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Abstract

This study explores the feasibility of perform-
ing Chinese word segmentation (CWS) and
POS tagging by deep learning. We try to avoid
task-specific feature engineering, and use deep
layers of neural networks to discover relevant
features to the tasks. We leverage large-scale
unlabeled data to improve internal representa-
tion of Chinese characters, and use these im-
proved representations to enhance supervised
word segmentation and POS tagging models.
Our networks achieved close to state-of-the-
art performance with minimal computational
cost. We also describe a perceptron-style al-
gorithm for training the neural networks, as
an alternative to maximum-likelihood method,
to speed up the training process and make the
learning algorithm easier to be implemented.

1 Introduction

Word segmentation has been a long-standing chal-
lenge for the Chinese NLP community. It has re-
ceived steady attention over the past two decades.
Previous studies show that joint solutions usually
lead to the improvement in accuracy over pipelined
systems by exploiting POS information to help word
segmentation and avoiding error propagation. How-
ever, traditional joint approaches usually involve a
great number of features, which arises four limita-
tions. First, the size of the result models is too large
for practical use due to the storage and computing
constraints of certain real-world applications. Sec-
ond, the number of parameters is so large that the
trained model is apt to overfit on training corpus.

Third, a longer training time is required. Last but
not the least, the decoding by dynamic programming
technique might be intractable since a large search
space is faced by the decoder.

The choice of features, therefore, is a critical suc-
cess factor for these systems. Most of the state-of-
the-art systems address their tasks by applying linear
statistical models to the features carefully optimized
for the tasks. This approach is effective because re-
searchers can incorporate a large body of linguistic
knowledge into the models. However, the approach
does not scale well when it is used to perform more
complex joint tasks, for example, the task of joint
word segmentation, POS tagging, parsing, and se-
mantic role labeling. A challenge for such a joint
model is the large combined search space, which
makes engineering effective task-specific features
and structured learning of parameters very hard. In-
stead, we use multilayer neural networks to discover
the useful features from the input sentences.

There are two main contributions in this paper. (1)
We describe a perceptron-style algorithm for train-
ing the neural networks, which not only speeds up
the training of the networks with negligible loss in
performance, but also can be implemented more eas-
ily; (2) We show that the tasks of Chinese word seg-
mentation and POS tagging can be effectively per-
formed by the deep learning. Our networks achieved
close to state-of-the-art performance by transferring
the unsupervised internal representations of Chinese
characters into the supervised models.

Section 2 presents the general architecture of
neural networks, and our perceptron-style training
algorithm for tagging. Section 3 describes how to
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leverage large unlabeled data to obtain more useful
character embeddings, and reports the experimental
results of our systems. Section 4 presents a brief
overview of related work. The conclusions are given
in section 5.

2 The Neural Network Architecture

Chinese word segmentation and part-of-speech tag-
ging tasks can be formulated as assigning labels to
characters of an input sentence. The performance
of the traditional tagging approaches is heavily de-
pendent on the choice of features, for example, con-
ditional random fields (CRFs), often with a set of
feature templates. For that reason, much of the ef-
fort in designing such systems goes into the feature
engineering, which is important but labor-intensive,
mainly based on human ingenuity and linguistic in-
tuition.

In order to make learning algorithms less depen-
dent on the feature engineering, we chose to use a
variant of the neural network architecture first pro-
posed by (Bengio et al., 2003) for probabilistic lan-
guage model, and reintroduced later by (Collobert
et al., 2011) for multiple NLP tasks. The network
takes the input sentence and discovers multiple lev-
els of feature extraction from the inputs, with higher
levels representing more abstract aspects of the in-
puts. The architecture is shown in Figure 1. The first
layer extracts features for each Chinese character.
The next layer extracts features from a window of
characters. The following layers are classical neural
network layers. The output of the network is a graph
over which tag inference is achieved with a Viterbi
algorithm.

2.1 Mapping Characters into Feature Vectors

The characters are fed into the network as indices
that are used by a lookup operation to transform
characters into their feature vectors. We consider
a fixed-sized character dictionary D1. The vector
representations are stored in a character embedding
matrixM ∈ Rd×|D|, where d is the dimensionality
of the vector space (a hyper-parameter to be chosen)
and |D| is the size of the dictionary.

1Unless otherwise specified, the character dictionary is ex-
tracted from the training set. Unknown characters are mapped
to a special symbol that is not used elsewhere.
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Figure 1: The neural network architecture.

