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Abstract

Online learning algorithms like the percep-

tron are widely used for structured predic-

tion tasks. For sequential search problems,

like left-to-right tagging and parsing, beam

search has been successfully combined with

perceptron variants that accommodate search

errors (Collins and Roark, 2004; Huang et

al., 2012). However, perceptron training with

inexact search is less studied for bottom-up

parsing and, more generally, inference over

hypergraphs. In this paper, we generalize

the violation-fixing perceptron of Huang et

al. (2012) to hypergraphs and apply it to the

cube-pruning parser of Zhang and McDonald

(2012). This results in the highest reported

scores on WSJ evaluation set (UAS 93.50%

and LAS 92.41% respectively) without the aid

of additional resources.

1 Introduction

Structured prediction problems generally deal with

exponentially many outputs, often making exact

search infeasible. For sequential search problems,

such as tagging and incremental parsing, beam

search coupled with perceptron algorithms that ac-

count for potential search errors have been shown

to be a powerful combination (Collins and Roark,

2004; Daumé and Marcu, 2005; Zhang and Clark,

2008; Huang et al., 2012). However, sequen-

tial search algorithms, and in particular left-to-right

beam search (Collins and Roark, 2004; Zhang and

Clark, 2008), squeeze inference into a very narrow

space. To address this, Huang (2008) formulated

constituency parsing as approximate bottom-up in-

ference in order to compactly represent an exponen-

tial number of outputs while scoring features of ar-

bitrary scope. This idea was adapted to graph-based

dependency parsers by Zhang and McDonald (2012)

and shown to outperform left-to-right beam search.

Both these examples, bottom-up approximate de-

pendency and constituency parsing, can be viewed

as specific instances of inexact hypergraph search.

Typically, the approximation is accomplished by

cube-pruning throughout the hypergraph (Chiang,

2007). Unfortunately, as the scope of features at

each node increases, the inexactness of search and

its negative impact on learning can potentially be ex-

acerbated. Unlike sequential search, the impact on

learning of approximate hypergraph search – as well

as methods to mitigate any ill effects – has not been

studied. Motivated by this, we develop online learn-

ing algorithms for inexact hypergraph search by gen-

eralizing the violation-fixing percepron of Huang et

al. (2012). We empirically validate the benefit of

this approach within the cube-pruning dependency

parser of Zhang and McDonald (2012).

2 Structured Perceptron for Inexact

Hypergraph Search

The structured perceptron algorithm (Collins, 2002)

is a general learning algorithm. Given training in-

stances (x, ŷ), the algorithm first solves the decod-

ing problem y′ = argmax
y∈Y(x)w · f(x, y) given

the weight vector w for the high-dimensional fea-

ture representation f of the mapping (x, y), where

y′ is the prediction under the current model, ŷ is the

gold output and Y(x) is the space of all valid outputs

for input x. The perceptron update rule is simply:

w′ = w + f(x, ŷ)− f(x, y′).

The convergence of original perceptron algorithm

relies on the argmax function being exact so that

the condition w ·f(x, y′) > w ·f(x, ŷ) (modulo ties)

always holds. This condition is called a violation

because the prediction y′ scores higher than the cor-

rect label ŷ. Each perceptron update moves weights
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Figure 1: A hypergraph showing the union of the gold

and Viterbi subtrees. The hyperedges in bold and dashed

are from the gold and Viterbi trees, respectively.

away from y′ and towards ŷ to fix such violations.

But when search is inexact, y′ could be suboptimal

so that sometimes w · f(x, y′) < w · f(x, ŷ). Huang

et al. (2012) named such instances non-violations

and showed that perceptron model updates for non-

violations nullify guarantees of convergence. To ac-

count for this, they generalized the original update

rule to select an output y′ within the pruned search

space that scores higher than ŷ, but is not necessar-

ily the highest among all possibilities, which repre-

sents a true violation of the model on that training

instance. This violation fixing perceptron thus re-

laxes the argmax function to accommodate inexact

search and becomes provably convergent as a result.

