
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1201–1212,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Ubertagging: Joint segmentation and supertagging for English

Rebecca Dridan
Institutt for Informatikk

Universitetet i Oslo
rdridan@ifi.uio.no

Abstract

A precise syntacto-semantic analysis of En-
glish requires a large detailed lexicon with the
possibility of treating multiple tokens as a sin-
gle meaning-bearing unit, a word-with-spaces.
However parsing with such a lexicon, as in-
cluded in the English Resource Grammar, can
be very slow. We show that we can apply
supertagging techniques over an ambiguous
token lattice without resorting to previously
used heuristics, a process we call ubertagging.
Our model achieves an ubertagging accuracy
that can lead to a four to eight fold speed up
while improving parser accuracy.

1 Introduction and Motivation

Over the last decade or so, supertagging has become
a standard method for increasing parser efficiency
for heavily lexicalised grammar formalisms such as
LTAG (Bangalore and Joshi, 1999), CCG (Clark and
Curran, 2007) and HPSG (Matsuzaki et al., 2007).
In each of these systems, fine-grained lexical cate-
gories, known as supertags, are used to prune the
parser search space prior to full syntactic parsing,
leading to faster parsing at the risk of removing nec-
essary lexical items. Various methods are used to
configure the degree of pruning in order to balance
this trade-off.

The English Resource Grammar (ERG;
Flickinger (2000)) is a large hand-written HPSG-
based grammar of English that produces fine-
grained syntacto-semantic analyses. Given the high
level of lexical ambiguity in its lexicon, parsing
with the ERG should therefore also benefit from
supertagging, but while various attempts have
shown possibilities (Blunsom, 2007; Dridan et
al., 2008; Dridan, 2009), supertagging is still not
a standard element in the ERG parsing pipeline.

There are two main reasons for this. The first is
that the ERG lexicon does not assign simple atomic
categories to words, but instead builds complex
structured signs from information about lemmas and
lexical rules, and hence the shape and integration
of the supertags is not straightforward. Bangalore
and Joshi (2010) define a supertag as a primitive
structure that contains all the information about
a lexical item, including argument structure, and
where the arguments should be found. Within
the ERG, that information is not all contained in
the lexicon, but comes from different places. The
choice, therefore, of what information may be
predicted prior to parsing and how it should be
integrated into parsing is an open question.

The second reason that supertagging is not stan-
dard with ERG processing is one that is rarely con-
sidered when processing English, namely ambigu-
ous segmentation. In most mainstream English pars-
ing, the segmentation of parser input into tokens that
will become the leaves of the parse tree is consid-
ered a fixed, unambiguous process. While recent
work (Dridan and Oepen, 2012) has shown that pro-
ducing even these tokens is not a solved problem,
the issue we focus on here is the ambiguous map-
ping from these tokens to meaning-bearing units that
we might call words. Within the ERG lexicon are
many multi-token lexical entries that are sometimes
referred to as words-with-spaces. These multi-token
entries are added to the lexicon where the grammar-
ian finds that the semantics of a fixed expression is
non-compositional and has the distributional prop-
erties of other single word entries. Some examples
include an adverb-like all of a sudden, a preposition-
like for example and an adjective-like over and done
with. Each of these entries create an segmentation
ambiguity between treating the whole expression as
a single unit, or allowing analyses comprising en-
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tries triggered by the individual tokens. Previous su-
pertagging research using the ERG has either used
the gold standard tokenisation, hence making the
task artificially easier, or else tagged the individual
tokens, using various heuristics to apply multi-token
tags to single tokens. Neither approach has been
wholly satisfactory.

In this work we avoid the heuristic approaches
and learn a sequential classification model that can
simultaneously determine the most likely segmen-
tation and supertag sequences, a process we dub
ubertagging. We also experiment with more fine-
grained tag sets than have been previously used, and
find that it is possible to achieve a level of ubertag-
ging accuracy that can improve both parser speed
and accuracy for a precise semantic parser.