Formally, assume we are given a Chinese sen-
tence c[1:n] that is a sequence of n characters ci, 1 ≤
i ≤ n. For each character ci ∈ D that has an associ-
ated index ki into the column of the embedding ma-
trix, an d-dimensional feature vector representation
is retrieved by the lookup table layer ZD(·) ∈ Rd:

ZD(ci) =Meki
(1)

where we use a binary vector eki
∈ R|D|×1 which is

zero in all positions except at the ki-th index. The
lookup operation can be seen as a simple projection
layer. The feature vector of each character, starting
from a random initialization, can be automatically
trained by back propagation to be relevant to the task
of interest.

In practice, it is common that one might want to
provide other additional features that is thought to
be helpful for the task. For example, for the name
entity recognition task, one could provide a feature
which says if a character is in a list of the common
Chinese surnames or not. Another common practice
is to introduce some statistics-based measures, such
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as boundary entropy (Jin and Tanaka-Ishii, 2006)
and accessor variety (Feng et al., 2004), which are
commonly used in unsupervised CWS models. We
associate a lookup table to each additional feature,
and the character feature vector becomes the con-
catenation of the outputs of all these lookup tables.

2.2 Tag scoring
A neural network can be considered as a function
fθ(·) with parameters θ. Any feed-forward neural
network with L layers can be seen as a composition
of functions f l

θ(·) defined for each layer l:

fθ(·) = fL
θ (fL−1

θ (. . . f1
θ (·) . . .)) (2)

For each character in a sentence, a score is pro-
duced for every tag by applying several layers of the
neural network over the feature vectors produced by
the lookup table layer. We use a window approach
to handle the sequences of variable sentence length.
The window approach assumes that the tag of a char-
acter depends mainly on its neighboring characters.
More precisely, given an input sentence c[1:n], we
consider all successive windows of size w (a hyper-
parameter), siding over the sentence, from character
c1 to cn. At position ci, the character feature win-
dow produced by the first lookup table layer can be
written as:

f1
θ (ci) =


ZD(ci−w/2)

...
ZD(ci)

...
ZD(ci+w/2)

 (3)

The characters with indices exceeding the sentence
boundaries are mapped to one of two special sym-
bols, namely “start” and “stop” symbols.

The fixed-sized vector f1
θ is fed to two stan-

dard Linear Layers that successively perform affine
transformations over f1

θ , interleaved with some non-
linearity function g(·), to extract highly non-linear
features. Given a set of tags T for the task of inter-
est, the network outputs a vector of size |T | for each
character at position i, interpreted as a score for each
tag in T and each character ci in the sentence:

fθ(ci) = f3
θ (g(f2

θ (f1
θ (ci))))

= W 3g(W 2f1
θ (ci) + b2) + b3

(4)

where the matrices W 2 ∈ RH×(wd), b2 ∈ RH ,
W 3 ∈ R|T |×H and b3 ∈ R|T | are the parameters to
be trained. The hyper-parameter H is usually called
the number of hidden units. As non-linear function,
we chose a sigmoidal function2:

g(x) = 1/(1 + e−x) (5)

2.3 Tag Inference

There are strong dependencies between character
tags in a sentence for the tasks like word segmen-
tation and POS tagging. The tags are organized in
chunks, and it is impossible for some tags to fol-
low other tags. We introduce a transition score Aij

for jumping from i ∈ T to j ∈ T tags in succes-
sive characters, and an initial scores A0i for starting
from the i-th tag for taking into account the sentence
structure. We want the valid paths of tags to be en-
couraged, while discouraging all other paths.

Given an input sentence c[1:n], the network out-
puts the matrix of scores fθ(c[1:n]). We use a nota-
tion fθ(t|i) to indicate the score output by the net-
work with parameters θ, for the sentence c[1:n] and
for the t-th tag, at the i-th character. The score of a
sentence c[1:n] along a path of tags t[1:n] is then given
by the sum of transition and network scores:

s(c[1:n], t[1:n], θ) =
n∑

i=1

(Ati−1ti + fθ(ti|i)) (6)

Given a sentence c[1:n], we can find the best tag path
t∗[1:n] by maximizing the sentence score:

t∗[1:n] = arg max
∀t′

[1:n]

s(c[1:n], t
′
[1:n], θ) (7)

The Viterbi algorithm can be used for this inference.
Now we are prepared to show how to train the para-
meters of the network in an end-to-end fashion.

