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Abstract
One of the language phenomena that n-gram
language model fails to capture is the topic in-
formation of a given situation. We advance the
previous study of the Bayesian topic language
model by Wallach (2006) in two directions:
one, investigating new priors to alleviate the
sparseness problem caused by dividing all n-
grams into exclusive topics, and two, develop-
ing a novel Gibbs sampler that enables moving
multiple n-grams across different documents
to another topic. Our blocked sampler can
efficiently search for higher probability space
even with higher order n-grams. In terms of
modeling assumption, we found it is effective
to assign a topic to only some parts of a docu-
ment.

1 Introduction

N -gram language model is still ubiquitous in NLP,
but due to its simplicity it fails to capture some im-
portant aspects of language, such as difference of
word usage in different situations, sentence level
syntactic correctness, and so on. Toward language
model that can consider such a more global con-
text, many extensions have been proposed from
lexical pattern adaptation, e.g., adding cache (Je-
linek et al., 1991) or topic information (Gildea and
Hofmann, 1999; Wallach, 2006), to grammaticality
aware models (Pauls and Klein, 2012).

Topic language models are important for use in
e.g., unsupervised language model adaptation: we
want a language model that can adapt to the do-
main or topic of the current situation (e.g., a doc-
ument in SMT or a conversation in ASR) automat-
ically and select the appropriate words using both
topic and syntactic context. Wallach (2006) is one
such model, which generate each word based on lo-
cal context and global topic information to capture

the difference of lexical usage among different top-
ics.

However, Wallach’s experiments were limited to
bigrams, a toy setting for language models, and ex-
periments with higher-order n-grams have not yet
been sufficiently studied, which we investigate in
this paper. In particular, we point out the two funda-
mental problems caused when extending Wallach’s
model to a higher-order: sparseness caused by di-
viding all n-grams into exclusive topics, and local
minima caused by the deep hierarchy of the model.
On resolving these problems, we make several con-
tributions to both computational linguistics and ma-
chine learning.

To address the first problem, we investigate incor-
porating a global language model for ease of sparse-
ness, along with some priors on a suffix tree to cap-
ture the difference of topicality for each context,
which include an unsupervised extension of the dou-
bly hierarchical Pitman-Yor language model (Wood
and Teh, 2009), a Bayesian generative model for su-
pervised language model adaptation. For the sec-
ond inference problem, we develop a novel blocked
Gibbs sampler. When the number of topics is K
and vocabulary size is V , n-gram topic model has
O(KV n) parameters, which grow exponentially to
n, making the local minima problem even more se-
vere. Our sampler resolves this problem by moving
many customers in the hierarchical Chinese restau-
rant process at a time.

We evaluate various models by incremental cal-
culation of test document perplexity on 3 types of
corpora having different size and diversity. By com-
bining the proposed prior and the sampling method,
our Bayesian model achieve much higher accura-
cies than the naive extension of Wallach (2006) and
shows results competitive with the unigram rescal-
ing (Gildea and Hofmann, 1999), which require
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huge computational cost at prediction, with much
faster prediction time.

2 Basic Models

All models presented in this paper are based on the
Bayesian n-gram language model, the hierarchical
Pitman-Yor process language model (HPYLM). In
the following, we first introduce the HPYLM, and
then discuss the topic model extension of Wallach
(2006) with HPYLM.

2.1 HPYLM

Let us first define some notations. W is a vocabulary
set, V = |W | is the size of that set, and u, v, w ∈W
represent the word type.

The HPYLM is a Bayesian treatment of the n-
gram language model. The generative story starts
with the unigram word distribution Gφ, which is
a V -dimensional multinomial where Gφ(w) repre-
sents the probability of word w. The model first
generates this distribution from the PYP as Gφ ∼
PYP(a, b,G0), where G0 is a V -dimensional uni-
form distribution (G0(u) = 1

V ;∀u ∈ W ) and
acts as a prior for Gφ and a, b are hyperparameters
called discount and concentration, respectively. It
then generates all bigram distributions {Gu}u∈W as
Gu ∼ PYP(a, b,Gφ). Given this distributions, it
successively generates 3-gram distributions Guv ∼
PYP(a, b,Gu) for all (u, v) ∈ W 2 pairs, which
encode a natural assumption that contexts having
common suffix have similar word distributions. For
example, two contexts “he is” and “she is”, which
share the suffix “is”, are generated from the same
(bigram) distribution Gis, so they would have simi-
lar word distributions. This process continues until
the context length reaches n − 1 where n is a pre-
specified n-gram order (if n = 3, the above example
is a complete process). We often generalize this pro-
cess using two contexts h and h′ as

