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Abstract

We introduce a model of coherence which
captures the intentional discourse structure in
text. Our work is based on the hypothesis that
syntax provides a proxy for the communica-
tive goal of a sentence and therefore the se-
quence of sentences in a coherent discourse
should exhibit detectable structural patterns.
Results show that our method has high dis-
criminating power for separating out coherent
and incoherent news articles reaching accura-
cies of up to 90%. We also show that our syn-
tactic patterns are correlated with manual an-
notations of intentional structure for academic
conference articles and can successfully pre-
dict the coherence of abstract, introduction
and related work sections of these articles.

1 Introduction

Recent studies have introduced successful automatic
methods to predict the structure and coherence of
texts. They include entity approaches for local co-
herence which track the repetition and syntactic re-
alization of entities in adjacent sentences (Barzilay
and Lapata, 2008; Elsner and Charniak, 2008) and
content approaches for global coherence which view
texts as a sequence of topics, each characterized by a
particular distribution of lexical items (Barzilay and
Lee, 2004; Fung and Ngai, 2006). Other work has
shown that co-occurrence of words (Lapata, 2003;
Soricut and Marcu, 2006) and discourse relations
(Pitler and Nenkova, 2008; Lin et al., 2011) also pre-
dict coherence.

Early theories (Grosz and Sidner, 1986) posited
that there are three factors which collectively con-

tribute to coherence: intentional structure (purpose
of discourse), attentional structure (what items are
discussed) and the organization of discourse seg-
ments. The highly successful entity approaches cap-
ture attentional structure and content approaches are
related to topic segments but intentional structure
has largely been neglected. Every discourse has a
purpose: explaining a concept, narrating an event,
critiquing an idea and so on. As a result each sen-
tence in the article has a communicative goal and the
sequence of goals helps the author achieve the dis-
course purpose. In this work, we introduce a model
to capture coherence from the intentional structure
dimension. Our key proposal is that syntactic pat-
terns are a useful proxy for intentional structure.

This idea is motivated from the fact that cer-
tain sentence types such as questions and definitions
have distinguishable and unique syntactic structure.
For example, consider the opening sentences of two
descriptive articles1 shown in Table 1. Sentences
(1a) and (2a) are typical instances of definition sen-
tences. Definitions are written with the concept to
be defined expressed as a noun phrase followed by
a copular verb (is/are). The predicate contains two
parts: the first is a noun phrase reporting the concept
as part of a larger class (eg. an aqueduct is a water
supply), the second component is a relative clause
listing unique properties of the concept. These are
examples of syntactic patterns related to the com-
municative goals of individual sentences. Similarly,
sentences (1b) and (2b) which provide further de-
tails about the concept also have some distinguish-

1Wikipedia articles on “Aqueduct” and “Cytokine Recep-
tors”
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1a) An aqueduct is a water supply or navigable channel
constructed to convey water.
b) In modern engineering, the term is used for any system

of pipes, canals, tunnels, and other structures used for
this purpose.
2a) Cytokine receptors are receptors that binds cytokines.
b) In recent years, the cytokine receptors have come to

demand more attention because their deficiency has now been
directly linked to certain debilitating immunodeficiency states.

Table 1: The first two sentences of two descriptive arti-
cles

ing syntactic features such as the presence of a top-
icalized phrase providing the focus of the sentence.
The two sets of sentences have similar sequence of
communicative goals and so we can expect the syn-
tax of adjacent sentences to also be related.

We aim to characterize this relationship on a
broad scale using a coherence model based entirely
on syntax. The model relies on two assumptions
which summarize our intuitions about syntax and in-
tentional structure:

1. Sentences with similar syntax are likely to have
the same communicative goal.

2. Regularities in intentional structure will be
manifested in syntactic regularities between ad-
jacent sentences.

There is also evidence from recent work that sup-
ports these assumptions. Cheung and Penn (2010)
find that a better syntactic parse of a sentence can be
derived when the syntax of adjacent sentences is also
taken into account. Lin et al. (2009) report that the
syntactic productions in adjacent sentences are pow-
erful features for predicting which discourse relation
(cause, contrast, etc.) holds between them. Cocco et
al. (2011) show that significant associations exist be-
tween certain part of speech tags and sentence types
such as explanation, dialog and argumentation.