2.4 Training

The training problem is to determine all the para-
meters of the network θ = (M,W 2, b2,W 3, b3, A)
from training data. The network generally is trained

2In our experiments, the sigmoidal function performs
slightly better than the “hard” version of the hyperbolic tangent
used by (Collobert, 2011).
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by maximizing a likelihood over all the sentences in
the training setR with respect to θ:

θ 7→
∑

∀(c,t)∈R

log p(t|c, θ) (8)

where c represents a sentence and its associated fea-
tures, and t denotes the corresponding tag sequence.
We drop the subscript [1 : n] from now for nota-
tion simplification. The probability p(·) is calcu-
lated from the outputs of the neural network. We
will present in the following section how to interpret
neural network outputs as probabilities.

Maximizing the log-likelihood (8) with the gradi-
ent ascent algorithm3 is achieved by iteratively se-
lecting a example (c, t) and applying the following
gradient update rule:

θ ← θ + λ
∂ log p(t|c, θ)

∂θ
(9)

where λ is the learning rate (a hyper-parameter).
The gradient in (9) can be computed by a classical
back propagation: the differentiation chain rule is
applied through the network, until the character em-
bedding layer.

2.4.1 Sentence-Level Log-Likelihood
The score of a sentence (6) is interpreted as a con-

ditional tag path probability by taking it to the expo-
nential (making the score positive) and normalizing
it over all possible tag paths (summing to 1 over all
paths). Taking the log, the conditional probability of
the true path t is given by4:

log p(t|c, θ) = s(c, t, θ)− log
∑
∀t′

exp{s(c, t′, θ)}

(10)

3We did not use the stochastic gradient ascent algorithm
(Bottou, 1991) to train the network as (Collobert et al.,
2011). The gradient ascent algorithm was used instead for fairly
comparing our algorithm with the sentence-level maximum-
likelihood method (see Section 2.4.1). The gradient ascent al-
gorithm requires a loop over all the examples to compute the
gradient of the cost function, which will not cause a problem
since all the training sets used in this article are finite.

4The cost functions are differentiable everywhere thanks
to the differentiability of sigmoidal function chosen as non-
linearity instead of a “hard” version of the hyperbolic tangent.
For details about gradient computations, see Appendix A of
(Collobert et al., 2011).

The number of terms in (10) grows exponentially
with the length of the input sentence. Although one
can compute it in linear time with the Viterbi algo-
rithm, it is quite computationally expensive to com-
pute the conditional probability of the true path, and
its derivatives with respect to fθ(t|i) and Aij . The
gradients with respect to the trainable parameters
other than fθ(t|i) and Aij can all be computed using
the derivatives with respect to fθ(t|i) by applying
the differentiation chain rule. We will see in the next
section our training algorithm that has the advantage
of being much cheaper to compute the gradients.

2.5 A New Training Method
The log-likelihood (10) can be seen as the difference
between the forward score constrained over the valid
path and the sum of the scores of all possible paths.
While this training criterion is used, the neural net-
works are trained by maximizing the likelihood of
training data. In fact, a CRF maximizes the same
log-likelihood (Lafferty et al., 2001) by using a lin-
ear model in stead of a nonlinear neural network.

As an alternative to maximum-likelihood method,
we propose the following training algorithm inspired
by the work of (Collins, 2002). Given a training
example (c, t), the network outputs the matrix of
scores fθ(c) under the current parameter settings.
The highest scoring sequence of tags for the input
sentence c then can be found using the Viterbi al-
gorithm: this tagged sequence is denoted by t′. For
every character ci where ti 6= t′i, we simply set

∂Lθ(t, t′|c)
∂fθ(ti|i)

++,
∂Lθ(t, t′|c)
∂fθ(t′i|i)

−− (11)

and for every transition where ti−1 6= t′i−1 or ti 6= t′i,
we set

∂Lθ(t, t′|c)
∂Ati−1ti

++,
∂Lθ(t, t′|c)
∂At′i−1t′i

−− (12)

where “++” (which increases a value by one) and
“−−” (which decreases a value by one) are two
unary operators, and Lθ(t, t′|c) is a new function
which we now want to maximize over all the training
pairs (c, t). The function Lθ(t, t′|c) can be viewed as
the difference between the score of the correct path
and that of the incorrect one (which is the highest
scoring sequence produced by the network under the
current parameters θ).
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As an example, say the correct tag sequence of the
sentence�ì3p� ‘A dog sits in the corner’ is

