
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1303–1313,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Semi-supervised Feature Transformation for Dependency Parsing

Wenliang Chen†, Min Zhang†∗, and Yue Zhang‡
†School of Computer Science and Technology, Soochow University, China

‡Singapore University of Technology and Design, Singapore
{wlchen, mzhang}@suda.edu.cn

yue zhang@sutd.edu.sg

Abstract

In current dependency parsing models, con-
ventional features (i.e. base features) defined
over surface words and part-of-speech tags
in a relatively high-dimensional feature space
may suffer from the data sparseness problem
and thus exhibit less discriminative power on
unseen data. In this paper, we propose a
novel semi-supervised approach to address-
ing the problem by transforming the base fea-
tures into high-level features (i.e. meta fea-
tures) with the help of a large amount of au-
tomatically parsed data. The meta features are
used together with base features in our final
parser. Our studies indicate that our proposed
approach is very effective in processing un-
seen data and features. Experiments on Chi-
nese and English data sets show that the fi-
nal parser achieves the best-reported accuracy
on the Chinese data and comparable accuracy
with the best known parsers on the English
data.

1 Introduction

In recent years, supervised learning models have
achieved lots of progress in the dependency pars-
ing task, as can be found in the CoNLL shared
tasks (Buchholz and Marsi, 2006; Nivre et al.,
2007). The supervised models take annotated data
as training data, utilize features defined over surface
words, part-of-speech tags, and dependency trees,
and learn the preference of features via adjusting
feature weights.

∗Corresponding author

In the supervised learning scenarios, many previ-
ous studies explore rich feature representation that
leads to significant improvements. McDonald and
Pereira (2006) and Carreras (2007) define second-
order features over two adjacent arcs in second-
order graph-based models. Koo and Collins (2010)
use third-order features in a third-order graph-based
model. Bohnet (2010) considers information of
more surrounding words for the graph-based mod-
els, while Zhang and Nivre (2011) define a set
of rich features including the word valency and
the third-order context features for transition-based
models. All these models utilize richer and more
complex feature representations and achieve better
performance than the earlier models that utilize the
simpler features (McDonald et al., 2005; Yamada
and Matsumoto, 2003; Nivre and Scholz, 2004).
However, the richer feature representations result in
a high-dimensional feature space. Features in such a
space may suffer from the data sparseness problem
and thus have less discriminative power on unseen
data. If input sentences contain unknown features
that are not included in training data, the parsers can
usually give lower accuracy.

Several methods have been proposed to alleviate
this problem by using large amounts of unannotated
data, ranging from self-training and co-training (Mc-
Closky et al., 2006; Sagae and Tsujii, 2007) to more
complex methods that collect statistical information
from unannotated sentences and use them as addi-
tional features (Koo et al., 2008; Chen et al., 2009).

In this paper, we propose an alternative approach
to semi-supervised dependency parsing via feature
transformation (Ando and Zhang, 2005). More
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specifically, we transform base features to a higher-
level space. The base features defined over surface
words, part-of-speech tags, and dependency trees
are high dimensional and have been explored in the
above previous studies. The higher-level features,
which we call meta features, are low dimensional,
and newly defined in this paper. The key idea be-
hind is that we build connections between known
and unknown base features via the meta features.
From another viewpoint, we can also interpret the
meta features as a way of doing feature smoothing.

Our feature transfer method is simpler than that of
Ando and Zhang (2005), which is based on splitting
the original problem into multiple auxiliary prob-
lems. In our approach, the base features are grouped
and each group relates to a meta feature. In the first
step, we use a baseline parser to parse a large amount
of unannotated sentences. Then we collect the base
features from the parse trees. The collected features
are transformed into predefined discrete values via a
transformation function. Based on the transformed
values, we define a set of meta features. Finally, the
meta features are incorporated directly into parsing
models.

To demonstrate the effectiveness of the proposed
approach, we apply it to the graph-based parsing
models (McDonald and Nivre, 2007). We conduct
experiments on the standard data split of the Penn
English Treebank (Marcus et al., 1993) and the Chi-
nese Treebank Version 5.1 (Xue et al., 2005). The
results indicate that the approach significantly im-
proves the accuracy. In summary, we make the fol-
lowing contributions:

• We define a simple yet useful transformation
function to transform base features to meta fea-
tures automatically. The meta features build
connections between known and unknown base
features, and relieve the data sparseness prob-
lem.