Gh ∼ PYP(a, b,Gh′), (1)

where h = ah′, in which a is a leftmost word of h.
We are interested in the posterior word distribu-

tion following a context h. Our training corpus w
is a collection of n-grams, from which we can cal-
culate the posterior p(w|h,w), which is often ex-

plained with the Chinese restaurant process (CRP):

p(w|h,w) =
chw − athw
ch· + b

+
ath· + b

ch· + b
p(w|h′,w),

(2)
where chw is an observed count of n-gram hw called
customers, while thw is a hidden variable called ta-
bles. ch· and th· represents marginal counts: ch· =∑

w chw and th· =
∑

w thw. This form is very
similar to the well-known Kneser-Ney smoothing,
and actually the Kneser-Ney can be understood as a
heuristic approximation of the HPYLM. This char-
acteristic enables us to build the state-of-the-art lan-
guage model into a more complex generative model.

2.2 Wallach (2006) with HPYLM

Wallach (2006) is a generative model for a docu-
ment collection that combines the topic model with
a Bayesian n-gram language model. The latent
Dirichlet allocation (LDA) (Blei et al., 2003) is the
most basic topic model, which generates each word
in a document based on a unigram word distribution
defined by a topic allocated to that word. The bi-
gram topic model of Wallach (2006) simply replaces
this unigram word distribution (a multinomial) for
each topic with a bigram word distribution 1. In
other words, ordinary LDA generates word condi-
tioning only on the latent topic, whereas the bigram
topic model generates conditioning on both the la-
tent topic and the previous word, as in the bigram
language model. Extending this model with a higher
order n-gram is trivial; all we have to do is to replace
the bigram language model for each topic with an n-
gram language model.

The formal description of the generative story of
this n-gram topic model is as follows. First, for
each topic k ∈ 1, · · · ,K, where K is the num-
ber of topics, the model generates an n-gram lan-
guage model Gkh.2 These n-gram models are gen-
erated by the PYP, so Gkh ∼ PYP(a, b,Gkh′) holds.
The model then generate a document collection. For
each document j ∈ 1, · · · , D, it generates a K-

1This is the model called prior 2 in Wallach (2006); it con-
sistently outperformed the other prior. Wallach used the Dirich-
let language model as each topic, but we only explore the model
with HPYLM because its superiority to the Dirichlet language
model has been well studied (Teh, 2006b).

2We sometimes denote Gk
h to represent a language model of

topic k, not a specific multinomial for some context h, depend-
ing on the context.
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dimensional topic distribution θj by a Dirichlet dis-
tribution Dir(α) where α = (α1, α2, · · · , αK) is a
prior. Finally, for each word position i ∈ 1, · · · , Nj

where Nj is the number of words in document j, i-
th word’s topic assignment zji is chosen according
to θj , then a word type wji is generated from G

zji

hji

where hji is the last n− 1 words preceding wji. We
can summarize this process as follows:

1. Generate topics:
For each h ∈ φ, {W}, · · · , {W}n−1:

For each k ∈ 1, · · · ,K:
Gkh ∼ PYP(a, b,Gkh′)

2. Generate corpora:
For each document j ∈ 1, · · ·D:
θj ∼ Dir(α)
For each word position i ∈ 1, · · · , Nj :
zji ∼ θj
wji ∼ G

zji

hji

3 Extended Models

One serious drawback of the n-gram topic model
presented in the previous section is sparseness. At
inference, as in LDA, we assign each n-gram a topic,
resulting in an exclusive clustering of n-grams in
the corpora. Roughly speaking, when the number
of topics is K and the number of all n-grams in the
training corpus is N , a language model of topic k,
Gkh is learned using only about O(N/K) instances
of the n-grams assigned the topic k, making each
Gkh much sparser and unreliable distribution.