�/S ì/S 3/S p/B �/E

and under the current parameter settings the highest
scoring tag sequence is

�/S ì/B 3/E p/B �/E

Then the derivatives with respect to fθ(S|ì), and
fθ(S|3) will be set to 1, that with respect to ASB ,
ABE , AEB , fθ(B|ì), and fθ(E|3) to−1, and that
with respect to ASS to 2 respectively5. Intuitively
these assignments have the effect of updating the pa-
rameter values in a way that increases the score of
the correct tag sequence and decreases the score of
the incorrect one output by the network with the cur-
rent parameter settings. If the tag sequence produced
by the network is correct, no changes are made to the
values of parameters.

Inputs:
R: a training set.
N : a specified maximum number of iterations.
E: a desired tagging precision.

Initialization: set the initial parameters of the network with
small random values.
Output: the trained parameters θ̃

Algorithm:
do

for each example (c, t) ∈ R
get the matrix fθ(c) by the neural network under the
current parameters θ

find the highest scoring sequence of tags t′ for c with
fθ(c) and Aij by using the Viterbi algorithm
if (t 6= t′)

compute the gradients with respect to fθ(c) and
Aij as (11) and (12)
compute the gradients with respect to the weights
from output layer to character embedding layer
update the parameters of the network by (9)

until the desired precision E achieved or maximum num-
ber of iterations N reached
return θ̃

Figure 2: The training algorithm for tagging.

We propose the training algorithm in Figure 2.
Note that the perceptron algorithm of (Collins,
2002) was designed for discriminatively training an

5The derivatives with respect to ASB will be set to 0, be-
cause it is increased first and decreased afterwards.

HMM-style tagger, while our algorithm is used to
calculate the “direction” in which the parameters are
updated (i.e. the gradient of the function we want to
maximize). Due to space limitations, we do not give
convergence theorems justifying the training algo-
rithm in this paper. Intuitively it can be achieved by
combining the theorems of convergence for the per-
ceptron applied to tagging problem from (Collins,
2002) with the convergence results of backpropaga-
tion algorithm from (Rumelhart et al., 1986).

3 Experiments

We conducted three sets of experiments. The goal
of the first one is to test several variants for each
training algorithm on the development set, to gain
some understanding of how the choice of hyper-
parameters impacts upon the performance. We ap-
plied the network both with the sentence-level log-
likelihood (SLL) and our perceptron-style training
algorithm (PSA) to the two Chinese NLP problems:
word segmentation, and joint CWS and POS tag-
ging. We ran this set of experiments on the part of
Chinese Treebank 4 (CTB-4)6. Ninety percent of the
sentences (1529) were randomly chosen for training
and the rest (168) were used as development set.

The second set of experiments was run on the
Chinese Treebank (CTB) data sets from Bakeoff-3
(Levow, 2006), which contains a training and a test
corpus for supervised word segmentation and POS
tagging tasks. The results were obtained without us-
ing any extra knowledge (i.e. the closed test), and
are comparable with other models in the literature.

In the third experiment, we study to see how well
large unlabeled texts can be used to enhance the
supervised learning. Following (Collobert et al.,
2011), we first use large unlabeled data set to ob-
tain character embeddings carrying more syntactic
and semantic information, and then use these im-
proved embeddings to initialize the character lookup
tables of the networks instead of previous random
values. Our corpus is the Sina news7 that contains
about 325MB data.

6The data set was sections 1–43, 144–169, and 900–931 of
the treebank, containing 78,023 characters, 45,135 words and
1,697 sentences. These files are double-annotated and can be
regarded as golden standard files.

7Available at http://www.sina.com.cn/
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We implemented two versions of the network:
one for the sentence-level log-likelihood and one
for our perceptron-style training algorithm. Both
are written in Java language. All experiments were
run on a computer equipped with an Intel Core i3
processor working at 2.13GHz, with 2GB RAM,
running Linux and Java Development Kit 1.6. The
standard F-score was used to evaluate the perfor-
mance of both word segmentation and joint word
segmentation and POS tagging tasks. F-score is the
harmonic mean of precision p and recall r, which is
defined as 2pr/(p + r).
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3.1 Tagging Schemes
The network will output the scores for all the possi-
ble tags for the task of interest. For word segmen-
tation, each character will be assigned one of four
possible boundary tags: “B” for a character located
at the beginning of a word, “I” for that inside of a
word, “E” for that at the end of a word, and “S” for
a character that is a word by itself.