2 Previous Work

As stated above, supertagging has become a stan-
dard tool for particular parsing paradigms, but the
definitions of a supertag, the methods used to learn
them, and the way they are used in parsing varies
across formalisms. The original supertags were 300
LTAG elementary trees, predicted using a fairly sim-
ple trigram tagger that provided a configurable num-
ber of tags per token, since the tagger was not ac-
curate enough to make assigning a single tree vi-
able parser input (Bangalore and Joshi, 1999). The
C&C CCG parser uses a more complex Maximum
Entropy tagger to assign tags from a set of 425 CCG
lexical categories (Clark and Curran, 2007). They
also found it necessary to supply more than one tag
per token, and hence assign all tags that have a prob-
ability within a percentage β of the most likely tag
for each token. Their standard parser configura-
tion uses a very restrictive β value initially, relax-
ing it when no parse can be found. Matsuzaki et al.
(2007) use a supertagger similar to the C&C tagger
alongside a CFG filter to improve the speed of their
HPSG parser, feeding sequences of single tags to the
parser until a parse is possible. As in the ERG, cate-
gory and inflectional information are separate in the
automatically-extracted ENJU grammar: their su-
pertag set consists of 1361 tags constructed by com-
bining lexical categories and lexical rules. Figure 1
shows examples of supertags from these three tag
sets, all describing the simple transitive use of lends.

S

NP0↓ VP

V

lends

NP1↓

(a) LTAG

(S[dcl]\NP)/NP

(b) CCG

[NP.nom<V.bse>NP.acc]-singular3rd verb rule

(c) ENJU HPSG

Figure 1: Examples of supertags from LTAG, CCG
and ENJU HPSG, for the word lends.

The ALPINO system for parsing Dutch is the
closest in spirit to our ERG parsing setup, since
it also uses a hand-written HPSG-based grammar,
including multi-token entries in its lexicon. Prins
and van Noord (2003) use a trigram HMM tagger
to calculate the likelihood of up to 2392 supertags,
and discard those that are not within τ of the most
likely tag. For their multi-token entries, they as-
sign a constructed category to each token, so that
instead of assigning preposition to the expres-
sion met betrekking tot (“with respect to”), they
use (1,preposition), (2,preposition),
(3,preposition). Without these constructed
categories, they would only have 1365 supertags.

Most previous supertagging attempts with the
ERG have used the grammar’s lexical types, which
describe the coarse-grained part of speech, and the
subcategorisation of a word, but not the inflection.
Hence both lends and lent have a possible lexical
type v np* pp* to le, which indicates a verb,
with optional noun phrase and prepositional phrase
arguments, where the preposition has the form to.
The number of lexical types changes as the gram-
mar grows, and is currently just over 1000. Dridan
(2009) and Fares (2013) experimented with other tag
types, but both found lexical types to be the opti-
mal balance between predictability and efficiency.
Both used a multi-tagging approach dubbed selec-
tive tagging to integrate the supertags into the parser.
This involved only applying the supertag filter when
the tag probability is above a configurable threshold,
and not pruning otherwise.

For multi-token entries, both Blunsom (2007) and
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adverb adverb adverb
adverb ditto ditto
1,adverb 2,adverb 3,adverb

all in all

Figure 2: Options for tagging parts of the multi-
token adverb all in all separately.

Dridan (2009) assigned separate tags to each token,
with Blunsom (2007) assigning a special ditto tag
all but the initial token of a multi-token entry, while
Dridan (2009) just assigned the same tag to each to-
ken (leading to example in the expression for exam-
ple receiving p np i le, a preposition-type cate-
gory). Both of these solutions (demonstrated in Fig-
ure 2), as well as that of Prins and van Noord (2003),
in some ways defeat one of the purposes of treating
these expressions as fixed units. The grammarian,
by assigning the same category to, for example, all
of a sudden and suddenly, is declaring that these two
expressions have the same distributional properties,
the properties that a sequential classifier is trying to
exploit. Separating the tokens loses that informa-
tion, and introduces extra noise into the sequence
model.

Ytrestøl (2012) and Fares (2013) treat the multi-
entry tokens as single expressions for tagging, but
with no ambiguity. Ytrestøl (2012) manages this
by using gold standard tokenisation, which is, as he
states, the standard practice for statistical parsing,
but is an artificially simplified setup. Fares (2013) is
the only work we know about that has tried to predict
the final segmentation that the ERG produces. We
compare segmentation accuracy between our joint
model and his stand-alone tokeniser in Section 6.