In the sequential cases where ŷ has a linear struc-

ture such as tagging and incremental parsing, the

violation fixing perceptron boils down to finding

and updating along a certain prefix of ŷ. Collins

and Roark (2004) locate the earliest position in a

chain structure where ŷpref is worse than y′pref by

a margin large enough to cause ŷ to be dropped

from the beam. Huang et al. (2012) locate the po-

sition where the violation is largest among all pre-

fixes of ŷ, where size of a violation is defined as

w · f(x, y′pref)−w · f(x, ŷpref).

For hypergraphs, the notion of prefix must be gen-

eralized to subtrees. Figure 1 shows the packed-

forest representation of the union of gold subtrees

and highest-scoring (Viterbi) subtrees at every gold

node for an input. At each gold node, there are

two incoming hyperedges: one for the gold subtree

and the other for the Viterbi subtree. After bottom-

up parsing, we can compute the scores for the gold

subtrees as well as extract the corresponding Viterbi

subtrees by following backpointers. These Viterbi

subtrees need not necessarily to belong to the full

Viterbi path (i.e., the Viterbi tree rooted at node N ).

An update strategy must choose a subtree or a set of

subtrees at gold nodes. This is to ensure that the

model is updating its weights relative to the inter-

section of the search space and the gold path.

Our first update strategy is called single-node

max-violation (s-max). Given a gold tree ŷ, it tra-

verses the gold tree and finds the node n on which

the violation between the Viterbi subtree and the

gold subtree is the largest over all gold nodes. The

violation is guaranteed to be greater than or equal to

zero because the lower bound for the max-violation

on any hypergraph is 0 which happens at the leaf

nodes. Then we choose the subtree pair (ŷn, y
′
n
) and

do the update similar to the prefix update for the se-

quential case. For example, in Figure 1, suppose the

max-violation happens at node K , which covers the

left half of the input x, then the perceptron update

would move parameters to the subtree represented

by nodes B , C , H and K and away from A ,

B , G and K .

Our second update strategy is called parallel max-

violation (p-max). It is based on the observation that

violations on non-overlapping nodes can be fixed

in parallel. We define a set of frontiers as a set

of nodes that are non-overlapping and the union of

which covers the entire input string x. The frontier

set can include up to |x| nodes, in the case where the

frontier is equivalent to the set of leaves. We traverse

ŷ bottom-up to compute the set of frontiers such

that each has the max-violation in the span it cov-

ers. Concretely, for each node n, the max-violation

frontier set can be defined recursively,

ft(n) =

{

n, if n = maxv(n)
⋃

ni∈children(n) ft(ni), otherwise

where maxv(n) is the function that returns the node

with the absolute maximum violation in the subtree

rooted at n and can easily be computed recursively

over the hypergraph. To make a perceptron update,

we generate the max-violation frontier set for the en-

tire hypergraph and use it to choose subtree pairs
⋃

n∈ft(root(x))(ŷn, y
′
n
), where root(x) is the root of

the hypergraph for input x. For example, in Figure 1,

if the union of K and L satisfies the definition of

ft, then the perceptron update would move feature
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weights away from the union of the two Viterbi sub-

trees and towards their gold counterparts.

In our experiments, we compare the performance

of the two violation-fixing update strategies against

two baselines. The first baseline is the standard up-

date, where updates always happen at the root node

of a gold tree, even if the Viterbi tree at the root node

leads to a non-violation update. The second baseline

is the skip update, which also always updates at the

root nodes but skips any non-violations. This is the

strategy used by Zhang and McDonald (2012).

3 Experiments

We ran a number of experiments on the cube-

pruning dependency parser of Zhang and McDonald

(2012), whose search space can be represented as a

hypergraph in which the nodes are the complete and

incomplete states and the hyperedges are the instan-

tiations of the two parsing rules in the Eisner algo-

rithm (Eisner, 1996).