Following Ng and Lou (2004) we perform joint
word segmentation and POS tagging task in a la-
beling fashion by expanding boundary labels to in-
clude POS tags. For instance, we describe verb
phases using four different tags. Tag “S VP” is used
to mark a verb phase containing a single character.
Other tags “B VP”, “I VP”, and “E VP” are used to
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Figure 4: Average F-score versus number of hidden units.

mark the first, in-between and last characters of the
verb phrase. In fact, we used the “IOBES” tagging
scheme, and tag “O” is not applicable to Chinese
word segmentation and POS tagging tasks.

3.2 The Choice of Hyper-parameters

We tuned the hyper-parameters by trying only a
few different networks. We report in Figure 3
the F-scores on the development set versus win-
dow size for word segmentation (SEG) and joint
word segmentation and POS tagging (JWP) tasks
with the sentence-level log-likelihood (SLL) and our
perceptron-style training algorithm (PSA), and re-
port in Figure 4 the F-scores on the same data set
versus number of hidden units. The average F-
scores were obtained over 5 runs with different ran-
dom initialization for each setting of the network.
The F-scores of the word segmentation, out-of-
vocabulary, and POS tagging are denoted by Fword,
Foov and Fpos respectively.

Generally, the number of hidden units has a lim-
ited impact on the performance if it is large enough,
which is consistent with the findings of (Collobert
et al., 2011) for English. It can be seen from Fig-
ure 3 that the performance drops smoothly when the
window size is larger than 3. In particularly, the F-
score of out-of-vocabulary identification decreases
relatively fast beyond window size 5, which shows
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that the size of window (and the number of parame-
ters) is too large that the trained network has over-
fitted on training data. An explanation for this result
is that most Chinese words are less than 3 charac-
ters, and the neighboring characters outside of the
window (size 5) become “noise” when we perform
word segmentation.

The hyper-parameters of the network used in all
the following experiments are shown in Table 1. Al-
though the top performance was obtained by the net-
work with window size 3, we chose the architecture
with window size 5 because a larger training corpus
will be used in the following experiments, and the
sparseness problem would be alleviated. Further-
more, in order to obtain character embeddings by
using large unlabeled data, we prefer to “observe”
a character within a slightly larger window to better
discover its syntactic and semantic information.

Hyper-parameter Value
Window size 5
Number of hidden units 300
Character feature dimension 50
Learning rate 0.02

Table 1: Hyper-parameters of the network.

We report in Table 2 the F-score of the first five
iterations on the development set for word segmen-
tation with SLL and PSA. The data in the fourth
and fifth rows of the table shows the convergence
of PSA. The difference of the F-scores between the
networks with SLL and PSA can be negligible after
the number of iteration is greater than 5. In our im-
plementation, for each iteration the training time is
reduced at least 10% by using PSA, compared with
SLL. The training time can be reduced further for
more complex tasks like POS tagging and semantic
role labeling in which a larger tag set is used.

Iteration 1 2 3 4 5

SSL
Fword 49.89 69.56 88.91 90.19 91.24
Foov 15.92 27.54 54.37 55.89 59.74
Time (s) 209 398 586 737 886

PSA
Fword 49.04 68.54 87.79 89.07 91.19
Foov 13.61 25.79 52.30 55.15 60.49
Time (s) 184 343 497 610 754

Table 2: Word segmentation results with SLL and PSA
for the first five iterations.

Many exponential sums (
∑

i exp(xi)) are re-
quired for training the networks with SLL, and in
most cases the values of exponential sums will ex-
ceed the range of double-precision floating-point
arithmetic defined in popular programming lan-
guages. These sums need to be estimated by an-
alytic number theory. In comparison, a lot of the
computation-intensive exponential sums are avoided
in our training algorithm, which not only speed up
the training of the networks but also make it easier
to be implemented.