One way to alleviate this problem is to place an-
other n-gram model, say G0

h, which is shared with
all topic-specific n-gram models {Gkh}Kk=1. How-
ever, what is the best way to use this special distribu-
tion? We explore two different approaches to incor-
porate this distribution in the model presented in the
previous section. In one model, the HIERARCHICAL

model, G0
h is used as a prior for all other n-gram

models, where G0
h exploits global statistics across

all topics {Gkh}. In the other model, the SWITCH-
ING model, no statistics are shared across G0

h and
{Gkh}, but some words are directly generated from
G0
h regardless of the topic distribution.

3.1 HIERARCHICAL Model

Informally, what we want to do is to establish hier-
archies among the global G0

h and other topics {Gkh}.
In Bayesian formalism, we can explain this using an

・・・
・・・

・・・
・・・

・・・
・・・

Figure 1: Variable dependencies of the HIERARCHICAL
model. {u, v} are word types, k is a topic and each Gkh
is a multinomial word distribution. For example, G2

uv

represents a word distribution following the context uv
in topic 2.

abstract distribution F as Gkh ∼ F(G0
h). The prob-

lem here is making the appropriate choice for the
distribution F . Each topic word distribution already
has hierarchies among n− 1-gram and n-gram con-
texts as Gkh ∼ PYP(a, b,Gkh′). A natural solution
to this problem is the doubly hierarchical Pitman-
Yor process (DHPYP) proposed in Wood and Teh
(2009). Using this distribution, the new generative
process of Gkh is

Gkh ∼ PYP(a, b, λGkh′ + (1− λ)G0
h), (3)

where λ is a new hyperparameter that determines
mixture weight. The dependencies among G0

h and
{Gkh} are shown in Figure 1. Note that the genera-
tive process of G0

h is the same as the HPYLM (1).
Let us clarify the DHPYP usage differences be-

tween our model and the previous work of Wood and
Teh (2009). A key difference is the problem setting:
Wood and Teh (2009) is aimed at the supervised
adaptation of a language model for a specific do-
main, whereas our goal is unsupervised adaptation.
In Wood and Teh (2009), each Gkh for k ∈ 1, 2, · · ·
corresponds to a language model of a specific do-
main and the training corpus for each k is pre-
specified and fixed. For ease of data sparseness of
domain-specific corpora, latent model G0

h exploits
shared statistics amongGkh for k = 1, 2, · · · . In con-
trast, with our model, each Gkh is a topic, so it must
perform the clustering of n-grams in addition to ex-
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ploiting the latent G0
h. This makes inference harder

and requires more careful design of λ.

Modeling of λ We can better understand the role
of λ in (3) by considering the posterior predictive
form corresponds to (2), which is written as

p(w|h, k,w) =
ckhw − atkhw
ckh· + b

+
atkh· + b

ckh· + b
q(w|h, k,w),

(4)

q(w|h, k,w) = λp(w|h′, k,w) + (1− λ)p(w|h, 0,w),

where c, t with superscript k corresponds to the
count existing in topic k. This shows us that λ de-
termines the back-off behavior: which probability
we should take into account: the shorter context of
the same topic Gkh′ or the full context of the global
model G0

h. Wood and Teh (2009) shares this vari-
able across all contexts of the same length, for each
k, but this assumption may not be the best. For ex-
ample, after the context “in order”, we can predict
the word “to” or “that”, and this tendency is unaf-
fected by the topic. We call this property of context
the topicality and say that “in order” has weak topi-
cality. Therefore, we place λ as a distinct value for
each context h, which we share across all topics. We
designate this λ determined by h λh in the follow-
ing. Moreover, similar contexts may have similar
values of λh. For example, the two contexts “of the”
and “in the”, which share the suffix “the”, both have
a strong topicality3. We encode this assumption by
placing hierarchical Beta distributions on the suffix
tree across all topics:

λh ∼ Beta(γλh′ , γ(1− λh′)) = DP(γ, λh′), (5)

where DP is the hierarchical Dirichlet process (Teh
et al., 2006), which has only two atoms in {0,1} and
γ is a concentration parameter. As in HPYLM, we
place a uniform prior λ0 = 1/2 on the base distribu-
tion of the top node (λφ ∼ DP(γ, λ0)).

Having generated the topic component of the
model, the corpus generating process is the same as
the previous model because we only change the gen-
erating process of Gkh for k = 1, · · · ,K.