The feature templates we used are a superset of

Zhang and McDonald (2012). These features in-

clude first-, second-, and third-order features and

their labeled counterparts, as well as valency fea-

tures. In addition, we also included a feature tem-

plate from Bohnet and Kuhn (2012). This tem-

plate examines the leftmost child and the rightmost

child of a modifier simultaneously. All other high-

order features of Zhang and McDonald (2012) only

look at arcs on the same side of their head. We

trained the parser with hamming-loss-augmented

MIRA (Crammer et al., 2006), following Martins et

al. (2010). Based on results on the English valida-

tion data, in all the experiments, we trained MIRA

with 8 epochs and used a beam of size 6 per node.

To speed up the parser, we used an unlabeled

first-order model to prune unlikely dependency arcs

at both training and testing time (Koo and Collins,

2010; Martins et al., 2013). We followed Rush and

Petrov (2012) to train the first-order model to min-

imize filter loss with respect to max-marginal filter-

ing. On the English validation corpus, the filtering

model pruned 80% of arcs while keeping the oracle

unlabeled attachment score above 99.50%. During

training only, we insert the gold tree into the hy-

pergraph if it was mistakenly pruned. This ensures

that the gold nodes are always available, which is

required for model updates.

3.1 English and Chinese Results

We report dependency parsing results on the Penn

WSJ Treebank and the Chinese CTB-5 Treebank.

Both treebanks are constituency treebanks. We gen-

erated two versions of dependency treebanks by ap-

plying commonly-used conversion procedures. For

the first English version (PTB-YM), we used the

Penn2Malt1 software to apply the head rules of Ya-

mada and Matsumoto and the Malt label set. For

the second English version (PTB-S), we used the

Stanford dependency framework (De Marneffe et

al., 2006) by applying version 2.0.5 of the Stan-

ford parser. We split the data in the standard way:

sections 2-21 for training; section 22 for validation;

and section 23 for evaluation. We utilized a linear

chain CRF tagger which has an accuracy of 96.9%

on the validation data and 97.3% on the evaluation

data2. For Chinese, we use the Chinese Penn Tree-

bank converted to dependencies and split into train/-

validation/evaluation according to Zhang and Nivre

(2011). We report both unlabeled attachment scores

(UAS) and labeled attachment scores (LAS), ignor-

ing punctuations (Buchholz and Marsi, 2006).

Table 1 displays the results. Our improved

cube-pruned parser represents a significant improve-

ment over the feature-rich transition-based parser of

Zhang and Nivre (2011) with a large beam size. It

also improves over the baseline cube-pruning parser

without max-violation update strategies (Zhang and

McDonald, 2012), showing the importance of up-

date strategies in inexact hypergraph search. The

UAS score on Penn-YM is slightly higher than the

best result known in the literature which was re-

ported by the fourth-order unlabeled dependency

parser of Ma and Zhao (2012), although we did

not utilize fourth-order features. The LAS score on

Penn-YM is on par with the best reported by Bohnet

and Kuhn (2012). On Penn-S, there are not many

existing results to compare with, due to the tradition

of reporting results on Penn-YM in the past. Never-

theless, our result is higher than the second best by

a large margin. Our Chinese parsing scores are the

highest reported results.

1http://stp.lingfil.uu.se//∼nivre/research/Penn2Malt.html
2The data was prepared by André F. T. Martins as was done

in Martins et al. (2013).
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Penn-YM Penn-S CTB-5

Parser UAS LAS Toks/Sec UAS LAS Toks/Sec UAS LAS Toks/Sec

Zhang and Nivre (2011) 92.9- 91.8- †680 - - - 86.0- 84.4- -

Zhang and Nivre (reimpl.) (beam=64) 93.00 91.98 800 92.96 90.74 500 85.93 84.42 700

Zhang and Nivre (reimpl.) (beam=128) 92.94 91.91 400 93.11 90.84 250 86.05 84.50 360

