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Abstract

The geographical properties of words have re-
cently begun to be exploited for geolocating
documents based solely on their text, often in
the context of social media and online content.
One common approach for geolocating texts is
rooted in information retrieval. Given training
documents labeled with latitude/longitude co-
ordinates, a grid is overlaid on the Earth and
pseudo-documents constructed by concatenat-
ing the documents within a given grid cell;
then a location for a test document is chosen
based on the most similar pseudo-document.
Uniform grids are normally used, but they are
sensitive to the dispersion of documents over
the earth. We define an alternative grid con-
struction using k-d trees that more robustly
adapts to data, especially with larger training
sets. We also provide a better way of choosing
the locations for pseudo-documents. We eval-
uate these strategies on existing Wikipedia and
Twitter corpora, as well as a new, larger Twit-
ter corpus. The adaptive grid achieves com-
petitive results with a uniform grid on small
training sets and outperforms it on the large
Twitter corpus. The two grid constructions
can also be combined to produce consistently
strong results across all training sets.

1 Introduction

The growth of the Internet in recent years has
provided unparalleled access to informational re-
sources. It is often desirable to extract summary
metadata from such resources, such as the date of
writing or the location of the author – yet only a
small portion of available documents are explicitly
annotated in this fashion. With sufficient training

data, however, it is often possible to infer this infor-
mation directly from a document’s text. For exam-
ple, clues to the geographic location of a document
may come from a variety of word features, e.g. to-
ponyms (Toronto), geographic features (mountain),
culturally local features (hockey), and stylistic or di-
alectical differences (cool vs. kewl vs. kool).

This article focuses on text-based document ge-
olocation, the prediction of the latitude and lon-
gitude of a document. Among the uses for this
are region-based search engines; tracing the sources
of historical documents; location attribution while
summarizing large documents; tailoring of ads while
browsing; phishing detection when a user account is
accessed from an unexpected location; and “activist
mapping” (Cobarrubias, 2009), as in the Ushahidi
project.1 Geolocation has also been used as a fea-
ture in automatic news story identification systems
(Sankaranarayanan et al., 2009).

One of the first works on document geolocation is
Ding et al. (2000), who attempt to automatically de-
termine the geographic scope of web pages. They
focus on named locations, e.g. cities and states,
found in gazetteers. Locations are predicted based
on toponym detection and heuristic resolution al-
gorithms. A related, recent effort is Cheng et al.
(2010), who geolocate Twitter users by resolving
their profile locations against a gazetteer of U.S.
cities and training a classifier to identify geographi-
cally local words.

An alternative to using a discrete set of locations
from a gazetteer is to use information retrieval (IR)
techniques on a set of geolocated training docu-
ments. A new test document is compared with each

1http://ushahidi.com/
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training document and a location chosen based on
the location(s) of the most similar training docu-
ment(s). For image geolocation, Chen and Grauman
(2011) perform mean-shift clustering over training
images to discretize locations, then estimate a test
image’s location with weighted voting from the k
most similar documents. For text, both Serdyukov
et al. (2009) and Wing and Baldridge (2011) use a
similar approach, but compute document similarity
based on language models rather than image fea-
tures. Additionally, they group documents via a uni-
form geodesic grid rather than a clustered set of lo-
cations. This reduces the number of similarity com-
putations and removes the need to perform location
clustering altogether, but introduces a new param-
eter controlling the granularity of the grid. Kinsella
et al. (2011) predict the locations of tweets and users
by comparing text in tweets to language models as-
sociated with zip codes and broader geopolitical en-
closures. Sadilek et al. (2012) discretize by simply
clustering data points within a small distance thresh-
old, but only perform geolocation within fixed city
limits.

While the above approaches discretize the contin-
uous surface of the earth, Eisenstein et al. (2010)
predict locations based on Gaussian distributions
over the earth’s surface as part of a hierarchical
Bayesian model. This model has many advantages
(e.g. the ability to compute a complete probability
distribution over locations), but we suspect it will be
difficult to scale up to the large document collections
needed for high accuracy.