3These words can be used very differently depending on the
context. For example, in a teen story, “in the room” or “in the
school” seems more dominant than “in the corpora” or “in the
topic”, which is likely to appear in this paper.

3.2 SWITCHING Model
Our second extension also exploits the globalG0

h, al-
beit differently than the HIERARCHICAL model. In
this model, the relationship of G0

h to the other {Gkh}
is flat, not hierarchical: G0

h is a special topic that can
generate a word. The model first generates each lan-
guage model of k = 0, 1, 2, · · · ,K independently
as Gkh ∼ PYP(a, b,Gkh′). When generating a word,
it first determines whether to use global model G0

h

or topic model {Gkh}Kk=1. Here, we use the λh in-
troduced above in a similar way: the probability of
selecting k = 0 for the next word is determined by
the previous context. This assumption seems natu-
ral; we expect theG0

h to mainly generate common n-
grams, and the topicality of each context determines
how common that n-gram might be. The complete
generative process of this model is written as fol-
lows:

1. Generate topics:
For each h ∈ φ, {V }, · · · , {V }n−1:
λh ∼ DP(γ, λ′h)
For each k ∈ 0, · · · ,K:
Gkh ∼ PYP(a, b,Gkh′)

2. Generate corpora:
For each document j ∈ 1, · · ·D:
θj ∼ Dir(α)
For each word position i ∈ 1, · · · , Nj :
lji ∼ Bern(λhji)
If lji = 0: zji = 0
If lji = 1: zji ∼ θj
wji ∼ G

zji

hji

The difference between the two models is their
usage of the global model G0

h. For a better under-
standing of this, we provide a comparison of their
graphical models in Figure 2.

4 Inference

For posterior inference, we use the collapsed Gibbs
sampler. In our models, all the latent variables are
{Gkh, λh, θj , z,Θ}, where z is the set of topic assign-
ments and Θ = {a, b, γ,α} are hyperparameters,
which are treated later. We collapse all multinomials
in the model, i.e., {Gkh, λh, θj}, in which Gkh and λh
are replaced with the Chinese restaurant process of
PYP and DP respectively. Given the training corpus
w, the target posterior distribution is p(z,S|w,Θ),
where S is the set of seating arrangements of all
restaurants. To distinguish the two types of restau-
rant, in the following, we refer the restaurant to indi-
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(a) HIERARCHICAL (b) SWITCHING

Figure 2: Graphical model representations of our two models in the case of a 3-gram model. Edges that only exist in
one model are colored.

cate the collapsed state of Gkh (PYP), while we refer
the restaurant of λh to indicates the collapsed state
of λh (DP). We present two different types of sam-
pler: a token-based sampler and a table-based sam-
pler. For both samplers, we first explain in the case
of our basic model (Section 2.2), and later discuss
some notes on our extended models.

4.1 Token-based Sampler
The token-based sampler is almost identical to
the collapsed sampler of the LDA (Griffiths and
Steyvers, 2004). At each iteration, we consider the
following conditional distribution of zji given all
other topic assignments z−ji and S−ji, which is the
set of seating arrangements with a customer corre-
sponds to wji removed, as

p(zji|z−ji,S−ji) ∝ p(zji|z−ji)p(wji|zji, hji,S−ji),
(6)

where p(wji|zji, hji,S−ji) =

ckhw − atkhw
ckh· + b

+
atkh· + b

ckh· + b
p(wji|zji, hji,S−ji) (7)

is a predictive word probability under the topic zji,
and

p(zji|z−ji) =
n−jijk + αk

Nj − 1 +
∑

k′ αk′
, (8)

where n−jijk is the number of words that is assigned
topic k in document j excluding wji, which is the
same as the LDA. Given the sampled topic zji, we
update the language model of topic zji, by adding

customer wji to the restaurant specified by zji and
context hji. See Teh (2006a) for details of these cus-
tomer operations.

HIERARCHICAL Adding customer operation is
slightly changed: When a new table is added to a
restaurant, we must track the label l ∈ {0, 1} indi-
cating the parent restaurant of that table, and add the
customer corresponding to l to the restaurant of λh.
See Wood and Teh (2009) for details of this opera-
tion.

