: The joint brand-satisfaction prediction (9-way)
performances. The best result is highlighted in bold. *
indicates p < .001 comparing to the second best result.

Method Dev. Test

Majority class 28.24 27.68
Logistic regression 36.03 35.16
Linear SVM 41.05 39.49
PCA 35.35 34.44
Lasso 40.74 39.53
Ridge 40.98 38.94
Elastic net 41.15 38.96
Laplacian structured sparsity 41.22* 40.22*

Table 4: The joint brand-gender-satisfaction prediction
(18-way) performances. The best result is highlighted in
bold. * indicates p < .001 comparing to the second best
result.

development set, and 67.32% accuracy on the test
set using our proposed Laplacian structured model
(p < .001 comparing to the second best results).

5.3 Joint Brand-Gender-Satisfaction
Prediction

Another big interest in the marketing community is
to predict subgroup preferences of specific brands.
In this direction, we perform a 18-way joint brand-
gender-satisfaction prediction using the gender la-
bels that we described in Section 3. Table 4
shows that our proposed Laplacian structured spar-
sity model obtains a test accuracy of 40.22%, signif-
icantly better than the second best result (p < .001).
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Figure 2: Automatic brand identification test perfor-
mance varying the level of sparsity τ in a L1 constrained
problem.

Figure 3: Joint brand-satisfaction prediction test perfor-
mance varying the level of sparsity τ in a L1 constrained
problem.

5.4 Varying the Level of Sparsity in a
L1-Constrained Problem

To test the robustness of the Laplacian structured
sparsity component, we exponentially increase the
sum of weights τ to vary the level of sparsity in a
L1-constrained setup. When τ increases, the non-
zero weights in the model also increases. Figures 2
and 3 show that the Laplacian augmented L1-ball
projection statistically outperform the L1-ball pro-
jection baseline in all levels of sparsity (p < .001).
In Figure 4, Laplacian augmented L1-ball projection
is also statistically better than the L1-ball projection
(p < .001), except when τ = 32 and τ = 64.

5.5 Exploratory Data Analysis

We outline the top 15 keywords from the Laplacian
structured sparsity model that are associated with the
Starbucks and Dunkin’ Donuts brands in the auto-
matic brand identification task in the Table 5. First
of all, it is observed that our model has discovered
synonyms for both brands: “sbux”, “dd”, “dds”.

Figure 4: Joint brand-gender-satisfaction prediction test
performance varying the level of sparsity τ in a L1 con-
strained problem.

Also, the results imply that Starbucks’ unique cup
size branding strategy, “venti”, “grande”, “tall”, has
resonated with their customers as the words promi-
nently show up as top features in reviews. Aligned
with previous study in marketing science (Moon and
Quelch, 2006), an informative set of features re-
lated to Starbucks store decorations showed up in
our model: “store”, “restroom”, “public”, “bath-
room”, and “spacious”. In contrast, these features
stopped to show up on the list of Dunkin’ Donuts.
Instead, TV and game (sports), which are indeed
important features of dining at Dunkin’ Donut, ap-
peared. Note that Baskin-Robbins, which is a sub-
brand of Dunkin’ Brands Group, Inc., also appeared
as informative features to predict Dunkin’ Donuts.

To understand the preferences of different gen-
der subgroups towards the two brands, we contrast
in Table 6 and Table 7 the top features that identify
the satisfied female and male customers in the joint
brand-gender-satisfaction prediction task.

Interestingly, it seems that the female customers
identify Starbucks as a place for “studying”, with
“fireplace” as the top preference of the spots in the
store, and “winter” is also a high-ranked feature.
Also, the adjective “super” was frequently men-
tioned by the female Starbucks customers (but not
the males). As for Dunkin’ Donuts, the top-ranked
keywords are still mainly associated with its names,
but it seems the snack “Munchkins” is highly pre-
ferred by the female customers. Not surprisingly,
the cue words that the male customers identify the
Starbucks brand do not always agree with those of
the females. For example, instead of “fireplace”,
they prefer staying at the “patio”, and drink the cof-
fee from the “clover” brewing system. Interestingly,
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Starbucks weight Dunkin’ weight

starbucks 1.9365 dd 2.4224
sbux 1.0152 dunkin 1.7781
venti 0.8216 donuts 1.6989

corporate 0.7032 dunks 1.6455
store 0.6580 dds 1.4936

particular 0.6512 donut 1.3979
tall 0.5496 dunkins 1.3729

restroom 0.5447 glazed 0.9975
tourists 0.5431 robbins 0.9402
public 0.5260 baskin 0.8578
lines 0.4956 sugar 0.6475
drink 0.4787 d 0.6327

bathroom 0.4721 ice 0.5835
spacious 0.4629 stale 0.5404
location 0.4611 game 0.5049
grande 0.4563 tv 0.5010

Table 5: Top features that identify the Starbucks and
Dunkin’ Donuts brands from the best model.

.

on the Dunkin’s side, “munchkins” also disappeared
and replaced by “glazed” (donuts). However, both
males and females agreed that “fast” or “quick” ser-
vice was an important feature of creating satisfac-
tion, which echoes with the result from self-reported
customer surveys (Moon and Quelch, 2006).

The word “name” is a prominent indicator for the
female customers of Starbucks: at first we were puz-
zled, but after we digged into the database, we found
reviews such as:
• “... and the baristas are one of the nicest they

always ask for your name, so you never end up
with coffee meant for the guy behind you.”
• “... she asked me my name and i told her and

she excidetly proclaimed melissa and wrote my
name on the cup. This place was probably one
of the better starbucks ive been to.”
• “... all of their employees are really friendly,

and embarrassingly enough most know me by
name and know my typical drink order grande
nonfat misto with a flavor shot of white mocha.
This is actually very helpful.”