We build on the IR approach with grids while ad-
dressing some of the shortcomings of a uniform grid.
Uniform grids are problematic in that they ignore the
geographic dispersion of documents and forgo the
possibility of greater-granularity geographic resolu-
tion in document-rich areas. Instead, we construct
a grid using a k-d tree, which adapts to the size of
the training set and the geographic dispersion of the
documents it contains. This can better benefit from
more data, since it enables the training set to support
more pseudo-documents when there is sufficient ev-
idence to do so, while still ensuring that all pseudo-
documents contain comparable amounts of data. It
also has the desirable property of generally requiring
fewer active cells than a uniform grid, drastically re-
ducing the computation time required to label a test

document.
We show that consistently strong results, robust

across both Wikipedia and Twitter datasets, are ob-
tained from the union of the pseudo-documents from
a uniform and adaptive grid. In addition, a sim-
ple difference in the choice of location for a given
grid cell – the centroid of the training documents
in the cell, rather than the cell midpoint – results
in across-the-board improvements. We also con-
struct and evaluate on a much larger dataset of ge-
olocated tweets than has been used in previous pa-
pers, demonstrating the scalability and robustness of
our methods and confirming the ability of the adap-
tive grid to more effectively use larger datasets.

2 Data

We work with three datasets: a corpus of geotagged
Wikipedia articles and two corpora of geotagged
tweets.

GEOWIKI is a collection of 1,019,490 geotagged
English articles from Wikipedia. The dump from
Wikimedia requires significant processing to obtain
article text and location, so we rely on the prepro-
cessed data used by Wing and Baldridge (2011).

GEOTEXT is a small dataset consisting of
377,616 messages from 9,475 users tweeting across
48 American states, compiled by Eisenstein et al.
(2010). A document in this dataset is the concate-
nation of all tweets by a single user, with a location
derived from the earliest tweet with specific, GPS-
assigned latitude/longitude coordinates.

UTGEO2011 is a new dataset designed to ad-
dress the sparsity problems resulting from the size
of the previous dataset. It is based on 390 mil-
lion tweets collected across the entire globe be-
tween September 4th and November 29th, 2011, us-
ing the publicly available Twitter Spritzer feed and
global search API. Not all collected tweets were
geotagged. To be comparable to GEOTEXT, we
discarded tweets outside of North America (out-
side of the bounding box with latitude/longitude
corners at (25,−126) and (49,−60)). Following
Eisenstein et al. (2010), we consider all tweets
of a user concatenated as a single document, and
use the earliest collected GPS-assigned location as
the gold location. Users without a gold location
were discarded. To remove many spammers and
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robots, we only kept users following 5 to 1000
people, followed by at least 5 users, and author-
ing no more than 1000 tweets in the three month
period. The resulting dataset contains 38 million
tweets from 449,694 users, or roughly 85 tweets
per user on average. We randomly selected 10,000
users each for development and held-out test eval-
uation. The remaining 429,694 users serve as a
training set termed UTGEO2011-LARGE. We also
randomly selected a 10,000 user training subset
(UTGEO2011-SMALL) to facilitate comparisons
with GEOTEXT and allow us to investigate the rel-
ative improvements for different models with more
training data.

Our code and the UTGEO2011 data set are both
available for download.2

3 Model

Assume we have a collection d of documents and
their associated location labels l. These docu-
ments may be actual texts, or they can be pseudo-
documents comprised of a number of texts grouped
via some algorithm (such as the grids discussed in
the next section).

For a test document di, its similarity to each la-
beled document is computed, and the location of the
most similar document assigned to di. Given an ab-
stract function sim that can be instantiated with an
appropriate similarity function (e.g. cosine distance
or Kullback-Leibler divergence),

loc(di) = loc(arg max
dj∈d

sim(di, dj)).

This is a winner-takes-all strategy, which we follow
in this paper. In related work on image geoloca-
tion, Hays and Efros (2008) use the same general
framework, but compute the location based on the
k-nearest neighbors (kNN) rather than the top one.
They compute a distribution from the 120 nearest
neighbors using mean shift clustering (Comaniciu
and Meer, 2002) and choose the cluster with the
most members. This produced slightly better re-
sults than choosing only the closest image. In future
work, we will explore the kNN approach to see if it
is more effective for text geolocation.