• Compared to the base features, the number of
meta features is remarkably small.

• We build semi-supervised dependency parsers
that achieve the best accuracy on the Chinese
data and comparable accuracy with the best
known systems on the English data.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the graph-based parsing model.

Section 3 describes the meta features and meta
parser. Section 4 describes the experiment settings
and reports the experimental results on English and
Chinese data sets. Section 5 discusses related work.
Finally, in Section 6 we summarize the proposed ap-
proach.

2 Baseline parser

In this section, we introduce a graph-based pars-
ing model proposed by McDonald et al. (2005) and
build a baseline parser.

2.1 Graph-based parsing model
Given an input sentence, dependency parsing is
to build a dependency tree. We define X as
the set of possible input sentences, Y as the
set of possible dependency trees, and D =
(x1, y1), ..., (xi, yi), ..., (xn, yn) as a training set of
n pairs of xi ∈ X and yi ∈ Y . A sentence is de-
noted by x = (w0, w1, ..., wi, ..., wm), where w0 is
ROOT and does not depend on any other word and
wi refers to a word.

In the graph-based model, we define ordered pair
(wi, wj) ∈ y as a dependency relation in tree y from
word wi to word wj (wi is the head and wj is the
dependent), Gx as a graph that consists of a set of
nodes Vx = {w0, w1, ..., wi, ..., wm} and a set of
arcs (edges) Ex = {(wi, wj)|i ̸= j, wi ∈ Vx, wj ∈
(Vx−{w0})}. The parsing model of McDonald et al.
(2005) is to search for the maximum spanning tree
(MST) in graph Gx. We denote Y (Gx) as the set
of all the subgraphs of Gx that are valid dependency
trees (McDonald and Nivre, 2007) for sentence x.

We define the score of a dependency tree y ∈
Y (Gx) to be the sum of the subgraph scores,

score(x, y) =
∑
g∈y

score(x, g) (1)

where g is a spanning subgraph of y, which can be a
single arc or adjacent arcs. In this paper we assume
the dependency tree to be a spanning projective tree.
The model scores each subgraph using a linear rep-
resentation. Then scoring function score(x, g) is,

score(x, g) = f(x, g) · w (2)

where f(x, g) is a high-dimensional feature vector
based on features defined over g and x and w refers
to the weights for the features.
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The maximum spanning tree is the highest scoring
tree in Y (Gx). The task of decoding algorithms in
the parsing model for an input sentence x is to find
y∗, where

y∗ = arg max
y∈Y (Gx)

score(x, y)

= arg max
y∈Y (Gx)

∑
g∈y

score(x, g)

= arg max
y∈Y (Gx)

∑
g∈y

f(x, g) · w (3)

In our system, we use the decoding algorithm
proposed by Carreras (2007), which is a second-
order CKY-style algorithm (Eisner, 1996) and fea-
ture weights w are learned during training using the
Margin Infused Relaxed Algorithm (MIRA) (Cram-
mer and Singer, 2003; McDonald et al., 2005).

2.2 Base features
Previous studies have defined different sets of fea-
tures for the graph-based parsing models, such as
the first-order features defined in McDonald et al.
(2005), the second-order parent-siblings features de-
fined in McDonald and Pereira (2006), and the
second-order parent-child-grandchild features de-
fined in Carreras (2007). Bohnet (2010) explorers
a richer set of features than the above sets. We fur-
ther extend the features defined by Bohnet (2010)
by introducing more lexical features as the base fea-
tures. The base feature templates are listed in Table
1, where h, d refer to the head, the dependent re-
spectively, c refers to d’s sibling or child, b refers
to the word between h and d, +1 (−1) refers to the
next (previous) word, w and p refer to the surface
word and part-of-speech tag respectively, [wp] refers
to the surface word or part-of-speech tag, d(h, d) is
the direction of the dependency relation between h
and d, and d(h, d, c) is the directions of the relation
among h, d, and c. We generate the base features
based on the above templates.

2.3 Baseline parser
We train a parser with the base features as the Base-
line parser. We define fb(x, g) as the base features
and wb as the corresponding weights. The scoring
function becomes,

score(x, g) = fb(x, g) · wb (4)

3 Meta features

In this section, we propose a semi-supervised ap-
proach to transform the features in the base feature
space (FB) to features in a higher-level space (FM )
with the following properties:

• The features in FM are able to build connec-
tions between known and unknown features in
FB and therefore should be highly informative.