SWITCHING We replace p(zji|z−ji) with

p(zji|z−ji) = p(lji = 0|hji) (zji = 0)

p(lji = 1|hji) ·
n−ji

jk +αk∑
k 6=0 n

−ji
jk +

∑
k′ αk′

(zji 6= 0),

(9)

where p(lji|hji) is a predictive of lji given by the
CRP of λhji

. We need not assign a label to a new
table, but rather we always add a customer to the
restaurant of λh according to whether the sampled
topic is 0 or not.

4.2 Table-based Sampler

One problem with the token-based sampler is that
the seating arrangement of the internal restaurant
would never be changed unless a new table is cre-
ated (or an old table is removed) in its child restau-
rant. This probability is very low, particularly in
the restaurants of shallow depth (e.g., unigram or
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v

Construct a block

Move the block to the sampled topic

: customer
: table

Figure 3: Transition of the state of restaurants in the
table-based sampler when the number of topics is 2.
{u, v, w} are word types. Each box represents a restau-
rant where the type in the upper-right corner indicates the
context. In this case, we can change the topic of the three
3-grams (vvw, vvw, uvw) in some documents from 1 to
2 at the same time.

bigram restaurants) because these restaurants have
a larger number of customers and tables than those
of deep depth, leading to get stack in undesirable
local minima. For example, imagine a table in
the restaurant of context “hidden” (depth is 2) and
some topic, served “unit”. This table is connected
to tables in its child restaurants corresponding to
some 3-grams (e.g., “of hidden unit” or “train hid-
den unit”), whereas similar n-grams, such as those
of “of hidden units” or “train hidden units” might
be gathered in another topic, but collecting these n-
grams into the same topic might be difficult under
the token-based sampler. The table-based sampler
moves those different n-grams having common suf-
fixes jointly into another topic.

Figure 3 shows a transition of state by the table-
based sampler and Algorithm 4.2 depicts a high-
level description of one iteration. First, we select
a table in a restaurant, which is shown with a dotted
line in the figure. Next, we descend the tree to col-
lect the tables connected to the selected table, which
are pointed by arrows. Because this connection can-
not be preserved in common data structures for a
restaurant described in Teh (2006a) or Blunsom et
al. (2009), we select the child tables randomly. This
is correct because customers in CRP are exchange-

Algorithm 1 Table-based sampler
for all table in all restaurants do

Remove a customer from the parent restaurant.
Construct a block of seating arrangement S by de-
scending the tree recursively.
Sample topic assignment zS ∼ p(zS |S,S−S , z−S).
Move S to sampled topic, and add a customer to the
parent restaurant of the first selected table.

end for

able, so we can restore the parent-child relations ar-
bitrarily. We continue this process recursively until
reaching the leaf nodes, obtaining a block of seat-
ing arrangement S. After calculating the conditional
distribution, we sample new topic assignment for
this block. Finally, we move this block to the sam-
pled topic, which potentially changes the topic of
many words across different documents, which are
connected to customers in a block at leaf nodes (this
connection is also arbitrary).

Conditional distribution Let zS be the block of
topic assignments connected to S and zS be a vari-
able indicating the topic assignment. Thanks to the
exchangeability of all customers and tables in one
restaurant (Teh, 2006a), we can imagine that cus-
tomers and tables in S have been added to the restau-
rants last. We are interested in the following condi-
tional distribution: (conditioning Θ is omitted)

p(zS = k′|S,S−S , z−S) ∝ p(S|S−S , k′)p(zS = k′|z−S),

where p(S|S−S , k′) is a product of customers’ ac-
tions moving to another topic, which can be decom-
posed as:

p(S|S−S , k′) = p(w|k′, h)
∏
s∈S

p(s|k′) (10)

p(s|k′) =
∏ts−1

i=0 (b+a(t
k′(−s)
hsw +i))

∏csi
j=1(j−a)

(b+c
k′(−s)
hsw· )cs·

(11)

∝
∏ts−1

i=0 (b+a(t
k′(−s)
hsw +i))

(b+c
k′(−s)
hsw· )cs·

. (12)

Let us define some notations used above. Each
s ∈ S is a part of seating arrangements in a restau-
rant, there being ts tables, i-th of which with csi
customers, with hs as the corresponding context. A
restaurant of context h and topic k has tkhw tables
served dish w, i-th of which with ckhwi customers.
Superscripts −s indicate excluding the contribution
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of customers in s, and xn = x(x+1) · · · (x+n−1)
is the ascending factorial. In (10) p(w|k′, h) is the
parent distribution of the first selected table, and
the other p(s|k′) is the seating arrangement of cus-
tomers. The likelihood for changing topic assign-
ments across documents must also be considered,
which is p(zS = k′|z−S) and decomposed as:

p(zS = k′|z−S) =
∏
j

(n−S
jk′+αk′ )

nj(S)

(N−S
j +

∑
k αk)nj(S)

, (13)

where nj(S) is the number of word tokens con-
nected with S in document j.