2https://github.com/utcompling/
textgrounder/wiki/RollerEtAl_EMNLP2012

Following previous work in document geoloca-
tion, particularly Serdyukov et al. (2009) (hence-
forth SMvZ) and Wing and Baldridge (2011)
(henceforth W&B), we geolocate texts using a lan-
guage modeling approach to information retrieval
(Ponte and Croft, 1998; Zhai and Lafferty, 2001).
For each document di, we construct a unigram prob-
ability distribution θdi

over the vocabulary.
We smooth documents using the pseudo-Good-

Turing method of W&B, a nonparametric discount-
ing model that backs off from the unsmoothed distri-
bution θ̃di

of the document to the unsmoothed distri-
bution θ̃D of all documents. A general discounting
model is as follows:

P (w|θdi
) =

{
(1− λdi

)P (w|θ̃di
), if P (w|θ̃di

) > 0

λdi

P (w|θ̃D)
Udi

, otherwise,

where Udi
= 1 −

∑
w∈di

P (w|θ̃D) is a normaliza-
tion factor that is precomputed when the distribution
for di is constructed. The discount factor λdi

indi-
cates how much probability mass to reserve for un-
seen words. For pseudo-Good-Turing, it is

λdi
=
|w ∈ di s.t. count(w ∈ di) = 1|

|w ∈ di|
,

i.e. the fraction of words seen once in di.
We experimented with other smoothing methods,

including Jelinek-Mercer and Dirichlet smoothing.
A disadvantage of these latter two methods is that
they have an additional tuning parameter to which
their performance is highly sensitive, and even with
optimal parameter settings neither consistently out-
performed pseudo-Good-Turing. We also found no
consistent improvement from using interpolation in
place of backoff.

We also follow W&B in using Kullback-Leibler
(KL) divergence as the similarity metric, since it out-
performed both naive Bayes classification probabil-
ity and cosine similarity:

KL(θdi
||θdj

) =
∑

k

θdi
(k) log

θdi
(k)

θdj
(k)

.

The motivation for computing similarity with KL is
that it is a measure of how well each document in
the labeled set explains the word distribution found
in the test document.
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4 Collapsing Documents with an Adaptive
Grid

In the previous section, we used the term “docu-
ment” loosely when speaking of training documents.
A simplistic approach might indeed involve com-
paring a test document to each training document.
However, in the winner-takes-all model described
above, we can rely only on the result of comparing
with the single best training document, which may
not contain enough information to make a good pre-
diction.

A standard strategy to deal with this problem is
to collapse groups of geographically nearby docu-
ments into larger pseudo-documents. This also has
the advantage of reducing the computation time,
as fewer training documents need to be compared
against. Formally, this involves partitioning the
training documents into a set of sets of documents
G = {g1 . . . gn}. A collection d̃ of pseudo-
documents is formed from this set, such that the
pseudo-document for a particular group gi is simply
the concatenation of the documents in the group:

d̃gi =
⋃

dj∈gi

dj .

A location must be associated with each pseudo-
document. This can be chosen based on the parti-
tioning function itself or the locations of the docu-
ments in each group.

Both W&B and SMvZ use uniform grids consist-
ing of cells of equal degree size to partition doc-
uments. We explore an alternative that uses k-d
(k-dimensional) trees to construct a non-uniform
grid that adapts to training sets of different sizes
more gracefully. It ensures a roughly equal num-
ber of documents in each cell, which means that all
pseudo-documents compete on similar footing with
respect to the amount of training data.

W&B define the location for a cell to be its ge-
ographic center, while SMvZ only perform error
analysis in terms of choosing the correct cell. We
obtain consistently improved results using the cen-
troid of the cell’s documents, which takes into ac-
count where the documents are concentrated.

4.1 k-d Trees
A k-d tree is a space-partitioning data structure for
storing points in k-dimensional space, which groups
nearby points into buckets. As one moves down the
tree, the space is split into smaller regions along
chosen dimensions. In this way, it is a generaliza-
tion of a binary search tree to multiple dimensions.
The k-d tree was first introduced by Bentley (1975)
and has since been applied to numerous problems,
e.g. Barnes-Hut simulation (Anderson, 1999) and
nearest-neighbors search (Friedman et al., 1977).

Partitioning geolocated documents using a k-d
tree provides finer granularity in dense regions and
coarser granularity elsewhere. For example, doc-
uments from Queens and Brooklyn may show sig-
nificant cultural distinctions, while documents sepa-
rated by the same distance in rural Montana may ap-
pear culturally identical. A uniform grid with large
cells will mash Queens and Brooklyn together, while
small cells will create unnecessarily sparse regions
in Montana.