Looking at other instances of joint segmentation
and tagging leads to work in non-whitespace sepa-
rated languages such as Chinese (Zhang and Clark,
2010) and Japanese (Kudo et al., 2004). While at a
high level, this work is solving the same problem,
the shape of the problems are quite different from
a data point of view. Regular joint morphological
analysis and segmentation has much greater ambi-
guity in terms of possible segmentations but, in most
cases, less ambiguity in terms of labelling than our
situation. This also holds for other lemmatisation
and morphological research, such as Toutanova and
Cherry (2009). While we drew inspiration from this

aj - i le

Foreign

v nger-tr dlr

v prp olr

v np*-pp* to le

lending

v pst olr

v - unacc le

increased

w period plr

av - s-vp-po le

as well.

p vp i le

as

w period plr

av - dg-v le

well.

Figure 3: A selection from the 70 lexitems instanti-
ated for Foreign lending increased as well.

related area, as well as from the speech recognition
field, differences in the relative frequency of obser-
vations and labels, as well as in segmentation ambi-
guity mean that conclusions found in these areas did
not always hold true in our problem space.

3 The Parser

The parsing environment we work with is the PET
parser (Callmeier, 2000), a unification-based chart
parser that has been engineered for efficiency with
precision grammars, and incorporates subsumption-
based ambiguity packing (Oepen and Carroll, 2000)
and statistical model driven selective unpacking
(Zhang et al., 2007). Parsing in PET is divided in
two stages. The first stage, lexical parsing, covers
everything from tokenising the raw input string to
populating the base of the parse chart with the ap-
propriate lexical items, ready for the second — syn-
tactic parsing — stage. In this work, we embed our
ubertagging model between the two stages. By this
point, the input has been segmented into what we
call internal tokens, which broadly means
splitting at whitespace and hyphens, and making
’s a separate token. These tokens are subject to a
morphological analysis component which proposes
possible inflectional and derivational rules based on
word form, and then are used in retrieving possible
lexical entries from the lexicon. The results of ap-
plying the appropriate lexical rules, plus affixation
rules triggered by punctuation, to the lexical entries
form a lexical item object, that for this work we dub
a lexitem.

Figure 3 shows some examples of lexitems
instantiated after the lexical parsing stage when
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analysing Foreign lending increased as well. The
pre-terminal labels on these subtrees are the lexical
types that have previously been used as supertags
for the ERG. For uninflected words, with no punctu-
ation affixed, the lexical type is the only element in
the lexitem, other than the word form (e.g. Foreign,
as). In this example, we also see lexitems with in-
flectional rules (v prp olr, v pst olr), deriva-
tional rules (v nger-tr dlr) and punctuation af-
fixation rules (w period plr).

These lexitems are put in to a chart, forming a
lexical lattice, and it is over this lattice that we apply
our ubertagging model, removing unlikely lexitems
before they are seen by the syntactic parsing stage.

4 The Data

The primary data sets we use in these experiments
are from the 1.0 version of DeepBank (Flickinger et
al., 2012), an HPSG annotation of the Wall Street
Journal text used for the Penn Treebank (PTB; Mar-
cus et al. (1993)). The current version has gold stan-
dard annotations for approximately 85% of the first
22 sections. We follow the recommendations of the
DeepBank developers in using Sections 00–19 for
training, Section 20 (WSJ20) for development and
Section 21 (WSJ21) as test data.

In addition, we use two further sources of training
data: the training portions of the LinGO Redwoods
Treebank (Oepen et al., 2004), a steadily growing
collection of gold standard HPSG annotations in a
variety of domains; and the Wall Street Journal sec-
tion of the North American News Corpus (NANC),
which has been parsed, but not manually annotated.
This builds on observations by Prins and van Noord
(2003), Dridan (2009) and Ytrestøl (2012) that even
uncorrected parser output makes very good train-
ing data for a supertagger, since the constraints in
the parser lead to viable, if not entirely correct se-
quences. This allows us to use much larger training
sets than would be possible if we required manually
annotated data.

In final testing, we also include two further data
sets to observe how domain affects the contribution
of the ubertagging. These are both from the test
portion of the Redwoods Treebank: CatB, an es-
say about open-source software;1 and WeScience13,

1http://catb.org/esr/writings/

text from Wikipedia articles about Natural Language
Processing from the WeScience project (Ytrestøl et
al., 2009). Table 1 summarises the vital statistics of
the data we use.