In our model, syntax is represented either as parse
tree productions or a sequence of phrasal nodes aug-
mented with part of speech tags. Our best perform-
ing method uses a Hidden Markov Model to learn
the patterns in these syntactic items. Sections 3 and
5 discuss the representations and their specific im-
plementations and relative advantages. Results show
that syntax models can distinguish coherent and in-
coherent news articles from two domains with 75-
90% accuracies over a 50% baseline. In addition,

the syntax coherence scores turn out complementary
to scores given by lexical and entity models.

We also study our models’ predictions on aca-
demic articles, a genre where intentional structure
is widely studied. Sections in these articles have
well-defined purposes and we find recurring sen-
tence types such as motivation, citations, descrip-
tion, and speculations. There is a large body of work
(Swales, 1990; Teufel et al., 1999; Liakata et al.,
2010) concerned with defining and annotating these
sentence types (called zones) in conference articles.
In Section 6, we describe how indeed some patterns
captured by the syntax-based models are correlated
with zone categories that were proposed in prior lit-
erature. We also present results on coherence pre-
diction: our model can distinguish the introduction
section of conference papers from its perturbed ver-
sions with over 70% accuracy. Further, our model
is able to identify conference from workshop papers
with good accuracies, given that we can expect these
articles to vary in purpose.

2 Evidence for syntactic coherence

We first present a pilot study that confirms that ad-
jacent sentences in discourse exhibit stable patterns
of syntactic co-occurrence. This study validates our
second assumption relating the syntax of adjacent
sentences. Later in Section 6, we examine syntac-
tic patterns in individual sentences (assumption 1)
using a corpus of academic articles where sentences
were manually annotated with communicative goals.

Prior work has reported that certain grammatical
productions are repeated in adjacent sentences more
often than would be expected by chance (Reitter et
al., 2006; Cheung and Penn, 2010). We analyze all
co-occurrence patterns rather than just repetitions.

We use the gold standard parse trees from the
Penn Treebank (Marcus et al., 1994). Our unit of
analysis is a pair of adjacent sentences (S1, S2) and
we choose to use Section 0 of the corpus which has
99 documents and 1727 sentence pairs. We enumer-
ate all productions that appear in the syntactic parse
of any sentence and exclude those that appear less
than 25 times, resulting in a list of 197 unique pro-
ductions. Then all ordered pairs2 (p1, p2) of pro-
ductions are formed. For each pair, we compute

2(p1, p2) and (p2, p1) are considered as different pairs.
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p1, p2 Sentence 1 Sentence 2
NP→ NP NP-ADV The two concerns said they entered into a definitive Also on the takeover front, Jaguar’s ADRs rose
QP→ CD CD merger agreement under which Ratners will begin a tender 1/4 to 13 7/8 on turnover of [4.4 million]QP.

offer for all of Weisfield’s common shares for [$57.50 each]NP.
VP→ VB VP “The refund pool may not [be held hostage through another” [Commonwealth Edison]NP-SBJ said it is already
NP-SBJ→ NNP NNP round of appeals]VP,” Judge Curry said. appealing the underlying commission order and

is considering appealing Judge Curry’s order.
NP-LOC→ NNP “It has to be considered as an additional risk for the investor,” [“Cray Computer will be a concept”
S-TPC-1→ NP-SBJ VP said Gary P. Smaby of Smaby Group Inc., [Minneapolis]NP-LOC. “stock,”]S-TPC-1 he said.

Table 2: Example sentences for preferred production sequences. The span of the LHS of the corresponding production
is indicated by [] braces.

the following: c(p1p2) = number of sentence pairs
where p1 ∈ S1 and p2 ∈ S2; c(p1¬p2) = num-
ber of pairs where p1 ∈ S1 and p2 6∈ S2; c(¬p1p2)
and c(¬p1¬p2) are computed similarly. Then we
perform a chi-square test to understand if the ob-
served count c(p1p2) is significantly (95% confi-
dence level) greater or lesser than the expected value
if occurrences of p1 and p2 were independent.