An important parameter for a k-d tree is its bucket
size, which determines the maximum number of
points (documents in our case) that a cell may con-
tain. By varying the bucket size, the cells can be
made fine- or coarse-grained.

4.2 Partitioning with a k-d Tree
For geolocation, we consider the surface of earth to
be a 2-dimensional space (k=2) over latitude, longi-
tude pairs. We form a k-d tree by a recursive proce-
dure over the training data. Initially, all documents
are placed in the root node of the tree. If the number
of documents in the node exceeds the bucket size,
the node is split into two nodes along a chosen split
dimension and point. This procedure is recursively
called on each of the new child nodes, and repeats
until no node is overflowing. The resulting leaves of
the k-d tree form a patchwork of rectangles which
cover the entire earth.3

When splitting an overflowing node, the choice of
splitting dimension and point can greatly impact the
structure of the resulting k-d tree. Following Fried-
man et al. (1977), we choose to always split a node

3We note that the grid “rectangles” are actually trapezoids
due to the nature of the latitude/longitude coordinate system.
We assume the effect of this is negligible, since most documents
are away from the poles, where distortion is the most extreme.

1503



Figure 1: View of North America showing k-d leaves cre-
ated from GEOWIKI with a bucket size of 600 and the
MIDPOINT method, as visualized in Google Earth.

Figure 2: k-d leaves over the New York City and nearby
areas from the same dataset and parameter settings as in
Figure 1.

along the dimension exhibiting the greatest range of
values. However, there still exist multiple methods
for determining the split point, i.e. the point separat-
ing documents into “left” and “right” nodes. In this
paper, we consider two possibilities for selecting this
point: the MIDPOINT method, and the FRIEDMAN
method. The latter splits at the median of all the
points, resulting in an equal number of points in both
the left and right nodes and a perfectly balanced k-d
tree. The former splits at the midpoint between the
two furthest points, allowing for a greater difference
in the number of points in each bin. For geolocation,
the FRIEDMAN splitting method will likely lead to
less sparsity, and therefore more accurate cell selec-
tion. On the other hand, the MIDPOINT method is
likely to draw more geographically desirable bound-
aries.

Figure 1 shows the leaves of the k-d tree formed
over North America using the GEOWIKI dataset,

the MIDPOINT node division method, and a bucket
size of 600. Figure 2 shows the leaves over New
York City and its surrounding area for the same
dataset and settings. More densely populated ar-
eas of the earth (which in turn tend to have more
Wikipedia documents associated with them) contain
smaller and more numerous leaf cells. The cells
over Manhattan are significantly smaller than those
of Queens, the Bronx, and East Jersey, even at such
a coarse bucket size. Though the leaves of the k-d
tree implicitly cover the entire surface of the earth,
our illustrations limit the size of each box by its data,
leaving gaps where no training documents exist.

4.3 Selecting a Representative Location

W&B use the geographic center of a cell as the
geolocation for the pseudo-document it represents.
However, this ignores the fact that many cells will
have imbalances in the dispersion of the documents
they contain – typically, they will be clumpy, with
documents clustering around areas of high popula-
tion or activity. An alternative is to select the cen-
troid of the locations of all the documents contained
within a cell. Uniform grids with small cells are
not especially sensitive to this choice since the abso-
lute distance between a center or centroid prediction
will not be great, and empty cells are simply dis-
carded. Nonetheless, using the centroid has the ben-
efit of making a uniform grid less sensitive to cell
size, such that larger cells can be used more reliably
– especially important when there are few training
documents.

In contrast, when choosing representative loca-
tions for the leaves of a k-d tree, it is quite important
to use the centroid because the leaves necessarily
span the entire earth and none are discarded (since
all have a roughly similar number of documents in
them). Some areas with low document density are
thus assigned very large cells, such as those over
the oceans, as seen in Figures 1 and 2. Using the
centroid allows these large leaves to be in the mix,
while still predicting the locations in them that have
the greatest document density.

5 Experimental Setup

Configurations. We experiment with several con-
figurations of grids and representative locations.
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Figure 3: Development set comparisons for (a) GEOWIKI, (b) GEOTEXT, and (c) UTGEO2011-SMALL.