With the focus on multi-token lexitems, it is in-
structive to see just how frequent they are. In terms
of type frequency, almost 10% of the approximately
38500 lexical entries in the current ERG lexicon
have more than one token in their canonical form.2

However, while this is a significant percentage of the
lexicon, they do not account for the same percentage
of tokens during parsing. An analysis of WSJ00:19

shows that approximately one third of the sentences
had at least one multi-token lexitem in the unpruned
lexical lattice, and in just under half of those, the
gold standard analysis included a multi-word entry.
That gives the multi-token lexitems the awkward
property of being rare enough to be difficult for a
statistical classifier to accurately detect (just under
1% of the leaves of gold parse trees contain multi-
ple tokens), but too frequent to ignore. In addition,
since these multi-token expressions have often been
distinguished because they are non-compositional,
failing to detect the multi-word usage can lead to
a disproportionately adverse effect on the semantic
analysis of the text.

5 Ubertagging Model

Our ubertagging model is very similar to a standard
trigram Hidden Markov Model (HMM), except that
the states are not all of the same length. Our states
are based on the lexitems in the lexical lattice pro-
duced by the lexical parsing stage of PET, and as
such, can be partially overlapping. We formalise this
be defining each state by its start position, end po-
sition, and tag. This turns out to make our model
equivalent to a type of Hidden semi-Markov Model
called a segmental HMM in Murphy (2002). In a
segmental HMM, the states are segments with a tag
(t) and a length in frames (l). In our setup, the
frames are the ERG internal tokens and the segments
are the lexitems, which are the potential candidates

cathedral-bazaar/ by Eric S. Raymond
2While the parser has mechanisms for handling words un-

known to the lexicon, with the current grammar these mecha-
nisms will never propose a multi-token lexitem, and so only the
multi-token entries explicitly in the lexicon will be recognised
as such.
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Lexitems
Data Set Source Use Gold? Trees All M-T
WSJ00:19 DeepBank 1.0 §00–19 train yes 33783 661451 6309
Redwoods Redwoods Treebank train yes 39478 432873 6568
NANC LDC2008T15 train no 2185323 42376523 399936
WSJ20 DeepBank 1.0 §20 dev yes 1721 34063 312
WSJ21 DeepBank 1.0 §21 test yes 1414 27515 253
WeScience13 Redwoods Treebank test yes 802 11844 153
CatB Redwoods Treebank test yes 608 11653 115

Table 1: Test, development and training data used in these experiments. The final two columns show the
total number of lexitems used for training (All), as well as how many of those were multi-token lexitems
(M-T).

to become leaves of the parse tree. As indicated
above, the majority of segments (over 99%) will be
one frame long, but segments of up to four frames
are regularly seen in the training data.

A standard trigram HMM has a transition proba-
bility matrix A, where the elements Aijk represent
the probability P (k|ij), and an emission probability
matrix B whose elements Bjo record the probabili-
ties P (o|j). Given these matrices and a vector of ob-
served frames, O, the posterior probabilities of each
state at frame v are calculated as:3

P (qv = qy|O) =
αv(qy)βv(qy)

P (O)
(1)

where αv(qy) is the forward probability at frame v,
given a current state qy (i.e. the probability of the
observation up to v, given the state):

αv(qy) ≡ P (O0:v|qv = qy) (2)

=
∑
qx

αv(qxqy) (3)

αv(qxqy) = Bqyov

∑
qw

αv−1(qwqx)Aqwqxqy (4)

βv(qy) is the backwards probability at frame v, given
a current state qy (the probability of the observation

3Since we will require per-state probabilities for integration
to the parser, we focus on the calculation of posterior probabil-
ities, rather than determing the single best path.

from v, given the state):

βv(qy) ≡ P (Ov+1:V |qv = qy) (5)

=
∑
qx

βv(qxqy) (6)

βv(qxqy) =
∑
qz

βv+1(qyqz)AqxqyqzBqzov+1 (7)

and the probability of the full observation sequence
is equal to the forward probability at the end of the
sequence, or the backwards probability at the start
of the sequence:

P (O) = αV (〈E〉) = β0(〈S〉) (8)

In implementation, our model varies only in what
we consider the previous or next states. While v still
indexes frames, qv now indicates a state that ends
with frame v, and we look forwards and backwards
to adjacent states, not frames, formally designated in
terms of l, the length of the state. Hence, we modify
equation (4):