• The transformation should be learnable based
on a labeled training set and an automatically
parsed data set, and automatically computable
for the test sentences.

The features in FM are referred to as meta fea-
tures. In order to perform the feature transformation,
we choose to define a simple yet effective mapping
function. Based on the mapped values, we define
feature templates for generating the meta features.
Finally, we build a new parser with the base and
meta features.

3.1 Template-based mapping function
We define a template-based function for mapping
the base features to predefined discrete values. We
first put the base features into several groups and
then perform mapping.

We have a set of base feature templates TB . For
each template Ti ∈ TB , we can generate a set of
base features Fi from dependency trees in the parsed
data, which is automatically parsed by the Baseline
parser. We collect the features and count their fre-
quencies. The collected features are sorted in de-
creasing order of frequencies. The mapping function
for a base feature fb of Fi is defined as follows,

Φ(fb) =


Hi if R(fb) ≤ TOP10
Mi if TOP10 < R(fb) ≤ TOP30
Li if TOP30 < R(fb)
Oi Others

where R(fb) is the position number of fb in the
sorted list, “Others” is defined for the base features
that are not included in the list, and TOP10 and TOP
30 refer to the position numbers of top 10% and top
30% respectively. The numbers, 10% and 30%, are
tuned on the development sets in the experiments.
For a base feature generated from template Ti, we
have four possible values: Hi, Mi, Li, and Oi. In
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(a) First-order standard

h[wp], d[wp], d(h,d)
h[wp], d(h,d)
dw, dp, d(h,d)
d[wp], d(h,d)
hw, hp, dw, dp, d(h,d)
hp, hw, dp, d(h,d)
hw, dw, dp, d(h,d)
hw, hp, d[wp], d(h,d)

(b) First-order Linear

hp, bp, dp, d(h,d)
hp, h+1p, d−1p, dp, d(h,d)
h−1p, hp, d−1p, dp, d(h,d)
hp, h+1p, dp, d+1p, d(h,d)
h−1p, hp, dp, d+1p, d(h,d)

(c) Second-order standard

hp, dp, cp, d(h,d,c)
hw, dw, cw, d(h,d,c)
hp, c[wp], d(h,d,c)
dp, c[wp], d(h,d,c)
hw, c[wp], d(h,d,c)
dw, c[wp], d(h,d,c)

(d) Second-order Linear

h[wp], h+1[wp], c[wp], d(h,d,c)
h−1[wp], h[wp], c[wp], d(h,d,c)
h[wp], c−1[wp], c[wp], d(h,d,c)
h[wp], c[wp], c+1[wp], d(h,d,c)
h−1[wp], h[wp], c−1[wp], c[wp], d(h,d,c)
h[wp], h+1[wp], c−1[wp], c[wp], d(h,d,c)
h−1[wp], h[wp], c[wp], c+1[wp], d(h,d,c)
h[wp], h+1[wp], c[wp], c+1[wp], d(h,d,c)
d[wp], d+1[wp], c[wp], d(h,d,c)
d−1[wp], d[wp], c[wp], d(h,d,c)
d[wp], c−1[wp], c[wp], d(h,d,c)
d[wp], c[wp], c+1[wp], d(h,d,c)
d[wp], d+1[wp], c−1[wp], c[wp], d(h,d,c)
d[wp], d+1[wp], c[wp], c+1[wp], d(h,d,c)
d−1[wp], d[wp], c−1[wp], c[wp], d(h,d,c)
d−1[wp], d[wp], c[wp], c+1[wp], d(h,d,c)

Table 1: Base feature templates

total, we have 4×N(TB) possible values for all the
base features, where N(TB) refers to the number of
the base feature templates, which is usually small.
We can obtain the mapped values of all the collected
features via the mapping function.

3.2 Meta feature templates

Based on the mapped values, we define meta fea-
ture templates in FM for dependency parsing. The
meta feature templates are listed in Table 2, where
fb is a base feature of FB , hp refers to the part-
of-speech tag of the head and hw refers to the sur-
face word of the head. Of the table, the first tem-
plate uses the mapped value only, the second and
third templates combine the value with the head in-
formation. The number of the meta features is rel-
atively small. It has 4 × N(TB) for the first type,
4 × N(TB) × N(POS) for the second type, and
4 × N(TB) × N(WORD) for the third one, where
N(POS) refers to the number of part-of-speech
tags, N(WORD) refers to the number of words.
We remove any feature related to the surface form
if the word is not one of the Top-N most frequent
words in the training data. We used N=1000 for the
experiments for this paper. This method can reduce
the size of the feature sets. The empirical statistics
of the feature sizes at Section 4.2.2 shows that the

size of meta features is only 1.2% of base features.