3.3 Closed Test on the SIGHAN Bakeoff

We trained the networks with PSA on the Chinese
Treebank (CTB) data set from Bakeoff-3 for both
SEG and JWP tasks. The results are reported in Ta-
ble 3. The hyper-parameters of our networks are re-
ported in Table 1. Although results show that our
networks with PSA are behind the state-of-the-art
systems, the networks perform comparatively well,
considering we did not use any extra information.
Many other systems used some extra heuristics or re-
sources to improve their performance. For example,
a key parameter in the system of (Wang et al., 2006)
was optimized in advance by using an external seg-
mented corpus, and a manually prepared list of char-
acters as well as their types was used in (Zhao et al.,
2006; Zhu et al., 2006; Kruengkrai et al., 2009).

It is worth noting that the comparison for joint
word segmentation and POS tagging task is indirect
because the different versions of CTB were used.
We reported the results on CTB-3 from SIGHAN
Bakeoff-3, while both (Jiang et al., 2008) and (Kru-
engkrai et al., 2009) used CTB-5. Both (Ng and
Lou, 2004) and (Zhang and Clark, 2008) evenly par-
titioned the sentences in CTB3 into ten groups, and
used nine groups for training and the rest for testing.

Following (Bengio et al., 2003; Collobert et al.,
2011), we want semantically and syntactically sim-
ilar characters to be close in the embedding space.
If we knew that� ‘dog’ andc ‘cat’ were similar
semantically, and similarly forì ‘sit’ and2 ‘lie’,
we could generalize from �ì3p� ‘A dog sits
in the corner’ tocì3p� ‘A cat sits in the cor-
ner’, and toc23p� ‘A cat lies in the corner’ in
the same way. We describe the way to obtain these
character embeddings by using large unlabeled data
in the next section.
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Approach Fword Roov Fpos

SEG

(Zhao et al., 2006) 93.30 70.70 −
(Wang et al., 2006) 93.00 68.30 −
(Zhu et al., 2006) 92.70 63.40 −
(Zhang et al., 2006) 92.60 61.70 −
(Feng et al., 2006) 91.70 68.00 −
PSA 92.59 64.24 −
PSA + LM 94.57 70.12 −

JWP

(Ng and Lou, 2004) 95.20 − −
(Zhang and Clark, 2008) 95.90 − 91.34
(Jiang et al., 2008) 97.30 − 92.50
(Kruengkrai et al., 2009) 96.11 − 90.85
PSA 93.83 68.21 90.79
PSA + LM 95.23 72.38 91.82

Table 3: Comparison of the F-scores on the Penn Chinese
Treebank

3.4 Combined Approach

We used the corpus of Sina news to obtain charac-
ter embeddings carrying more semantic and syntac-
tic information by training a language model that
evaluates the acceptability of a piece of text. This
language model is again the neural network, and we
also use PSA to train the language model. Following
(Collobert et al., 2011), we minimize the following
criterion with respect to the parameters θ:

θ 7→
∑
∀h∈H

∑
∀c′∈D

max{0, 1− fθ(c|h) + fθ(c′|h)}

(13)
where the score fθ(c|h) is the output of the network
with parameters θ for a character c at the center of
a window h, D is the dictionary of characters, H is
the set of all possible text windows (i.e. character se-
quences) from the training data, and c′|h denotes the
window obtained by replacing the central character
of the window h by the character c′.

We used a dictionary consisting of the charac-
ters extracted from all the data sets in Bakeoff-
3, which contains about eight thousand characters.
The total unsupervised training time was about two
weeks. Our combined approach works as initializing
the lookup tables of the supervised networks with
the character embeddings obtained by unsupervised
learning, and then performing supervised training on
CTB-3. The lookup tables will not be modified at the
supervised training stage.

We reported the results in Table 3, in which our
combined approach is indicated by “PSA + LM”.

It can be seen from Table 3 that this approach re-
sults in a performance boost for both SEG and JWP
tasks. The POS tagging F-score of our approach
was comparable to but still less than the model of
(Jiang et al., 2008). They achieved the best score by
first separately training multiple word-, character-,
and POS n-gram based models, and then integrat-
ing them by cascading method. In comparison, our
networks achieve the performance by automatically
discovering useful features by itself and avoiding the
task-specific engineering.

Table 4 compares the decoding speeds on the test
data from CTB-3 for our system and for two CRFs-
based word segmentation systems. Regardless of
the differences in implementation, the neural net-
works clearly run considerably faster than the sys-
tems based on the CRFs model. They also require
much more memory than our neural networks.

System Number of parameters Time (s)
(Tsai et al., 2006) 3.1× 106 1669
(Zhao et al., 2006) 3.8× 106 2382
Neural network 4.7× 105 138

Table 4: Comparison of computational cost.