HIERARCHICAL We skip tables on restaurants of
k = 0, because these tables are all from other topics
and we cannot construct a block. The effects of λ
can be ignored because these are shared by all topics.

SWITCHING In the SWITCHING, p(zS = k′|z−S)
cannot be calculated in a closed form because
p(lji|hji) in (9) would be changed dynamically
when adding customers. This problem is the same
one addressed by Blunsom and Cohn (2011), and we
follow the same approximation in which, when we
calculate the probability, we fractionally add tables
and customers recursively.

4.3 Inference of Hyperparameters
We also place a prior on each hyperparameter and
sample value from the posterior distribution for ev-
ery iteration. As in Teh (2006a), we set different
values of a and b for each depth of PYP, but share
across all topics and sample values with an auxiliary
variable method. We also set different value of γ for
each depth, on which we place Gamma(1, 1). We
make the topic prior α asymmetric: α = βα0;β ∼
Gamma(1, 1),α0 ∼ Dir(1).

5 Related Work

HMM-LDA (Griffiths et al., 2005) is a composite
model of HMM and LDA that assumes the words
in a document are generated by HMM, where only
one state has a document-specific topic distribution.
Our SWITCHING model can be understood as a lex-
ical extension of HMM-LDA. It models the topical-
ity by context-specific binary random variables, not
by hidden states. Other n-gram topic models have
focused mainly on information retrieval. Wang et

min. training set test set
Corpus appear # types # docs # tokens # docs # tokens
Brown 4 19,759 470 1,157,225 30 70,795
NIPS 4 22,705 1500 5,088,786 50 167,730
BNC 10 33,071 6,162 12,783,130 100 202,994

Table 1: Corpus statistics after the pre-processing: We
replace words appearing less than min.appear times in
training + test documents, or appearing only in a test set
with an unknown token. All numbers are replaced with
#, while punctuations are remained.

al. (2007) is a topic model on automatically seg-
mented chunks. Lindsey et al. (2012) extended this
model with the hierarchical Pitman-Yor prior. They
also used switching variables, but for a different pur-
pose: to determine the segmenting points. They treat
these variables completely independently, while our
model employs a hierarchical prior to share statisti-
cal strength among similar contexts.

Our primary interest is language model adapta-
tion, which has been studied mainly in the area of
speech processing. Conventionally, this adaptation
has relied on a heuristic combination of two sep-
arately trained models: an n-gram model p(w|h)
and a topic model p(w|d). The unigram rescal-
ing, which is a product model of these two mod-
els, perform better than more simpler models such
as linear interpolation (Gildea and Hofmann, 1999).
There are also some extensions to this method (Tam
and Schultz, 2009; Huang and Renals, 2008), but
these methods have one major drawback: at predic-
tion, the rescaling-based method requires normaliza-
tion across vocabulary at each word, which prohibits
use on applications requiring dynamic (incremental)
adaptation, e.g., settings where we have to update
the topic distribution as new inputs come in. Tam
and Schultz (2005) studied on this incremental set-
tings, but they employ an interpolation. The practi-
cal interest here is whether our Bayesian models can
rival the rescaling-based method in terms of predic-
tion power. We evaluate this in the next section.

6 Experiments

6.1 Settings

We test the effectiveness of presented models and
the blocked sampling method on unsupervised lan-
guage model adaptation settings. Specifically we

1186



0 2 4 6 8
time (hr.)

7.3e+06

7.5e+06

7.7e+06

7.9e+06

8.1e+06

n
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

(a) Brown

0 8 16 24 32
time (hr.)

2.9e+07

3.1e+07

3.3e+07

3.5e+07

3.7e+07

n
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

(b) NIPS

0 15 30 45 60
time (hr.)