[Φ(fb)]
[Φ(fb)], hp

[Φ(fb)], hw

Table 2: Meta feature templates

3.3 Generating meta features

We use an example to demonstrate how to gener-
ate the meta features based on the meta feature tem-
plates in practice. Suppose that we have sentence “I
ate the meat with a fork.” and want to generate the
meta features for the relation among “ate”, “meat”,
and “with”, where “ate” is the head, “meat” is the
dependent, and “with” is the closest left sibling of
“meat”. Figure 1 shows the example.

We demonstrate the generating procedure using
template Tk = “hw, dw, cw, d(h, d, c)” (the second
template of Table 1-(c) ), which contains the sur-
face forms of the head, the dependent, its sibling,
and the directions of the dependencies among h,
d, and c. We can have a base feature “ate, meat,
with, RIGHTSIB”, where “RIGHTSIB” refers to the
parent-siblings structure with the right direction. In
the auto-parsed data, this feature occurs 200 times
and ranks between TOP10 and TOP30. Accord-
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I ate the meat with a forkI!!!!ate!!!!the!!!!meat!!!!with!!!!a!!!!fork!!!!.

Tk:!hw,!dw,!cw,!d(h,d,c)

Fb:!ate,!meat,!with,!RIGHTSIB

" (fb)=Mk

[Mk];![Mk],!VV;![Mk],!ate

Figure 1: An example of generating meta features

ing to the mapping function, we obtain the mapped
value Mk. Finally, we have the three meta features
“[Mk]”, “[Mk], V V ”, and “[Mk], ate”, where V V is
the part-of-speech tag of word “ate”. In this way,
we can generate all the meta features for the graph-
based model.

3.4 Meta parser
We combine the base features with the meta features
by a new scoring function,

score(x, g) = fb(x, g) · wb + fm(x, g) · wm (5)

where fb(x, g) refers to the base features, fm(x, g)
refers to the meta features, and wb and wm are
their corresponding weights respectively. The fea-
ture weights are learned during training using MIRA
(Crammer and Singer, 2003; McDonald et al.,
2005). Note that wb is also retrained here.

We use the same decoding algorithm in the new
parser as in the Baseline parser. The new parser is
referred to as the meta parser.

4 Experiments

We evaluated the effect of the meta features for the
graph-based parsers on English and Chinese data.

4.1 Experimental settings
In our experiments, we used the Penn Treebank
(PTB) (Marcus et al., 1993) for English and the
Chinese Treebank version 5.1 (CTB5) (Xue et al.,
2005) for Chinese. The tool “Penn2Malt”1 was used

1http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html

to convert the data into dependency structures with
the English head rules of Yamada and Matsumoto
(2003) and the Chinese head rules of Zhang and
Clark (2008). We followed the standard data splits
as shown in Table 3. Following the work of Koo et
al. (2008), we used a tagger trained on training data
to provide part-of-speech (POS) tags for the devel-
opment and test sets, and used 10-way jackknifing to
generate part-of-speech tags for the training set. We
used the MXPOST (Ratnaparkhi, 1996) tagger for
English and the CRF-based tagger for Chinese. We
used gold standard segmentation in the CTB5. The
data partition of Chinese were chosen to match pre-
vious work (Duan et al., 2007; Li et al., 2011; Hatori
et al., 2011).

train dev test
PTB 2-21 22 23
(sections)
CTB5 001-815 886-931 816-885
(files) 1001-1136 1148-1151 1137-1147

Table 3: Standard data splits

For the unannotated data in English, we used the
BLLIP WSJ corpus (Charniak et al., 2000) contain-
ing about 43 million words.2 We used the MXPOST
tagger trained on the training data to assign part-of-
speech tags and used the Baseline parser to process
the sentences of the Brown corpus. For the unanno-
tated data in Chinese, we used the Xinhua portion
of Chinese Gigaword3 Version 2.0 (LDC2009T14)
(Huang, 2009), which has approximately 311 mil-
lion words. We used the MMA system (Kruengkrai
et al., 2009) trained on the training data to perform
word segmentation and POS tagging and used the
Baseline parser to parse the sentences in the Giga-
word data.