Of the 38,809 production pairs, we found that
1,168 pairs occurred in consecutive sentences sig-
nificantly more often than chance and 172 appeared
significantly fewer times than expected. In Table 2
we list, grouped in three simple categories, the 25
pairs of the first kind with most significant p-values.

Some of the preferred pairs are indeed repetitions
as pointed out by prior work. But they form only a
small fraction (5%) of the total preferred production
pairs indicating that there are several other classes
of syntactic regularities beyond priming. Some of
these other sequences can be explained by the fact
that these articles come from the finance domain:
they involve productions containing numbers and
quantities. An example for this type is shown in Ta-
ble 2. Finally, there is also a class that is not repe-
titions or readily observed as domain-specific. The
most frequent one reflects a pattern where the first
sentence introduces a subject and predicate and the
subject in the second sentence is pronominalized.
Examples for two other patterns are given in Table
2. For the sequence (VP → VB VP | NP-SBJ → NNP

NNP), a bare verb is present in S1 and is often asso-
ciated with modals. In the corpus, these statements
often present hypothesis or speculation. The follow-
ing sentence S2 has an entity, a person or organiza-
tion, giving an explanation or opinion on the state-
ment. This pattern roughly correponds to a SPECU-
LATE followed by ENDORSE sequence of intentions.

p1 p2 c(p1p2)
— Repetition —

VP→ VBD SBAR VP→ VBD SBAR 83
QP→ $ CD CD QP→ $ CD CD 18
NP→ $ CD -NONE- NP→ $ CD -NONE- 16
NP→ QP -NONE- NP→ QP -NONE- 15
NP-ADV→ DT NN NP-ADV→ DT NN 10
NP→ NP NP-ADV NP→ NP NP-ADV 7

— Quantities/Amounts —
NP→ QP -NONE- QP→ $ CD CD 16
QP→ $ CD CD NP→ QP -NONE- 15
NP→ NP NP-ADV NP→ QP -NONE- 11
NP-ADV→ DT NN NP→ QP -NONE- 11
NP→ NP NP-ADV NP-ADV→ DT NN 9
NP→ $ CD -NONE- NP-ADV→ DT NN 8
NP-ADV→ DT NN NP→ $ CD -NONE- 8
NP-ADV→ DT NN NP→ NP NP-ADV 8
NP→ NP NP-ADV QP→ CD CD 6

— Other —
S→ NP-SBJ VP NP-SBJ→ PRP 290
VP→ VBD SBAR PP-TMP→ IN NP 79
S→ NP-SBJ-1 VP VP→ VBD SBAR 43
VP→ VBD NP VP→ VBD VP 31
VP→ VB VP NP-SBJ→ NNP NNP 27
NP-SBJ-1→ NNP NNP VP→ VBD NP 13
VP→ VBZ NP S→ PP-TMP , NP-SBJ VP . 8
NP-SBJ→ JJ NNS VP→ VBP NP 8
NP-PRD→ NP PP NP-PRD→ NP SBAR 7
NP-LOC→ NNP S-TPC-1→ NP-SBJ VP 6

Table 3: Top patterns in productions from WSJ

Similarly, in all the six adjacent sentence pairs from
our corpus containing the items (NP-LOC → NNP | S-

TPC-1 → NP-SBJ VP), p1 introduces a location name,
and is often associated with the title of a person or
organization. The next sentence has a quote from
that person, where the quotation forms the topical-
ized clause in p2. Here the intentional structure is
INTRODUCE X / STATEMENT BY X.

In the remainder of the paper we formalize our
representation of syntax and the derived model of
coherence and test its efficacy in three domains.

3 Coherence models using syntax

We first describe the two representations of sentence
structure we adopted for our analysis.3 Next, we

3Our representations are similar to features used for rerank-
ing in parsing. Our first representation corresponds to “rules”
features (Charniak and Johnson, 2005; Collins and Koo, 2005),
and our second representation is related to “spines” (Carreras et
al., 2008) and edge annotation(Huang, 2008).
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present two coherence models: a local model which
captures the co-occurrence of structural features in
adjacent sentences and a global one which learns
from clusters of sentences with similar syntax.