W&B refers to a uniform grid and geographic-
center location selection, UNIFCENTROID to a
uniform grid with centroid location selection,
KDCENTROID to a k-d tree grid with centroid
location selection, and UNIFKDCENTROID to
the union of pseudo-documents constructed by
UNIFCENTROID and KDCENTROID.

We also provide two baselines, both of which are
based on a uniform grid with centroid location selec-
tion. RANDOM predicts a grid cell chosen at random
uniformly; MOSTCOMMONCELL always predicts
the grid cell containing the most training documents.
Note that a most-common k-d leaf baseline does not
make sense, as all k-d leaves contain approximately
the same number of documents.

Evaluation. We use three metrics to measure ge-
olocation performance. The output of each exper-
iment is a predicted coordinate for each test docu-
ment. For each prediction, we compute the error dis-
tance along the surface of the earth to the gold coor-
dinate. We report the mean and median of all such
distances as in W&B and Eisenstein et al. (2011).
We also report the fraction of error distances less
than 161 km, corresponding to Cheng et al. (2010)’s
measure of predictions within 100 miles of the true
location. This third measure can reveal differences
between models not obvious from just mean and me-
dian.

6 Results

This section provides results for the datasets
described previously: GEOWIKI, GEOTEXT,
UTGEO2011-LARGE and UTGEO2011-SMALL.

We first give details for how we tuned parameters
and algorithmic choices using the development sets,
and then provide performance on the test sets based
on these determinations.

6.1 Tuning

The specific parameters are (1) the partition location
method; (2) the bucket size for k-d partitioning; (3)
the node division method for k-d partitioning; (4) the
degree size for uniform grid partitioning. We tune
with respect to mean error, like W&B.

Partition Location Method. Development set
results show that the centroid always performs bet-
ter than the center for all datasets, typically by a
wide margin (especially for large partition sizes). To
save space, we do not provide details, but point the
reader to the differences in test set results between
W&B and UNIFCENTROID (which are identical ex-
cept that the former uses the center and the latter
uses the centroid) in Tables 1 and 2. All further pa-
rameter tuning is done using the centroid method.

k-d Tree Bucket Size. Bucket size should not be
too large as a proportion of the total number of train-
ing documents. Larger bucket sizes tend to produce
larger leaves, so documents in a partition will have
a higher average distance to the center or centroid
point. This will result in predictions being made at
too coarse a granularity, greatly limiting obtainable
precision even when the correct leaf is chosen.

Conversely, small bucket sizes lead to fewer train-
ing documents per partition. A bucket size of one
reduces to the situation where no pseudo-documents
are used. While this might work well if location pre-
diction is done using the kNNs for a test document, it
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Test dataset GEOWIKI GEOTEXT

Method Parameters Mean Med. Acc. Parameters Mean Med. Acc.
RANDOM 0.1◦ 7056 7145 0.3 5◦ 2008 1866 1.6
MOSTCOMMONCELL 0.1◦ 4265 2193 5.0 5◦ 1158 757 31.3
Eisenstein et al. - - - - - 845 501 -
Wing & Baldridge 0.1◦ 221 11.8 - 5◦ 967 479 -
UNIFCENTROID 0.1◦ 181 11.0 90.3 5◦ 897 432 35.9
KDCENTROID B100, MIDPT. 192 22.5 87.9 B530, FRIED. 958 549 35.3
UNIFKDCENTROID 0.1◦, B100, MIDPT. 176 13.4 90.3 5◦, B530, FRIED. 890 473 34.1

Table 1: Performance on the held-out test sets of GEOWIKI and GEOTEXT, comparing to the results of Wing and
Baldridge (2011) and Eisenstein et al. (2011).

is likely to perform very poorly for the 1NN rule we
adopt. It would also require efficient similarity com-
parisons, using techniques such as locality-sensitive
hashing (Kulis and Grauman, 2009).

The graphs in Figure 3 show development set per-
formance when varying bucket size. For GEOWIKI

and UTGEO2011-LARGE (not shown), increments
of 100 were used, but for the smaller GEOTEXT

and UTGEO2011-SMALL, more fine-grained incre-
ments of 10 were used. In the case of plateaus, as
was common with the FRIEDMAN method, we chose
the middle of the plateau as the bucket size. Overall,
we found optimal bucket sizes of 100 for GEOWIKI,
530 for GEOTEXT, 460 for UTGEO2011-SMALL,
and 1050 for UTGEO2011-LARGE. That the
Wikipedia data requires a smaller bucket size is un-
surprising: the documents themselves are generally
longer and there are many more of them, so a small
bucket size provides good coverage and granularity
without sacrificing the ability to estimate good lan-
guage models for each partition.