In collecting the base features, we removed the
features which occur only once in the English data
and less than four times in the Chinese data. The
feature occurrences of one time and four times are
based on the development data performance.

We measured the parser quality by the unlabeled
attachment score (UAS), i.e., the percentage of to-

2We ensured that the text used for building the meta features
did not include the sentences of the Penn Treebank.

3We excluded the sentences of the CTB data from the Giga-
word data.
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kens (excluding all punctuation tokens) with the cor-
rect HEAD. We also reported the scores on complete
dependency trees evaluation (COMP).

4.2 Feature selection on development sets

We evaluated the parsers with different settings on
the development sets to select the meta features.

4.2.1 Different models vs meta features
In this section, we investigated the effect of dif-

ferent types of meta features for the models trained
on different sizes of training data on English.

There are too many base feature templates to test
one by one. We divided the templates into several
categories. Of Table 1, some templates are only re-
lated to part-of-speech tags (P), some are only re-
lated to surface words (W), and the others contain
both part-of-speech tags and surfaces (M). Table 4
shows the categories, where numbers [1−4] refer to
the numbers of words involved in templates. For ex-
ample, the templates of N3WM are related to three
words and contain the templates of W and M. Based
on different categories of base templates, we have
different sets of meta features.4

Category Example
N1P hp, d(h, d)
N1WM hw, d(h, d); hw, hp, d(h, d)
N2P hp, dp, d(h, d)
N2WM hw, dw, d(h, d);

hw, dp, d(h, d)
N3P hp, dp, cp, d(h, d, c)
N3WM hw, dw, cw, d(h, d, c);

dw, d+1p, cp, d(h, d, c)
N4P hp, h+1p, cp, c+1p, d(h, d, c)
N4WM hw, h+1w, cw, c+1w, d(h, d, c);

hw, h+1p, cp, c+1p, d(h, d, c)

Table 4: Categories of base feature templates

We randomly selected 1% and 10% of the sen-
tences respectively from the training data. We
trained the POS taggers and Baseline parsers on
these small training data and used them to process
the unannotated data. Then, we generated the meta
features based on the newly auto-parsed data. The

4We also tested the settings of dividing WM into two sub-
types: W and M. The results showed that both two sub-types
provided positive results. To simplify, we merged W and M
into one category WM.

meta parsers were trained on the different subsets
of the training data with different sets of meta fea-
tures. Finally, we have three meta parsers: MP1,
MP10, MPFULL, which were trained on 1%, 10%
and 100% of the training data.

MP1 MP10 MPFULL
Baseline 82.22 89.50 93.01
+N1P 82.42 89.48 93.08
+N1WM 82.80 89.42 93.19
+N2P 81.29 89.01 93.02
+N2WM 82.69 90.10 93.23
+N3P 83.32 89.73 93.05
+N3WM 84.47 90.75 93.80
+N4P 82.73 89.48 93.01
+N4WM 84.07 90.42 93.67
OURS 85.11 91.14 93.91

Table 5: Effect of different categories of meta features

Table 5 shows the results, where we add each cat-
egory of Table 4 individually. From the table, we
found that the meta features that are only related to
part-of-speech tags did not always help, while the
ones related to the surface words were very helpful.
We also found that MP1 provided the largest relative
improvement among the three settings. These sug-
gested that the more sparse the base features were,
the more effective the corresponding meta features
were. Thus, we built the final parsers by adding
the meta features of N1WM, N2WM, N3WM, and
N4WM. The results showed that OURS achieved
better performance than the systems with individual
sets of meta features.

4.2.2 Different meta feature types

In Table 2, there are three types of meta feature
templates. Here, the results of the parsers with dif-
ferent settings are shown in Table 6, where CORE
refers to the first type, WithPOS refers to the sec-
ond one, and WithWORD refers to the third one.
The results showed that with all the types the parser
(OURS) achieved the best. We also counted the
numbers of the meta features. Only 327,864 (or
1.2%) features were added into OURS. Thus, we
used all the three types of meta features in our final
meta parsers.
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System NumOfFeat UAS
Baseline 27,119,354 93.01
+CORE +498 93.84
+WithPOS +14,993 93.82
+WithWORD +312,373 93.27
OURS +327,864 93.91

Table 6: Numbers of meta features

4.3 Main results on test sets

We then evaluated the meta parsers on the English
and Chinese test sets.