αv(qxqy) = BqyOv−l+1:v

∑
qw

αv−l(qwqx)Aqwqxqy

(9)
where v−l indexes the frame before the current state
starts, and hence we are summing over all states
that lead directly to our current state. An equivalent
modification to equation (7) gives:

βv(qxqy) =
∑
qz
∈Qn

∑
l(qz)

βv+l(qyqz)AqxqyqzBqzOv+1:v+l

(10)
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Type Example #Tags
LTYPE v np-pp* to le 1028
INFL v np-pp* to le:v pas odlr 3626
FULL v np-pp* to le:v pas odlr:w period plr 21866

w period plr

v pas odlr

v np-pp* to le

recommended.

Figure 4: Possible tag types and their tag set size, with examples derived from the lexitem on the right.

where Qn is the set of states that start at v + 1 (i.e.,
the states immediately following the current state),
and l(qz) is the length of state qz .

We construct the transition and emission prob-
ability matrices using relative frequencies directly
observed from the training data, where we make
the simplifying assumption that P (qk|qiqj) ≡
P (t(qk)|t(qi)t(qk)). Which is to say, while lex-
items with the same tag, but different length will
trigger distinct states with distinct emission proba-
bilities, they will have the same transition probabili-
ties, given the same proceeding tag.4 Even with our
large training set, some tag trigrams are rare or un-
seen. To smooth these probabilities, we use deleted
interpolation to calculate a weighted sum of the tri-
gram, bigram and unigram probabilities, since it has
been successfully used in effective PoS taggers like
the TnT tagger (Brants, 2000). Future work will
look more closely at the effects of different smooth-
ing methods.

6 Intrinsic Ubertag Evaluation

In order to develop and tune the ubertagging model,
we first looked at segmentation and tagging per-
formance in isolation over the development set.
We looked at three tag granularities: lexical types
(LTYPE) which have previously been shown to be the
optimal granularity for supertagging with the ERG,
inflected types (INFL) which encompass inflectional
and derivational rules applied to the lexical type, and
the full lexical item (FULL), which also includes af-
fixation rules used for punctuation handling. Exam-
ples of each tag type are shown in Figure 4, along
with the number of tags of each type seen in the
training data.

4Since the multi-token lexical entries are defined because
they have the same properties as the single token variants, there
is no reason to think the length of a state should influence the
tag sequence probability.

Segmentation Tagging
Tag Type F1 Sent. F1 Sent.
FULL 99.55 94.48 93.92 42.13
INFL 99.45 93.55 93.74 41.49
LTYPE 99.40 93.03 93.27 38.12

Table 2: Segmentation and tagging performance of
the best path found for each model, measured per
segment in terms of F1, and also as complete sen-
tence accuracy.

Single sequence results Table 2 shows the results
when considering the best path through the lattice.
In terms of segmentation, our sentence accuracy is
comparable to that of the stand-alone segmentation
performance reported by Fares et al. (2013) over
similar data.5 In that work, the authors used a bi-
nary CRF classifier to label points between objects
they called micro-tokens as either SPLIT or NOS-
PLIT. The CRF classifier used a less informed in-
put (since it was external to the parser), but a much
more complex model, to produce a best single path
sentence accuracy of 94.06%. Encouragingly, this
level of segmentation performance was shown in
later work to produce a viable parser input (Fares,
2013).

Switching to the tagging results, we see that the
F1 numbers are quite good for tag sets of this size.6

The best tag accuracy seen for ERG LTYPE-style
tags was 95.55 in Ytrestøl (2012), using gold stan-
dard segmentation on a different data set. Dridan
(2009) experimented with a tag granularity similar
to our INFL (letype+morph) and saw a tag ac-
curacy of 91.51, but with much less training data.
From other formalisms, Kummerfeld et al. (2010)

5Fares et al. (2013) used a different section of an earlier ver-
sion of DeepBank, but with the same style of annotation.

6We need to measure F1 rather than tag accuracy here, since
the number of tokens tagged will vary according to the segmen-
tation.
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report a single tag accuracy of 95.91, with the
smaller CCG supertag set. Despite the promising
tag F1 numbers however, the sentence level accu-
racy still indicates a performance level unacceptable
for parser input. Comparing between tag types, we
see that, possibly surprisingly, the more fine-grained
tags are more accurately assigned, although the dif-
ferences are small. While instinctively a larger tag
set should present a more difficult problem, we find
that this is mitigated both by the sparse lexical lattice
provided by the parser, and by the extra constraints
provided by the more informative tags.