Node Division Method. The graphs in Fig-
ure 3 also display the difference between the
two splitting methods. MIDPOINT is clearly bet-
ter for GEOWIKI, while FRIEDMAN is better for
GEOTEXT in the range of bucket sizes produc-
ing the best results. FRIEDMAN is best for
UTGEO2011-LARGE (not shown), but MIDPOINT

is best for UTGEO2011-SMALL.
These results only partly confirm our expecta-

tions. We expected FRIEDMAN to perform bet-
ter on smaller datasets, as it distributes the doc-
uments evenly and avoids many sparsity issues.
We expected MIDPOINT to win on larger datasets,
where all nodes receive plentiful data and the k-d

tree would choose more representative geographical
boundaries.

Cell Size. Following W&B, we choose a
cell degree size of 0.1◦ for GEOWIKI, and a
cell degree size of 5.0◦ for GEOTEXT. For
UTGEO2011-LARGE and UTGEO2011-SMALL,
we follow the procedure of W&B, trying sizes
0.1◦, 0.5◦, 1.0◦, 5.0◦, and 10.0◦, selecting the one
which performed best on the development set. For
UTGEO2011-SMALL, this resulted in coarse cells
of 10.0◦, while for UTGEO2011-LARGE, cell sizes
of 0.1◦ were best.

With these tuned parameters, the average num-
ber of training tokens per k-d leaf was approx-
imately 26k for GEOWIKI, 197k for GEOTEXT,
250k for UTGEO2011-SMALL, and 954k for
UTGEO2011-LARGE.

6.2 Held-out Test Sets

Table 1 shows the performance on the test sets of
GEOWIKI and GEOTEXT of the different configu-
rations, along with that of W&B and Eisenstein et
al. (2011) where possible. The results obtained by
W&B on GEOWIKI are already very strong, but we
do see a clear improvement by changing from the
center-based locations for pseudo-documents they
used to the centroid-based locations we employ:
mean error drops from 221 km to 181 km, and me-
dian error from 11.8 km to 11.0 km. Also, we reduce
the mean error further to 176 km for the configu-
ration that combines the uniform grid and the k-d
partitions, though at the cost of increasing median
error somewhat. The 161 km accuracy is around
90% for all configurations, indicating that the gen-
eral language modeling approach we employ is very
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Test dataset UTGEO2011
Training dataset UTGEO2011-SMALL UTGEO2011-LARGE

Method Parameters Mean Med. Acc. Parameters Mean Med. Acc.
RANDOM 10◦ 1975 1833 2.3 0.1◦ 1627 1381 2.0
MOSTCOMMONCELL 10◦ 1522 1186 9.3 0.1◦ 1525 1185 11.8
Wing & Baldridge 10◦ 1223 825 3.4 0.1◦ 956 570 30.9
UNIFCENTROID 10◦ 1147 782 12.3 0.1◦ 956 570 30.9
KDCENTROID B460, MIDPT. 1098 733 18.1 B1050, FRIED. 860 463 34.6
UNIFKDCENTROID 10◦, B460, MIDPT. 1080 723 18.1 0.1◦, B1050, FRIED. 913 532 33.0

Table 2: Performance on the held-out test set of UTGEO2011 for different configurations trained on
UTGEO2011-SMALL (comparable in size to GEOTEXT) and UTGEO2011-LARGE. The numbers given for W&B
were produced from their implementation, and correspond to uniform grid partitioning with locations from centers
rather than centroids.

robust for fact-oriented texts that are rich in explicit
toponyms and geographically relevant named enti-
ties.

For GEOTEXT, the results show that the uniform
grid with centroid locations is the most effective of
our configurations. It improves on Eisenstein et al.
(2011) by 69 km with respect to median error, but
has 52 km worse performance than their model with
respect to mean error. This indicates that our model
is generally more accurate, but that it is compara-
tively more wildly off on some documents. Their
model is a sophisticated one that attempts to build
detailed models of the geographic linguistic varia-
tion found in the dataset. Dialectal cues are actually
the most powerful ones in the GEOTEXT dataset,
and it seems our general approach of winner-takes-
all (1NN) hurts performance in this respect, espe-
cially with a very small training set.