4 Related Work

Word segmentation has been pursued with consid-
erable efforts in the Chinese NLP community, and
statistical approaches are clearly dominant in the
last decade. A popular statistical approach is the
character-based tagging solution that treats word
segmentation as a sequence tagging problem, as-
signing labels to the characters indicating whether a
character locates at the beginning of, inside, or at the
end of a word. The character-based tagging solution
was first proposed in (Xue, 2003). This work caused
quite a number of character position tagging based
CWS studies because known and unknown words
can be treated in the same way. Peng, Feng and Mc-
Callum (2004) first introduced a linear-chain CRFs
model to the character tagging based word segmen-
tation. Zhang and Clark (2007) proposed a word-
based CWS approach using a discriminative percep-
tron learning algorithm, which allows word-level in-
formation to be added as features.

Recent years have seen a rise of joint word seg-
mentation and POS tagging approach that improves
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the accuracies of both tasks and does not suffer from
the error propagation. Ng and Lou (2004) perform
such joint task in a labeling fashion by expanding
boundary labels to include POS tags. Zhang and
Clark (2008) proposed a linear model for the same
joint task, which overcomed the disadvantage of
(Ng and Lou, 2004), in which it was unable to incor-
porate “whole word + POS tag” features. Sun (2011)
described a sub-word model using stacked learn-
ing technique for the joint task, which explored the
complementary strength of different character- and
word-based segmenters with different views.

The majority of the state-of-the-art systems ad-
dress their tasks by applying linear statistical mod-
els to ad-hoc features. The researchers first chose
task-specific features which are then fed to a classi-
fication algorithm. The selected features may vary
greatly because they are usually chosen in a empir-
ical process, mainly based first on linguistic intu-
ition, and then trial and error. It seems reasonable
to assume that the number and effectiveness of fea-
tures constitutes a major factor in the performance
of the various systems, and might even more impor-
tant than the particular statistical models they used.
In comparison, we try to avoid task-specific feature
engineering, and use the neural network to learn sev-
eral layers of feature extraction from the inputs. To
the best of our knowledge, this study is among the
first ones to perform Chinese word segmentation and
POS tagging by deep learning.

It was reported that supervised and unsupervised
approaches can be integrated to improve on the over-
all performance of word segmentation by combin-
ing the strengths of both. Zhao and Kit (2011) ex-
plored the feasibility of enhancing supervised seg-
mentation by informing the supervised learner of
goodness scores obtained from large unlabeled cor-
pus. Sun and Xu (2011) investigated how to improve
on the accuracy of supervised word segmentation by
leveraging the statistics-based features derived from
large unlabeled in-domain corpus and the document
to be segmented. The basic idea of these integration
solutions is to incorporate a set of statistics-based
measures into a CRFs model after these measures
are derived from unlabeled data and discretized into
feature values. In comparison, we use large unla-
beled data to obtain the character embeddings with
more syntactic and semantic information.

Several works have investigated how to use deep
learning for NLP applications (Bengio et al., 2003;
Collobert et al., 2011; Collobert, 2011; Socher et
al., 2011). In most cases, words are fed to the neural
networks as inputs, and the lookup tables map each
word to a vector representation. Our network is dif-
ferent in that the inputs to the network are charac-
ters, more raw units than words. In many Asian
languages, such as Chinese and Japanese, they are
written without using whitespace to delimit words.
For these languages, the character becomes a more
natural form of input. Furthermore, a perceptron-
style algorithm for tagging is proposed for training
the networks.

5 Conclusion

We have described a perceptron-style algorithm for
training the neural networks, which is much easier to
be implemented, and has speed advantage over the
maximum-likelihood scheme, while the loss in per-
formance is negligible. The neural networks trained
with PSA have been applied to Chinese word seg-
mentation and POS tagging tasks, and the networks
achieved close to state-of-the-art performance by us-
ing the character representations learned from large
unlabeled corpus.

Although we focus on the question of how far we
can go for Chinese word segmentation and POS tag-
ging without using the extra task-specific features in
this study, there are at least three ways to further im-
prove the performance of the networks, which are
worthy to be explored in the future: (1) introduce
specific linguistic features (e.g. gazetteer features)
that are helpful for the tasks; (2) incorporate some
common techniques, such as cascading, voting, and
ensemble; and (3) use the special network architec-
ture tailored for the tasks of interest.
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