3.1 Representing syntax
Our models rely exclusively on syntactic cues. We
derive representations from constituent parses of the
sentences, and terminals (words) are removed from
the parse tree before any processing is done. The
leaf nodes in our parse trees are part of speech tags.
Productions: In this representation we view each
sentence as the set of grammatical productions, LHS
→ RHS, which appear in the parse of the sen-
tence. As we already pointed out, the right-hand side
(RHS) contains only non-terminal nodes. This rep-
resentation is straightforward, however, some pro-
ductions can be rather specific with long right hand
sides. Another apparent drawback of this represen-
tation is that it contains sequence information only
about nodes that belong to the same constituent.
d-sequence: In this representation we aim to pre-
serve more sequence information about adjacent
constituents in the sentence. The simplest approach
would be to represent the sentence as the sequence
of part of speech (POS) tags but then we lose all
the abstraction provided by higher level nodes in
tree. Instead, we introduce a more general represen-
tation, d-sequence where the level of abstraction can
be controlled using a parameter d. The parse tree is
truncated to depth at most d, and the leaves of the
resulting tree listed left to right form the d-sequence
representation. For example, in Figure 1, the line
depicts the cutoff at depth 2.

Next the representation is further augmented; all
phrasal nodes in the d-sequence are annotated (con-
catenated) with the left-most leaf that they domi-
nate in the full non-lexicalized parse tree. This is
shown as suffixes on the S, NP and VP nodes in
the figure. Such annotation conveys richer informa-
tion about the structure of the subtree below nodes
in the d-sequence. For example, “the chairs”, “his
chairs”, “comfortable chairs” will be represented as
NPDT, NPPRP$ and NPJJ. In the resulting representa-
tions, sentences are viewed as sequences of syntactic
words (w1,w2...,wk), k ≤ p, where p is the length of
the full POS sequence and each wi is either POS tag
or a phrasal node+POS tag combination.

Figure 1: Example for d-sequence representation

In our example, at depth-2, the quotation sentence
gets the representation (w1=“ , w2=SDT , w3=, , w4=” ,
w5=NPNNP , w6=VPVBD , w7=.) where the actual quote
is omitted. Sentences that contain attributions are
likely to appear more similar to each other when
compared using this representation in contrast to
representations derived from word or POS sequence.
The depth-3 sequence is also indicated in the figure.

The main verb of a sentence is central to its struc-
ture, so the parameter d is always set to be greater
than that of the main verb and is tuned to optimize
performance for coherence prediction.

3.2 Implementing the model

We adapt two models of coherence to operate over
the two syntactic representations.

3.2.1 Local co-occurrence model
This model is a direct extension from our pilot

study. It allows us to test the assumption that coher-
ent discourse is characterized by syntactic regulari-
ties in adjacent sentences. We estimate the proba-
bilities of pairs of syntactic items from adjacent sen-
tences in the training data and use these probabilities
to compute the coherence of new texts.

The coherence of a text T containing n sentences
(S1...Sn) is computed as:

P (T ) =
n∏

i=2

|Si|∏
j=1

1

|Si−1|

|Si−1|∑
k=1

p(Sj
i |S

k
i−1)

where Sy
x indicates the yth item of Sx. Items

are either productions or syntactic word unigrams
depending on the representation. The conditional
probabilities are computed with smoothing:
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Cluster a Cluster b
ADJP → JJ PP | VP → VBZ ADJP VP → VB VP | VP → MD VP

[1] This method VP-[is ADJP-[capable of sequence-specific [1] Our results for the difference in reactivity VP-[can

detection of DNA with high accuracy]-ADJP]-VP . VP-[be linked to experimental observations]-VP]-VP .

[2] The same VP-[is ADJP-[true for synthetic polyamines [2] These phenomena taken together VP-[can VP-[be considered

such as polyallylamine]-ADJP]-VP . as the signature of the gelation process]-VP]-VP .

Table 4: Example syntactic similarity clusters. The top two descriptive productions for each cluster are also listed.

p(wj |wi) =
c(wi, wj) + δC
c(wi) + δC ∗ |V |

wherewi andwj are syntactic items and c(wi, wj) is
the number of sentences that contain the item wi im-
mediately followed by a sentence that contains wj .
|V | is the vocabulary size for syntactic items.