Table 2 shows the performance on the test set of
UTGEO2011 with the UTGEO2011-SMALL and
UTGEO2011-LARGE training sets. (Performance
for W&B is obtained from their code.4) With
the small training set, error is worse than with
GEOTEXT, reflecting the wider geographic scope of
UTGEO2011. KDCENTROID is much more effec-
tive than the uniform grids, but combining it with the
uniform grid in UNIFKDCENTROID edges it out by
a small amount. More interestingly, KDCENTROID

is the strongest on all measures when using the large
training set, beating UNIFCENTROID by an even
larger margin for mean and median error than with

4https://bitbucket.org/utcompling/
textgrounder/wiki/WingBaldridge2011

the small training set. The bucket size used with the
large training set is double that for the small one,
but there are many more leaves created since there
are 42 times more training documents. With the ex-
tra data, the model is able to adapt better to the dis-
persion of documents and still have strong language
models for each leaf that work well even with our
greedy winner-takes-all decision method.

Note that the accuracy measurements for all
UTGEO2011 experiments are substantially lower
than those reported by Cheng et al. (2010), who
report a best accuracy within 100 miles of 51%.
While UTGEO2011-LARGE contains a substan-
tially larger number of tweets, Cheng et al. (2010)
limit themselves to users with at least 1,000
tweets, while we have an average of 85 tweets
per user. Their reported mean error distance of
862 km (versus our best mean of 860 km on
UTGEO2011-LARGE) indicates that their perfor-
mance is hurt by a relatively small number of ex-
tremely incorrect guesses, as ours appears to be.

Figure 4 provides a learning curve on
UTGEO2011’s development set for KDCENTROID.
Performance improves greatly with more data,
indicating that GEOTEXT performance would also
improve with more training data. Parameters, espe-
cially bucket size, need retuning as data increases,
which we hope to estimate automatically in future
work

Finally, we note that the KDCENTROID

method was faster than other methods. While
UNIFCENTROID took nearly 19 hours to com-
plete the test run on GEOWIKI (approximately
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Figure 4: Learning curve of KDCENTROID on the
UTGEO2011 development set.

1.38 seconds per test document), KDCENTROID

took only 80 minutes (.078 s/doc). Similarly,
UNIFCENTROID took about 67 minutes to
run on UTGEO2011-LARGE (0.34 s/doc), but
KDCENTROID took only 27 minutes (0.014 s/doc).
Generally, the KDCENTROID partitioning results
in fewer cells, and therefore fewer KL-divergence
comparisons. As expected, the UNIFKDCENTROID

model needs as much time as the two together,
taking roughly 21 hours for GEOWIKI (1.52 s/doc)
and 85 minutes for UTGEO2011-LARGE (0.36
s/doc).

7 Discussion

7.1 Error Analysis

We examine some of the greatest error distances
to better understand and improve our models. In
many cases, landmarks in Australia or New Zealand
are predicted in European locations with similarly-
named landmarks, or vice versa — e.g. the Theatre
Royal, Hobart in Australia is predicted to be in Lon-
don’s theater district, and the Embassy of Australia,
Paris is predicted to be in the capital city of Aus-
tralia. Thus, our model may be inadvertently cap-
turing what Clements et al. (2010) call wormholes,
places that are related but not necessarily adjacent.

Some of the other large errors stem from incorrect
gold labels, in particular due to sign errors in latitude
or longitude, which can place documents 10,000 or
more km from their correct locations.

Word Error Word Error
paramus 78 6100 130
ludlow 79 figueroa 133
355 99 dundas 138
ctfuuu 101 120th 139
74th 105 mississauga 140
5701 105 pulaski 144
bloomingdale 122 cucina 146
covina 133 56th 153
lawrenceville 122 403 157
ctfuuuu 124 428 161

Table 3: The 20 words with least average error
(km) in the UTGEO2011 development set, trained
on the UTGEO2011-SMALL training set, using the
KDCENTROID approach with our best parameters. Only
words that occur in at least 10 documents are shown.