Multi-tagging results The multi-tagging methods
from previous supertagging work becomes more
complicated when dealing with ambiguous tokeni-
sation. Where, in other setups, one can compare
tag probabilities for all tags for a particular token,
that no longer holds directly when tokens can par-
tially overlap. Since ultimately, the parser uses lex-
items which encompass segmentation and tagging
information, we decided to use a simple integration
method, where we remove any lexitem which our
model assigns a probability below a certain thresh-
old (ρ). The effect of the different tag granular-
ities is now mediated by the relationship between
the states in the ubertagging lattice and the lexitems
in the parser’s lattice: for the FULL model, this is
a one-to-one relationship, but states from the mod-
els that use coarser-grained tags may affect multiple
lexitems. To illustrate this point, Figure 5 shows
some lexitems for the token forecast,, where there
are multiple possible analyses for the comma. A
FULL tag of v cp le:v pst olr:w comma plr
will select only lexitem (b), whereas an INFL tag
v cp le:v pst olr will select (b) and (c) and
the LTYPE tag v cp le picks out (a), (b) and (c).
On the other hand, where there is no ambiguity in
inflection or affixation, an LTYPE tag of n - mc le
may relate to only a single lexitem ((f) in this case).

Since we are using an absolute, rather than rel-
ative, threshold, the number needs to be tuned for
each model7 and comparisons between models can
only be made based on the effects (accuracy or prun-
ing power) of the threshold. Table 3 shows how
a selection of threshold values affect the accuracy

7A tag set size of 1028 will lead to higher probabilities in
general than a tag set size of 21866.

w comma-nf plr

v cp le

forecast,

(a)

w comma-nf plr

v pst olr

v cp le

forecast,

(b)

w comma plr

v pst olr

v cp le

forecast,

(c)
w comma plr

v pst olr

v np le

forecast,

(d)

w comma plr

v pas olr

v np le

forecast,

(e)

w comma plr

n - mc le

forecast,

(f)

Figure 5: Some of the lexitems triggered by fore-
cast, in Despite the gloomy forecast, profits were up.

Tag Lexitems
Type ρ Acc. Kept Ave.

FULL 0.00001 99.71 41.6 3.34
FULL 0.0001 99.44 33.1 2.66
FULL 0.001 98.92 25.5 2.05
FULL 0.01 97.75 19.4 1.56
INFL 0.0001 99.67 37.9 3.04
INFL 0.001 99.25 29.0 2.33
INFL 0.01 98.21 21.6 1.73
INFL 0.02 97.68 19.7 1.58
LTYPE 0.0002 99.75 66.3 5.33
LTYPE 0.002 99.43 55.0 4.42
LTYPE 0.02 98.41 43.5 3.50
LTYPE 0.05 97.54 39.4 3.17

Table 3: Accuracy and ambiguity after pruning lex-
items in WSJ20, at a selection of thresholds ρ for
each model. Accuracy is measured as the percent-
age of gold lexitems remaining after pruning, while
ambiguity is presented both as a percentage of lex-
items kept, and the average number of lexitems per
initial token still remaining.
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Tag accuracy versus ambiguity

FULL
INFL

LTYPE

Figure 6: Accuracy over gold lexitems versus aver-
age lexitems per initial token over the development
set, for each of the different ubertagging models.

and pruning impact of our different disambiguation
models, where the accuracy is measured in terms
of percentage of gold lexitems retained. The prun-
ing effect is given both as percentage of lexitems
retained after pruning, and average number of lex-
items per initial token.8 Comparison between the
different models can be more easily made by exam-
ining Figure 6. Here we see clearly that the LTYPE

model provides much less pruning for any given
level of lexitem accuracy, while the performance of
the other models is almost indistinguishable.