3.2.2 Global structure
Now we turn to a global coherence approach

that implements the assumption that sentences with
similar syntax have the same communicative goal
as well as captures the patterns in communicative
goals in the discourse. This approach uses a Hid-
den Markov Model (HMM) which has been a popu-
lar implementation for modeling coherence (Barzi-
lay and Lee, 2004; Fung and Ngai, 2006; Elsner
et al., 2007). The hidden states in our model de-
pict communicative goals by encoding a probability
distribution over syntactic items. This distribution
gives higher weight to syntactic items that are more
likely for that communicative goal. Transitions be-
tween states record the common patterns in inten-
tional structure for the domain.

In this syntax-HMM, states hk are created by
clustering the sentences from the documents in the
training set by syntactic similarity. For the pro-
ductions representation of syntax, the features for
clustering are the number of times a given produc-
tion appeared in the parse of the sentence. For the
d-sequence approach, the features are n-grams of
size one to four of syntactic words from the se-
quence. Clustering was done by optimizing for av-
erage cosine similarity and was implemented using
the CLUTO toolkit (Zhao et al., 2005). C clusters
are formed and taken as the states of the model. Ta-
ble 4 shows sentences from two clusters formed on
the abstracts of journal articles using the productions
representation. One of them, cluster (a), appears

to capture descriptive sentences and cluster (b) in-
volves mostly speculation type sentences.

The emission probabilities for each state are mod-
eled as a (syntactic) language model derived from
the sentences in it. For productions representa-
tion, this is the unigram distribution of produc-
tions from the sentences in hk. For d-sequences,
the distribution is computed for bigrams of syntac-
tic words. These language models use Lidstone
smoothing with constant δE . The probability for a
sentence Sl to be generated from state hk, pE(Sl|hk)
is computed using these syntactic language models.

The transition probability pM from a state hi to
state hj is computed as:

pM (hj |hi) =
d(hi, hj) + δM
d(hi) + δM ∗ C

where d(hi) is the number of documents whose sen-
tences appear in hi and d(hi, hj) is the number of
documents which have a sentence in hi which is im-
mediately followed by a sentence in hj . In addi-
tion to the C states, we add one initial hS and one
final hF state to capture document beginning and
end. Transitions from hS to any state hk records
how likely it is for hk to be the starting state for doc-
uments of that domain. δM is a smoothing constant.

The likelihood of a text with n sentences is given
by P (T ) =

∑
h1...hn

∏n
t=1 pM (ht|ht−1)pE(St|ht).

All model parameters—the number of clusters
C, smoothing constants δC , δE , δM and d for
d-sequences—are tuned to optimize how well the
model can distinguish coherent from incoherent ar-
ticles. We describe these settings in Section 5.1.

4 Content and entity grid models

We compare the syntax model with content model
and entity grid methods. These approaches are the
most popular ones from prior work and also allow
us to test the complementary nature of syntax with
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lexical statistics and entity structure. This section
explains how we implemented these approaches.

Content models introduced by Barzilay and Lee
(2004) and Fung and Ngai (2006) use lexically
driven HMMs to capture coherence. The hidden
states represent the topics of the domain and en-
code a probability distribution over words. Transi-
tions between states record the probable succession
of topics. We built a content model using our HMM
implementation. Clusters are created using word bi-
gram features after replacing numbers and proper
names with tags NUM and PROP. The emissions are
given by a bigram language model on words from
the clustered sentences. Barzilay and Lee (2004)
also employ an iterative clustering procedure before
finalizing the states of the HMM but our method
only uses one-step clustering. Despite the differ-
ence, the content model accuracies for our imple-
mentation are quite close to that from the original.

For the entity grid model, we follow the gen-
erative approach proposed by Lapata and Barzilay
(2005). A text is converted into a matrix, where rows
correspond to sentences, in the order in which they
appear in the article. Columns are created one for
each entity appearing in the text. Each cell (i,j) is
filled with the grammatical role ri,j of the entity j
in sentence i. We computed the entity grids using
the Brown Coherence Toolkit4. The probability of
the text (T ) is defined using the likely sequence of
grammatical role transitions.