Word Error Word Error
seniorpastor 1.1 KS01 2.4
prebendary 1.6 Keio 2.5
Wornham 1.7 Vrah 2.5
Owings 1.9 overspill 2.5
Londoners 2.0 Oriel 2.5
Sandringham 2.1 Holywell 2.6
Sheffield’s 2.2 \’vr&h 2.6
Oxford’s 2.2 operetta 2.6
Belair 2.3 Supertram 2.6
Beckton 2.4 Chanel 2.7

Table 4: Top 20 words with the least average er-
ror (km) in the GEOWIKI development set, using the
UNIFKDCENTROID approach with our best parameters.
Only words occurring in at least 10 documents are shown.

7.2 Most Predictive Words

Our approach relies on the idea that the use of certain
words correlates with a Twitter user or Wikipedia
article’s location. To investigate which words tend
to be good indicators of location, we computed, for
each word in a development set, the average error
distance of documents containing that word. Table 3
gives the 20 words with the least error, among
those that occur in at least 10 documents (users),
for the UTGEO2011 development set, trained on
UTGEO2011-SMALL.

Many of the best words are town names (paramus,
ludlow, bloomingdale), street names (74th, figueroa,
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120th), area codes (403), and street numbers (5701,
6100). All are highly locatable terms, as we would
expect. Many of the street addresses are due to
check-ins with the location-based social networking
service Foursquare (e.g. the tweet I’m at Starbucks
(7301 164th Ave NE, Redmond Town Center, Red-
mond)), where the user is literally broadcasting his
or her location. The token ctfuuu(u)—an elongation
of the internet abbreviation ctfu, or cracking the fuck
up—is a dialectal or stylistic feature highly indica-
tive of the Washington, D.C. area.

Similarly, several place names (Wornham, Belair,
Holywell) appear in GEOWIKI. Operettas are a cul-
tural phenomenon largely associated with France,
Germany, and England and particularly with specific
theaters in these countries. However, other highly
specific tokens such as KS01 have a very low aver-
age error because they occur in few documents and
are thus highly unambiguous indicators of location.
Other terms, like seniorpastor and \’vr&h, are due
to extraction errors in the dataset created by W&B,
and are carried along because of a high correlation
with specific documents.

8 Conclusion

We have shown how to construct an adaptive grid
with k-d trees that enables robust text geolocation
and scales well to large training sets. It will be inter-
esting to consider how it interacts with other strate-
gies for improving the IR-based approach. For ex-
ample, the pseudo-document word distributions can
be smoothed based on nearby documents or on the
structure of the k-d tree itself. Integrating our system
with topic models or Bayesian methods would likely
provide more insight with regard to the most dis-
criminative and geolocatable words. We also expect
predicting locations based on multiple most similar
documents (kNN) to be more effective in predict-
ing document location, as the second and third most
similar training documents together may sometimes
be a better estimation of its distribution than just the
first alone. Employing k Nearest Neighbors also al-
lows for more sophisticated methods of location es-
timation than a single leaf’s centroid. Other possi-
bilities include constructing multiple k-d trees using
random subsets of the training data to reduce sensi-
tivity to the bucket size.

In this article, we have considered each user in
isolation. However, Liben-Nowell et al. (2005) show
that roughly 70% of social network links can be de-
scribed using geographic information and that the
probability of a social link is inversely proportional
to geographic distance. Backstrom et al. (2010) ver-
ify these results on a much larger scale using ge-
olocated Facebook profiles: their algorithm geolo-
cates users with only the social graph and signif-
icantly outperforms IP-based geolocation systems.
Given that both Twitter and Wikipedia have rich,
linked document/user graphs, a natural extension to
our work here will be to combine text and network
prediction for geolocation. Sadilek et al. (2012)
also show that a combination of textual and so-
cial data can accurately geolocate individual tweets
when scope is limited to a single city.

Tweets are temporally ordered and the geographic
distance between consecutive tweeting events is
constrained by the author’s movement. For tweet-
level geolocation, it will be useful to build on work
in geolocation that considers the temporal dimen-
sion (Chen and Grauman, 2011; Kalogerakis et al.,
2009; Sadilek et al., 2012) to make better predictions
for documents/images that are surrounded by others
with excellent cues, but which are hard to resolve
themselves.
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