Analysis The current state-of-the-art POS tagging
accuracy (using the 45 tags in the PTB) is approx-
imately 97.5%. The most restrictive ρ value we
report for each model was selected to demonstrate
that level of accuracy, which we can see would lead
to pruning over 80% of lexitems when using FULL

tags, an average of 1.56 tags per token. While
this level of accuracy has been sufficient for statisti-
cal treebank parsing, previous work (Dridan, 2009)
has shown that tag accuracy cannot directly predict
parser performance, since errors of different types
can have very different effects. This is hard to
quantify without parsing, but we made a qualitative
analysis at the lexitems that were incorrectly being

8The average number of lexitems per token for the unre-
stricted parser is 8.03, although the actual assignment is far from
uniform, with up to 70 lexitems per token seen for the very am-
biguous tokens.

pruned. For all models, the most difficult lexitems
to get correct were proper nouns, particular those
that are also used as common nouns (e.g. Bank, Air-
line, Report). While capitalisation provides a clue
here, it is not always deterministic, particularly since
the treebank incorporates detailed decisions regard-
ing the distinction between a name and a capitalised
common noun that require real world knowledge,
and are not necessarily always consistent. Almost
two thirds of the errors made by the FULL and INFL

models are related to these decisions, but only about
40% for the LTYPE model. The other errors are pre-
dominately over noun and verb type lexitems, as the
open classes, with the only difference between mod-
els being that the FULL model seems marginally bet-
ter at classifying verbs. The next section describes
the end-to-end setup and results when parsing the
development set.

7 Parsing

With encouraging ubertagging results, we now take
the next step and evaluate the effect on end-to-end
parsing. Apart from the issue of different error types
having unpredictable effects, there are two other
factors that make the isolated ubertagging results
only an approximate indication of parsing perfor-
mance. The first confounding factor is the statisti-
cal parsing disambiguation model. To show the ef-
fect of ubertagging in a realistic configuration, we
only evaluate the first analysis that the parser returns.
That means that when the unrestricted parser does
not rank the gold analysis first, errors made by our
model may not be visible, because we would never
see the gold analysis in any case. On the other hand,
it is possible to improve parser accuracy by pruning
incorrect lexitems that were in a top ranked, non-
gold analysis.

The second new factor that parser integration
brings to the picture is the effect of resource limi-
tations. For reasons of tractability, PET is run with
per sentence time and memory limits. For treebank
creation, these limits are quite high (up to four min-
utes), but for these experiments, we set the time-
out to a more practical 60 seconds and the memory
limit to 2048Mb. Without lexical pruning, this leads
to approximately 3% of sentences not receiving an
analysis. Since the main aim of ubertagging is to in-
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Tag F1

Type ρ Lexitem Bracket Time
No Pruning 94.06 88.58 6.58

FULL 0.00001 95.62 89.84 3.99
FULL 0.0001 95.95 90.09 2.69
FULL 0.001 95.81 89.88 1.34
FULL 0.01 94.19 88.29 0.64
INFL 0.0001 96.10 90.37 3.45
INFL 0.001 96.14 90.33 1.78
INFL 0.01 95.07 89.27 0.84
INFL 0.02 94.32 88.49 0.64
LTYPE 0.0002 95.37 89.63 4.73
LTYPE 0.002 96.03 90.20 2.89
LTYPE 0.02 95.04 89.04 1.23
LTYPE 0.05 93.36 87.26 0.88

Table 4: Lexitem and bracket F1over WSJ20, with
average per sentence parsing time in seconds.

crease efficiency, we would expect to regain at least
some of these unanalysed sentences, even when a
lexitem needed for the gold analysis has been re-
moved.

Table 4 shows the parsing results at the same
threshold values used in Table 3. Accuracy is cal-
culated in terms of F1 both over lexitems, and PAR-
SEVAL-style labelled brackets (Black et al., 1991),
while efficiency is represented by average parsing
time per sentence. We can see here that an ubertag-
ging F1 of below 98 (cf. Table 3) leads to a drop
in parser accuracy, but that an ubertagging perfor-
mance of between 98 and 99 can improve parser F1

while also achieving speed increases up to 8-fold.
From the table we confirm that, contrary to ear-

lier pipeline supertagging configurations, tags of a
finer granularity than LTYPE can deliver better per-
formance, both in terms of accuracy and efficiency.
Again, comparing graphically in Figure 7 gives a
clearer picture. Here we have graphed labelled
bracket F1 against parsing time for the full range of
threshold values explored, with the unpruned pars-
ing results indicated by a cross.