8.0e+07

8.3e+07

8.6e+07

8.9e+07

9.2e+07

n
eg

at
iv

e
lo

g-
lik

el
ih

oo
d 3-gram Hpytmtoken

3-gram Hpytm

4-gram Hpytmtoken

4-gram Hpytm

(c) BNC

10 50 100
# topics

205
210
215
220
225
230
235
240
245

te
st

p
er

p
le

xi
ty

(d) Brown

10 50 100
# topics

100

105

110

115

120

125

te
st

p
er

p
le

xi
ty

(e) NIPS

10 50 100
# topics

130

140

150

160

170

180

190

te
st

p
er

p
le

xi
ty

Hpylm

Hpytmtoken

Hpytm

Rescaling

Switching

Hierarchical

(f) BNC

Figure 4: (a)–(c): Comparison of negative log-likelihoods at training of HPYTM (K = 50). Lower is better. HPYTM
is trained on both token- and table-based samplers, while HPYTMtoken is trained only on the token-based sampler.
(d)–(f): Test perplexity of various 3-gram models as a function of number of topics on each corpus.

concentrate on the dynamic adaptation: We update
the posterior of language model given previously ob-
served contexts, which might be decoded transcripts
at that point in ASR or MT.

We use three corpora: the Brown, BNC and NIPS.
The Brown and BNC are balanced corpora that con-
sist of documents of several genres from news to
romance. The Brown corpus comprises 15 cate-
gories. We selected two documents from each cate-
gory for the test set, and use other 470 documents for
the training set. For the NIPS, we randomly select
1,500 papers for training and 50 papers for testing.
For BNC, we first randomly selected 400 documents
from a written corpus and then split each document
into smaller documents every 100 sentences, leading
to 6,262 documents, from which we randomly se-
lected 100 documents for testing, and other are used
for training. See Table 1 for the pre-processing of
unknown types and the resulting corpus statistics.

For comparison, besides our proposed HIERAR-
CHICAL and SWITCHING models, we prepare vari-
ous models for baseline. HPYLM is a n-gram lan-

guage model without any topics. We call the model
without the global G0

h introduced in Section 2.2
HPYTM. To see the effect of the table-based sam-
pler, we also prepare HPYTMtoken, which is trained
only on the token-based sampler. RESCALING is
the unigram rescaling. This is a product model of
an n-gram model p(w|h) and a topic model p(w|d),
where we learn each model separately and then com-
bine them by:

p(w|h, d) ∝
(
p(w|d)

p(w)

)β
p(w|h). (14)

We set β in (14) to 0.7, which we tuned with the
Brown corpus.

6.2 Effects of Table-based Sampler

We first evaluate the effects of our blocked sam-
pler at training. For simplicity, we concentrate on
the HPYTM with K = 50. Table 4(a)–(c) shows
negative likelihoods of the model during training.
On all corpora, the model with the table-based sam-
pler reached the higher probability space with much
faster speed on both 3-gram and 4-gram models.

1187



6.3 Perplexity Results
Training For burn-in, we ran the sampler as fol-
lows: For HPYLM, we ran 100 Gibbs iterations. For
RESCALING, we ran 900 iterations on LDA and 100
iterations on HPYLM. For all other models, we ran
500 iterations of the Gibbs; HPYTMtoken is trained
only on the token-based sampler, while for other
models, the table-based sampler is performed after
the token-based sampler.

Evaluation We have to adapt to the topic dis-
tribution of unseen documents incrementally. Al-
though previous works have employed incremental
EM (Gildea and Hofmann, 1999; Tam and Schultz,
2005) because their inference is EM/VB-based, we
use the left-to-right method (Wallach et al., 2009),
which is a kind of particle filter updating the poste-
rior topic distribution of a test document. We set the
number of particles to 10 and resampled each parti-
cle every 10 words for all experiments. To get the
final perplexity, after burn-in, we sampled 10 sam-
ples every 10 iterations of Gibbs, calculated a test
perplexity for each sample, and averaged the results.

Comparison of 3-grams Figure 4(d)–(f) shows
perplexities when varying the number of top-
ics. Generally, compared to the HPYTMtoken, the
HPYTM got much perplexity gains, which again
confirm the effectiveness of our blocked sampler.
Both our proposed models, the HIERARCHICAL and
the SWITCHING, got better performances than the
HPYTM, which does not place the global model
G0
h. Our SWITCHING model consistently performed

the best. The HIERARCHICAL performed somewhat
worse than the RESCALING when K become large,
but the SWITCHING outperformed that.