P (T ) =
m∏

j=1

n∏
i=1

p(ri,j |ri−1,j ...ri−h,j)

for m entities and n sentences. Parameter h controls
the history size for transitions and is tuned during
development. When h = 1, for example, only the
grammatical role for the entity in the previous sen-
tence is considered and earlier roles are ignored.

5 Evaluating syntactic coherence

We follow the common approach from prior work
and use pairs of articles, where one has the original
document order and the other is a random permuta-
tion of the sentences from the same document. Since
the original article is always more coherent than a
random permutation, a model can be evaluated using

4http://www.cs.brown.edu/~melsner/manual.html

the accuracy with which it can identify the original
article in the pair, i.e. it assigns higher probability
to the original article. This setting is not ideal but
has become the de facto standard for evaluation of
coherence models (Barzilay and Lee, 2004; Elsner
et al., 2007; Barzilay and Lapata, 2008; Karamanis
et al., 2009; Lin et al., 2011; Elsner and Charniak,
2011). It is however based on a reasonable assump-
tion as recent work (Lin et al., 2011) shows that peo-
ple identify the original article as more coherent than
its permutations with over 90% accuracy and asses-
sors also have high agreement. Later, we present
an experiment distinguishing conference from work-
shop articles as a more realistic evaluation.

We use two corpora that are widely employed for
coherence prediction (Barzilay and Lee, 2004; El-
sner et al., 2007; Barzilay and Lapata, 2008; Lin et
al., 2011). One contains reports on airplane acci-
dents from the National Transportation Safety Board
and the other has reports about earthquakes from the
Associated Press. These articles are about 10 sen-
tences long. These corpora were chosen since within
each dataset, the articles have the same intentional
structure. Further, these corpora are also standard
ones used in prior work on lexical, entity and dis-
course relation based coherence models. Later in
Section 6, we show that the models perform well on
the academic genre and longer articles too.

For each of the two corpora, we have 100 arti-
cles for training and 100 (accidents) and 99 (earth-
quakes) for testing. A maximum of 20 random per-
mutations were generated for each test article to cre-
ate the pairwise data (total of 1986 test pairs for the
accident corpus and 1956 for earthquakes).5 The
baseline accuracy for random prediction is 50%.
The articles were parsed using the Stanford parser
(Klein and Manning, 2003).

5.1 Accuracy of the syntax model

For each model, the relevant parameters were tuned
using 10-fold cross validation on the training data.
In each fold, 90 documents were used for training
and evaluation was done on permutations from the
remaining articles. After tuning, the final model was
trained on all 100 articles in the training set.

5We downloaded the permutations from http://people.

csail.mit.edu/regina/coherence/CLsubmission/
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Table 5 shows the results on the test set. The
best number of clusters and depth for d-sequences
are also indicated. Overall, the syntax models work
quite well, with accuracies at least 15% or more ab-
solute improvement over the baseline.

In the local co-occurrence approach, both pro-
ductions and d-sequences provide 72% accuracy for
the accidents corpus. For the earthquake corpus,
the accuracies are lower and the d-sequence method
works better. The best depth setting for d-sequence
is rather small: depth of main verb (MVP) + 2 (or 1),
and indicates that a fairly abstract level of nodes is
preferred for the patterns. For comparison, we also
provide results using just the POS tags in the model
and this is worse than the d-sequence approach.

The global HMM model is better than the local
model for each representation type giving 2 to 38%
better accuracies. Here we see a different trend for
the d-sequence representation, with better results for
greater depths. At such depths (8 and 9) below the
main verb, the nodes are mostly POS tags.

Overall both productions and d-sequence work
competitively and give the best accuracies when im-
plemented with the global approach.

5.2 Comparison with other approaches
For our implementations of the content and entity
grid models, the best accuracies are 71% on the ac-
cidents corpus and 85% on the earthquakes one, sim-
ilar to the syntactic models.