4.3.1 English
The results are shown in Table 7, where Meta-

Parser refers to the meta parser. We found that the
meta parser outperformed the baseline with an ab-
solute improvement of 1.01 points (UAS). The im-
provement was significant in McNemar’s Test (p
< 10−7 ).

UAS COMP
Baseline 92.76 48.05
MetaParser 93.77 51.36

Table 7: Main results on English

4.3.2 Chinese

UAS COMP
Baseline 81.01 29.71
MetaParser 83.08 32.21

Table 8: Main results on Chinese

The results are shown in Table 8. As in the ex-
periment on English, the meta parser outperformed
the baseline. We obtained an absolute improvement
of 2.07 points (UAS). The improvement was signif-
icant in McNemar’s Test (p < 10−8 ).

In summary, Tables 7 and 8 convincingly show
the effectiveness of our proposed approach.

4.4 Different sizes of unannotated data

Here, we considered the improvement relative to the
sizes of the unannotated data used to generate the
meta features. We randomly selected the 0.1%, 1%,
and 10% of the sentences from the full data. Table

English Chinese
Baseline 92.76 81.01
TrainData 91.93 80.40
P0.1 92.82 81.58
P1 93.14 82.23
P10 93.48 82.81
FULL 93.77 83.08

Table 9: Effect of different sizes of auto-parsed data

9 shows the results, where P0.1, P1, and P10 corre-
spond to 0.1%, 1%, and 10% respectively. From the
table, we found that the parsers obtained more ben-
efits as we used more raw sentences. We also tried
generating the meta features from the training data
only, shown as TrainData in Table 9. However, the
results shows that the parsers performed worse than
the baselines. This is not surprising because only
the known base features are included in the training
data.

4.5 Comparison with previous work

4.5.1 English

Table 10 shows the performance of the previ-
ous systems that were compared, where McDon-
ald06 refers to the second-order parser of McDon-
ald and Pereira (2006), Koo10 refers to the third-
order parser with model1 of Koo and Collins (2010),
Zhang11 refers to the parser of Zhang and Nivre
(2011), Li12 refers to the unlabeled parser of Li et
al. (2012), Koo08 refers to the parser of Koo et al.
(2008), Suzuki09 refers to the parser of Suzuki et al.
(2009), Chen09 refers to the parser of Chen et al.
(2009), Zhou11 refers to the parser of Zhou et al.
(2011), Suzuki11 refers to the parser of Suzuki et al.
(2011), and Chen12 refers to the parser of Chen et
al. (2012).

The results showed that our meta parser out-
performed most of the previous systems and ob-
tained the comparable accuracy with the best result
of Suzuki11 (Suzuki et al., 2011) which combined
the clustering-based word representations of Koo et
al. (2008) and a condensed feature representation.
However, our approach is much simpler than theirs
and we believe that our meta parser can be further
improved by combining their methods.
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Type System UAS COMP

Sup
McDonald06 91.5

Koo10 93.04 -
Zhang11 92.9 48.0

Li12 93.12 -
Our Baseline 92.76 48.05

Semi

Koo08 93.16
Suzuki09 93.79

Chen09 93.16 47.15
Zhou11 92.64 46.61

Suzuki11 94.22 -
Chen12 92.76 -

MetaParser 93.77 51.36

Table 10: Relevant results for English. Sup denotes the
supervised parsers, Semi denotes the parsers with semi-
supervised methods.

4.5.2 Chinese
Table 11 shows the comparative results, where

Li11 refers to the parser of Li et al. (2011), Hatori11
refers to the parser of Hatori et al. (2011), and Li12
refers to the unlabeled parser of Li et al. (2012). The
reported scores on this data were produced by the
supervised learning methods and our Baseline (su-
pervised) parser provided the comparable accuracy.
We found that the score of our meta parser for this
data was the best reported so far and significantly
higher than the previous scores. Note that we used
the auto-assigned POS tags in the test set to match
the above previous studies.