Koo and Collins (2010) 93.04 - - - - - - - -

Zhang and McDonald (2012) 93.06 91.86 220 - - - 86.87 85.19 -

Rush and Petrov (2012) - - - 92.7- - 4460 - - -

Martins et al. (2013) 93.07 - 740 92.82 - 600 - - -

Qian and Liu (2013) 93.17 - 180 - - - 87.25 - 100

Bohnet and Kuhn (2012) 93.39 92.38 †120 - - - 87.5- 85.9- -

Ma and Zhao (2012) 93.4- - - - - - 87.4- - -

cube-pruning w/ skip 93.21 92.07 300 92.92 90.35 200 86.95 85.23 200

w/ s-max 93.50 92.41 300 93.59 91.17 200 87.78 86.13 200

w/ p-max 93.44 92.33 300 93.64 91.28 200 87.87 86.24 200

Table 1: Parsing results on test sets of the Penn Treebank and CTB-5. UAS and LAS are measured on all tokens except

punctuations. We also include the tokens per second numbers for different parsers whenever available, although the

numbers from other papers were obtained on different machines. Speed numbers marked with † were converted from

sentences per second.

The speed of our parser is around 200-300 tokens

per second for English. This is faster than the parser

of Bohnet and Kuhn (2012) which has roughly the

same level of accuracy, but is slower than the parser

of Martins et al. (2013) and Rush and Petrov (2012),

both of which only do unlabeled dependency pars-

ing and are less accurate. Given that predicting la-

bels on arcs can slow down a parser by a constant

factor proportional to the size of the label set, the

speed of our parser is competitive. We also tried to

prune away arc labels based on observed labels for

each POS tag pair in the training data. By doing so,

we could speed up our parser to 500-600 tokens per

second with less than a 0.2% drop in both UAS and

LAS.

3.2 Importance of Update Strategies

The lower portion of Table 1 compares cube-pruning

parsing with different online update strategies in or-

der to show the importance of choosing an update

strategy that accommodates search errors. The max-

violation update strategies (s-max and p-max) im-

proved results on both versions of the Penn Treebank

as well as the CTB-5 Chinese treebank. It made

a larger difference on Penn-S relative to Penn-YM,

improving as much as 0.93% in LAS against the skip

update strategy. Additionally, we measured the per-

centage of non-violation updates at root nodes. In

the last epoch of training, on Penn-YM, there was

24% non-violations if we used the skip update strat-

egy; on Penn-S, there was 36% non-violations. The

portion of non-violations indicates the inexactness
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Figure 2: Constrast of different update strategies on the

validation data set of Penn-YM. The x-axis is the number

of training epochs. The y-axis is the UAS score. s-max

stands for single-node max-violation. p-max stands for

parallel max-violation.

of the underlying search. Search is harder on Penn-S

due to the larger label set. Thus, as expected, max-

violation update strategies improve most where the

search is the hardest and least exact.

Figure 2 shows accuracy per training epoch on the

validation data. It can be seen that bad update strate-

gies are not simply slow learners. More iterations

of training cannot close the gap between strategies.

Forcing invalid updates on non-violations (standard

update) or simply ignoring them (skip update) pro-

duces less accurate models overall.
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ZN 2011 (reimpl.) skip s-max p-max Best Published†

Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

SPANISH 86.76 83.81 87.34 84.15 87.96 84.95 87.68 84.75 87.48 84.05

CATALAN 94.00 88.65 94.54 89.14 94.58 89.05 94.98 89.56 94.07 89.09

JAPANESE 93.10 91.57 93.40 91.65 93.26 91.67 93.20 91.49 93.72 91.7-

BULGARIAN 93.08 89.23 93.52 89.25 94.02 89.87 93.80 89.65 93.50 88.23

ITALIAN 87.31 82.88 87.75 83.41 87.57 83.22 87.79 83.59 87.47 83.50

SWEDISH 90.98 85.66 90.64 83.89 91.62 85.08 91.62 85.00 91.44 85.42

ARABIC 78.26 67.09 80.42 69.46 80.48 69.68 80.60 70.12 81.12 66.9-

TURKISH 76.62 66.00 76.18 65.90 76.94 66.80 76.86 66.56 77.55 65.7-

DANISH 90.84 86.65 91.40 86.59 91.88 86.95 92.00 87.07 91.86 84.8-

PORTUGUESE 91.18 87.66 91.69 88.04 92.07 88.30 92.19 88.40 93.03 87.70

GREEK 85.63 78.41 86.37 78.29 86.14 78.20 86.46 78.55 86.05 77.87

SLOVENE 84.63 76.06 85.01 75.92 86.01 77.14 85.77 76.62 86.95 73.4-

CZECH 87.78 82.38 86.92 80.36 88.36 82.16 88.48 82.38 90.32 80.2-

BASQUE 79.65 71.03 79.57 71.43 79.59 71.52 79.61 71.65 80.23 73.18

HUNGARIAN 84.71 80.16 85.67 80.84 85.85 81.02 86.49 81.67 86.81 81.86

GERMAN 91.57 89.48 91.23 88.34 92.03 89.44 91.79 89.28 92.41 88.42

DUTCH 82.49 79.71 83.01 79.79 83.57 80.29 83.35 80.09 86.19 79.2-

AVG 86.98 81.55 87.33 81.56 87.76 82.08 87.80 82.14

Table 2: Parsing Results for languages from CoNLL 2006/2007 shared tasks. When a language is in both years,

we use the 2006 data set. The best results with † are the maximum in the following papers: Buchholz and Marsi

(2006), Nivre et al. (2007), Zhang and McDonald (2012), Bohnet and Kuhn (2012), and Martins et al. (2013), For

consistency, we scored the CoNLL 2007 best systems with the CoNLL 2006 evaluation script. ZN 2011 (reimpl.) is

our reimplementation of Zhang and Nivre (2011), with a beam of 64. Results in bold are the best among ZN 2011

reimplementation and different update strategies from this paper.

3.3 CoNLL Results

We also report parsing results for 17 languages from

the CoNLL 2006/2007 shared-task (Buchholz and

Marsi, 2006; Nivre et al., 2007). The parser in

our experiments can only produce projective depen-

dency trees as it uses an Eisner algorithm backbone

to generate the hypergraph (Eisner, 1996). So, at

training time, we convert non-projective trees – of

which there are many in the CoNLL data – to projec-

tive ones through flattening, i.e., attaching words to

the lowest ancestor that results in projective trees. At

testing time, our parser can only predict projective

trees, though we evaluate on the true non-projective

trees.

Table 2 shows the full results. We sort the

languages according to the percentage of non-

projective trees in increasing order. The Spanish

treebank is 98% projective, while the Dutch tree-

bank is only 64% projective. With respect to the

Zhang and Nivre (2011) baseline, we improved UAS

in 16 languages and LAS in 15 languages. The im-

provements are stronger for the projective languages

in the top rows. We achieved the best published

UAS results for 7 languages: Spanish, Catalan, Bul-

garain, Italian, Swedish, Danish, and Greek. As

these languages are typically from the more projec-

tive data sets, we speculate that extending the parser

used in this study to handle non-projectivity will

lead to state-of-the-art models for the majority of

languages.

4 Conclusions

We proposed perceptron update strategies for in-

exact hypergraph search and experimented with

a cube-pruning dependency parser. Both single-

node max-violation and parallel max-violation up-

date strategies signficantly improved parsing results

over the strategy that ignores any invalid udpates

caused by inexactness of search. The update strate-

gies are applicable to any bottom-up parsing prob-

lems such as constituent parsing (Huang, 2008) and

syntax-based machine translation with online learn-

ing (Chiang et al., 2008).
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J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-

son, S. Riedel, and D. Yuret. 2007. The CoNLL

2007 shared task on dependency parsing. In Proc. of

EMNLP-CoNLL.

X. Qian and Y. Liu. 2013. Branch and bound algo-

rithm for dependency parsing with non-local features.

TACL, Vol 1.

A. Rush and S. Petrov. 2012. Efficient multi-pass depen-

dency pruning with vine parsing. In Proc. of NAACL.
Y. Zhang and S. Clark. 2008. A Tale of Two

Parsers: Investigating and Combining Graph-based

and Transition-based Dependency Parsing. In Proc.

of EMNLP.

H. Zhang and R. McDonald. 2012. Generalized higher-

order dependency parsing with cube pruning. In Proc.

of EMNLP.

Y. Zhang and J. Nivre. 2011. Transition-based depen-

dency parsing with rich non-local features. In Proc. of

ACL-HLT, volume 2.

913