Comparison of 4-grams and beyond We sum-
marize the results with higher order n-grams in Ta-
ble 2, where we also show the time for prediction.
We fixed the number of topics K = 100 because
we saw that all models but HPYTMtoken performed
best at K = 100 when n = 3. Generally, the
results are consistent with those of n = 3. The
models with n = ∞ indicate a model extension
using the Bayesian variable-order language model
(Mochihashi and Sumita, 2008), which can naturally
be integrated with our generative models. By this
extension, we can prune unnecessary nodes stochas-

NIPS BNC
Model n PPL time PPL time
HPYLM 4 117.2 59 169.2 74
HPYLM ∞ 117.9 61 173.1 59
RESCALING 4 101.4 19009 130.3 36323
HPYTM 4 107.0 1004 133.1 980
HPYTM ∞ 107.2 1346 133.6 1232
HIERARCHICAL 4 106.3 1038 129.0 993
HIERARCHICAL ∞ 105.7 1337 129.3 1001
SWITCHING 4 100.0 1059 125.5 991
SWITCHING ∞ 100.4 1369 125.7 1006

Table 2: Comparison of perplexity and the time require
for prediction (in seconds). The number of topics is fixed
to 100 on all topic-based models.

tically during training. We can see that this ∞-
gram did not hurt performances, but the sampled
model get much more compact; in BNC, the number
of nodes of the SWITCHING with 4-gram is about
7.9M, while the one with ∞-gram is about 3.9M.
Note that our models require no explicit normaliza-
tion, thereby drastically reducing the time for pre-
diction compared to the RESCALING. This differ-
ence is especially remarkable when the vocabulary
size becomes large.

We can see that our SWITCHING performed con-
sistently better than the HIERARCHICAL. One rea-
son for this result might be the mismatch of pre-
diction of the topic distribution in the HIERARCHI-
CAL. The HIERARCHICAL must allocate some (not
global) topics to every word in a document, so even
the words to which the SWITCHING might allocate
the global topic (mainly function words; see below)
must be allocated to some other topics, causing a
mismatch of allocations of topic.

6.4 Qualitative Results

To observe the behavior in which the SWITCHING

allocates some words to the global topic, in Figure
5, we show the posterior of allocating the topic 0
or not at each word in a part of the NIPS training
corpus. We can see that the model elegantly identi-
fied content and function words, learning the topic
distribution appropriately using only semantic con-
texts. These same results in the HIERARCHICAL are
presented in Table 3, where we show some relations
between λh and context h. Contexts that might be
likely to precede nouns have a higher value of λh,
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there has been much recent work on measuring image statistics
and on learning probability distributions on images . we observe
that the mapping from images to statistics is many-to-one and
show it can be quantified by a phase space factor .

Figure 5: The posterior for assigning topic 0 or not in
NIPS by the ∞-gram SWITCHING. Darker words indi-
cate a higher probability of not being assigned topic 0.

λh h

0.0–0.1 in spite, were unable, a sort, on behalf, . regardless
0.5–0.6 assumed it, rand mines, plans was, other excersises
0.9–1.0 that the, the existing, the new, their own, and spatial

Table 3: Some contexts h for various values of λh in-
duced by the 3-gram HIERARCHICAL in BNC.

while prefixes of idioms have a lower value. The∞-
gram extension gives us the posterior of n-gram or-
der p(n|h), which can be used to calculate the proba-
bility of a word ordering composing a phrase in topic
k as p(w, n|k, h) ∝ p(n|h)p(w|k, n, h). In Table
4, we show some higher probability topic-specific
phrases from the model trained on the NIPS.

7 Conclusion

We have presented modeling and algorithmic con-
tributions to the existing Bayesian n-gram topic
model. We explored two different priors to incor-
porate a global model, and found the effectiveness
of the flat structured model. We developed a novel
blocked Gibbs move for these types of models to ac-
celerate inference. We believe that this Gibbs op-
eration can be incorporated with other models hav-
ing a similar hierarchical structure. Empirically, we
demonstrate that by a careful model design and effi-
cient inference, a well-defined Bayesian model can
rival the conventional heuristics.
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