From this figure, we see that the INFL model, de-
spite being marginally less accurate when measured
in isolation, leads to slightly more accurate parse re-
sults than the FULL model at all levels of efficiency.

Looking at the same graph for different samples
of the development set (not shown) shows some

86

87

88

89

90

 0  1  2  3  4  5  6  7

F1

Time per sentence

Parser accuracy versus efficiency

FULL
INFL

LTYPE
Unrestricted

Selected configuration

Figure 7: Labelled bracket F1 versus parsing time
per sentence over the development set, for each of
the different ubertagging models. The cross indi-
cates unpruned performance, while the circle pin-
points the configuration we chose for the final test
runs.

variance in which threshold value gives the best F1,
but the relative differences and basic curve shape re-
mains the same. From these different views, using
the guideline of maximum efficiency without harm-
ing accuracy we selected our final configuration: the
INFL model with a threshold value of 0.001 (marked
with a circle in Figure 7). On the development set,
this configuration leads to a 1.75 point improvement
in F1 in 27% of the parsing time.

8 Final Results

Table 5 shows the results obtained when parsing us-
ing the configuration selected on the development
set, over our three test sets. The first, WSJ21 is from
the same domain as the development set. Here we
see that the effect over the WSJ21 set fairly closely
mirrored that of the development set, with an F1 in-
crease of 1.81 in 29% of the parsing time.

The Wikipedia domain of our WeScience13 test
set, while very different to the newswire domain of
the development set could still be considered in do-
main for the parsing and ubertagging models, since
there is Wikipedia data in the training sets. With
an average sentence length of 15.18 (compared to
18.86 in WSJ21), the baseline parsing time is faster
than for WSJ21, and the speedup is not quite as large
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Baseline Pruned
Data Set F1 Time F1 Time

WSJ21 88.12 6.06 89.93 1.77
WeScience13 86.25 4.09 87.14 1.48
CatB 86.31 5.00 87.11 1.78

Table 5: Parsing accuracy in terms of labelled
bracket F1 and average time per sentence when pars-
ing the test sets, without pruning, and then with lex-
ical pruning using the INFL model with a threshold
of 0.001.

but still welcome, at 36% of the baseline time. The
increase is accuracy is likewise smaller (due to less
issues with resource exhaustion in the baseline), but
as our primary goal is to not harm accuracy, the re-
sults are pleasing.

The CatB test set is the standard out-of-domain
test for the parser, and is also out of domain for
the ubertagging model. The average sentence length
is not much below that of WSJ21, at 18.61, but
the baseline parsing speed is still noticeably faster,
which appears to be a reflection of greater structural
ambiguity in the newswire text. We still achieve a re-
duction in parsing time to 35% of the baseline, again
with a small improvement in accuracy.

The across-the-board performance improvement
on all our test sets suggests that, while tuning the
pruning threshold could help, it is a robust parame-
ter that can provide good performance across a va-
riety of domains. This means that we finally have a
robust supertagging setup for use with the ERG that
doesn’t require heuristic shortcuts and can be reli-
ably applied in general parsing.

9 Conclusions and Outlook

In this work we have demonstrated a lexical disam-
biguation process dubbed ubertagging that can as-
sign fine-grained supertags over an ambiguous to-
ken lattice, a setup previously ignored for English. It
is the first completely integrated supertagging setup
for use with the English Resource Grammar, which
avoids the previously necessary heuristics for deal-
ing with ambiguous tokenisation, and can be ro-
bustly configured for improved performance without
loss of accuracy. Indeed, by learning a joint segmen-
tation and supertagging model, we have been able
to achieve usefully high tagging accuracies for very

fine-grained tags, which leads to potential parser
speedups of between 4 and 8 fold.

Analysis of the tagging errors still being made
have suggested some possibly avoidable inconsis-
tencies in the grammar and treebank, which have
been fed back to the developers, hopefully leading
to even better results in the future.

In future work, we will investigate more advanced
smoothing methods to try and boost the ubertagging
accuracy. We also intend to more fully explore the
domain adaptation potentials of the lexical model
that have been seen in other parsing setups (see
Rimell and Clark (2008) for example), as well as ex-
amine the limits on the effects of more training data.
Finally, we would like to explore just how much the
statistic properties of our data dictate the success of
the model by looking at related problems like mor-
phological analysis of unsegmented languages such
as Japanese.
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