The above examples show how our system effec-
tively serves as a salient keyword spotter. And that
as a keyword spotter one can use it to extract sur-
rounding context and feed that through to the next

Starbucks weight Dunkin’ weight

starbucks 0.5013 dd 0.6931
chain 0.4268 dds 0.5620
winter 0.3382 dunkin 0.5344

fireplace 0.3089 donuts 0.4270
studying 0.2972 donut 0.3732
particular 0.2967 dunks 0.3687

super 0.2786 morning 0.3077
name 0.2543 quick 0.3012
know 0.2443 how 0.2940

because 0.2263 munchkins 0.2758

Table 6: Top features that jointly identify the satisfied
female customers and the Starbucks and Dunkin’ Donuts
brands from the best model.

Starbucks weight Dunkin’ weight

starbucks 0.6632 dd 0.7491
throw 0.3514 dunkin 0.6075
know 0.2959 dds 0.5333
store 0.2885 donuts 0.5326
fix 0.2498 donut 0.3215

particular 0.2487 dunks 0.3158
sbux 0.2462 morning 0.3095
patio 0.2349 rush 0.3030
prefer 0.2324 fast 0.2979
clover 0.2215 moving 0.2520

corporate 0.2153 glazed 0.2326

Table 7: Top features that jointly identify the satisfied
male customers and the Starbucks and Dunkin’ Donuts
brands from the best model.

stage of analysis, including examination by humans.
This is extremely practical and useful, because it
provides actionable items. For example, analysts
can advise managers to revise their training manual
and tell store employees to remember the names of
your frequent female customers.

6 Discussions

In our preliminary experiments, we have also ex-
perimented with the setup where the two keywords
“starbucks” and “dunkin” were removed from the
list of features. This change resulted in a uniformed
2% decrease in performances across all the models
in Table 2, which did not affect the comparisons.
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However, we kept these two keywords in our final
experiments, because the reviewers sometimes men-
tion “Dunkin” in Starbucks reviews, and vice versa.
Removing the two keywords could be problematic,
since it changes the natural distribution of the data.

Regarding the alternative problem setups, our pre-
liminary experiments showed that instead of using
one-vs-all binary classifiers, a direct 9-way multi-
class classification of joint brand-satisfaction labels
using logistic regression only resulted an accuracy
of 62%. We also did not adopt the hierarchical clas-
sification pipeline, where instead of performing joint
classification, multiple layers of classifiers could be
trained to classify brand, gender, and satisfaction la-
bels incrementally. This is because the hierarchical
classifiers suffered from the error propagation prob-
lem, and the second/third layer classifier could not
correct the errors from the previous layers (Bennett
and Nguyen, 2009).

Our proposed method to generate inter-feature
affinity matrix captures interesting dependency of
features in this dataset. For example, although the
words “frappuccino” and “slurping”, “furniture” and
“mismatched’ are semantically very different, our
method actually group them together due to the sub-
tle interactions of these word pairs in our tasks. The
example in Figure 1 is also very specific to our
dataset. This is very useful, because the word se-
mantic similarity might be context-dependent, and
our method learns and adapts the semantic similar-
ity on the fly, hinges on the particular training set.
On the other end of the spectrum, even though our
method is desirable in our task, one might need to be
cautious when working on very small data sets with
only a handful of samples. This is because small
samples typically have large variances in feature dis-
tributions, and that the generated Laplacian matrix
might not be as reliable as in our study. To alleviate
this potential problem, one might consider building
the Laplacian matrix using external resources such
as WordNet or FrameNet, even though this approach
could also introduce biases due to the mismatched
task domains.

We also observed that the accuracy of the auto-
matic brand identification task was high, indicating
the promising future of CBA for hidden brand infor-
mation from other genres of text over the Web. Al-
though the performances of joint brand-satisfaction
and joint brand-gender-satisfaction predictions are

relatively lower, there is still much room for im-
provements: for example, using the syntactic, se-
mantic, and meta-data features could potentially en-
rich the proposed model. Also, it is possible to con-
sider the higher order n-gram features for better ex-
ploratory data analysis. However, since the focus of
this paper is a proof of concept for Laplacian struc-
tured sparsity models and computational branding
analytics, we have not yet explored various multi-
view representations to augment our model.

Why does Laplacian structured sparsity model
work better in these classication tasks? Similar to
the application in image classifcation (Gao et al.,
2010), one advantage of Laplacian regularization in
text classification is that our model can explicitly
model the dependency of local features. Another
reason is the expressiveness of our model: our model
allows one to express the feature interactions in a
structured manner. Thirdly, by embedding the struc-
ture in the regularization term, our model is more
flexible: one can now control the structured penalty
by tuning the regularization parameter on the devel-
opment set.

7 Conclusions
We introduce a Laplacian structured sparsity model
for computational branding analytics (CBA). In the
automatic brand identification, our model achieves
the best result, dominating many competitive base-
lines. We also introduce the tasks of joint brand-
satisfaction and brand-gender-satisfaction predic-
tions, and show that the Laplacian structured spar-
sity do well in these tasks. A closer evaluation that
varying the levels of sparsity in a L1 constrained
problem also indicates that the Laplacian augmented
L1-ball projection model can provide state-of-the-
art results. By examining the weights of the de-
rived Laplacian structured sparsity model, interest-
ing indicators of brands and theirs gender-specific
customer satisfaction associations are also discov-
ered. In the future, we would like to investigate other
methods for generating robust inter-feature Lapla-
cians that include deep syntactic and semantic fea-
tures.
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