System UAS COMP
Li11 80.79 29.11

Hatori11 81.33 29.90
Li12 81.21 -

Our Baseline 81.01 29.71
MetaParser 83.08 32.21

Table 11: Relevant results for Chinese

4.6 Analysis
Here, we analyzed the effect of the meta features on
the data sparseness problem.

We first checked the effect of unknown features
on the parsing accuracy. We calculated the number
of unknown features in each sentence and computed
the average number per word. The average num-

bers were used to eliminate the influence of varied
sentence sizes. We sorted the test sentences in in-
creasing orders of these average numbers, and di-
vided equally into five bins. BIN 1 is assigned the
sentences with the smallest numbers and BIN 5 is
with the largest ones. Figure 2 shows the average
accuracy scores of the Baseline parsers against to
the bins. From the figure, we found that for both
two languages the Baseline parsers performed worse
while the sentences contained more unknown fea-
tures.
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Figure 2: Accuracies relative to numbers of unknown fea-
tures (average per word) by Baseline parsers

Then, we investigated the effect of the meta fea-
tures. We calculated the average number of ac-
tive meta features per word that were transformed
from the unknown features for each sentence. We
sorted the sentences in increasing order of the av-
erage numbers of active meta features and divided
them into five bins. BIN 1 is assigned the sen-
tences with the smallest numbers and BIN 5 is with
the largest ones. Figures 3 and 4 show the results,
where “Better” is for the sentences where the meta
parsers provided better results than the baselines and
“Worse” is for those where the meta parsers pro-
vided worse results. We found that the gap between
“Better” and “Worse” became larger while the sen-
tences contain more active meta features for the un-
known features. The gap means performance im-
provement. This indicates that the meta features are
very effective in processing the unknown features.

5 Related work

Our approach is to use unannotated data to generate
the meta features to improve dependency parsing.
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Figure 3: Improvement relative to numbers of active meta
features on English (average per word)
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Figure 4: Improvement relative to numbers of active meta
features on Chinese (average per word)

Several previous studies relevant to our approach
have been conducted.

Koo et al. (2008) used a word clusters trained on a
large amount of unannotated data and designed a set
of new features based on the clusters for dependency
parsing models. Chen et al. (2009) extracted sub-
tree structures from a large amount of data and rep-
resented them as the additional features to improve
dependency parsing. Suzuki et al. (2009) extended a
Semi-supervised Structured Conditional Model (SS-
SCM) of Suzuki and Isozaki (2008) to the depen-
dency parsing problem and combined their method
with the word clustering feature representation of
Koo et al. (2008). Chen et al. (2012) proposed an ap-
proach to representing high-order features for graph-
based dependency parsing models using a depen-
dency language model and beam search. In future
work, we may consider to combine their methods
with ours to improve performance.

Several previous studies used co-training/self-
training methods. McClosky et al. (2006) presented
a self-training method combined with a reranking al-
gorithm for constituency parsing. Sagae and Tsujii
(2007) applied the standard co-training method for
dependency parsing. In their approaches, some au-
tomatically parsed sentences were selected as new
training data, which was used together with the orig-
inal labeled data to retrain a new parser. We are able
to use their approaches on top of the output of our
parsers.

With regard to feature transformation, the work
of Ando and Zhang (2005) is similar in spirit to our
work. They studied semi-supervised text chunking
by using a large projection matrix to map sparse base
features into a small number of high level features.
Their project matrix was trained by transforming the
original problem into a large number of auxiliary
problems, obtaining training data for the auxiliary
problems by automatically labeling raw data and us-
ing alternating structure optimization to estimate the
matrix across all auxiliary tasks. In comparison with
their approach, our method is simpler in the sense
that we do not request any intermediate step of split-
ting the prediction problem, and obtain meta fea-
tures directly from self-annotated data. The training
of our meta feature values is highly efficient, requir-
ing the collection of simple statistics over base fea-
tures from huge amount of data. Hence our method
can potentially be useful to other tasks also.

6 Conclusion

In this paper, we have presented a simple but effec-
tive semi-supervised approach to learning the meta
features from the auto-parsed data for dependency
parsing. We build a meta parser by combining the
meta features with the base features in a graph-based
model. The experimental results show that the pro-
posed approach significantly improves the accuracy.
Our meta parser achieves comparable accuracy with
the best known parsers on the English data (Penn
English Treebank) and the best accuracy on the Chi-
nese data (Chinese Treebank Version 5.1) so far.
Further analysis indicate that the meta features are
very effective in processing the unknown features.
The idea described in this paper is general and can
be applied to other NLP applications, such as part-
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of-speech tagging and Chinese word segmentation,
in future work.
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