Ideally, we would like to combine models but we
do not have separate training data. So we perform
the following classification experiment which com-
bines the predictions made by different models on
the test set. Each test pair (article and permutation)
forms one example and is given a class value of 0 or
1 depending on whether the first article in the pair
is the original one or the second one. The example
is represented as an n-dimensional vector, where n
is the number of models we wish to combine. For
instance, to combine content models and entity grid,
two features are created: one of these records the dif-
ference in log probabilities for the two articles from
the content model, the other feature indicates the dif-
ference in probabilities from the entity grid.

A logistic regression classifier is trained to pre-
dict the class using these features. The test pairs are
created such that an equal number of examples have

Model Accidents Earthquake
Parameter Acc Parameter Acc

A. Local co-occurrence
Prodns 72.8 55.0
d-seq dep. MVP+2 71.8 dep. MVP+1 65.1
POS 61.3 42.6

B. HMM-syntax
Prodns clus. 37 74.6 clus. 5 93.8
d-seq dep. MVP+8 82.2 dep. MVP+9 86.5

clus. 8 clus. 45

C. Other approaches
Egrid history 1 67.6 history 1 82.2
Content clus. 48 71.4 clus. 23 84.5

Table 5: Accuracies on accident and earthquake corpora

Model Accid. Earthq.
Content + Egrid 76.8 90.7
Content + HMM-prodn 74.2 95.3
Content + HMM-d-seq 82.1 90.3
Egrid + HMM-prodn 79.6 93.9
Egrid + HMM-d-seq 84.2 91.1
Egrid + Content + HMM-prodn 79.5 95.0
Egrid + Content + HMM-d-seq 84.1 92.3
Egrid + Content + HMM-prodn 83.6 95.7
+ HMM-d-seq

Table 6: Accuracies for combined approaches

class 0 and 1, so the baseline accuracy is 50%. We
run this experiment using 10-fold cross validation on
the test set after first obtaining the log probabilities
from individual models. In each fold, the training is
done using the pairs from 90 articles and tested on
permutations from the remaining 10 articles. These
accuracies are reported in Table 6. When the accu-
racy of a combination is better than that using any of
its smaller subsets, the value is bolded.

We find that syntax supplements both content and
entity grid methods. While on the airplane corpus
syntax only combines well with the entity grid, on
the earthquake corpus, both entity and content ap-
proaches give better accuracies when combined with
syntax. However, adding all three approaches does
not outperform combinations of any two of them.
This result can be due to the simple approach that
we tested for combination. In prior work, content
and entity grid methods have been combined gen-
eratively (Elsner et al., 2007) and using discrimina-
tive training with different objectives (Soricut and
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Marcu, 2006). Such approaches might bring out
the complementary strengths of the different aspects
better and we leave such analysis for future work.

6 Predictions on academic articles

The distinctive intentional structure of academic ar-
ticles has motivated several proposals to define and
annotate the communicative purpose (argumentative
zone) of each sentence (Swales, 1990; Teufel et al.,
1999; Liakata et al., 2010). Supervised classifiers
were also built to identify these zones (Teufel and
Moens, 2000; Guo et al., 2011). So we expect that
these articles form a good testbed for our models. In
the remainder of the paper, we examine how unsu-
pervised patterns discovered by our approach relate
to zones and how well our models predict coherence
for articles from this genre.

We employ two corpora of scientific articles.
ART Corpus: contains a set of 225 Chemistry jour-
nal articles that were manually annotated for inten-
tional structure (Liakata and Soldatova, 2008). Each
sentence was assigned one of 11 zone labels: Result,
Conclusion, Objective, Method, Goal, Background,
Observation, Experiment, Motivation, Model, Hy-
pothesis. For our study, we use the annotation of
the introduction and the abstract sections. We divide
the data into training, development and test sets. For
abstracts, we have 75, 50 and 100 for these sets re-
spectively. For introductions, this split is 75, 31, 82.6

ACL Anthology Network (AAN) Corpus: Radev
et al. (2009) provides the full text of publications
from ACL venues. These articles do not have any
zone annotations. The AAN corpus is produced
from OCR analysis and no section marking is avail-
able. To recreate these, we use the Parscit tagger7

(Councill et al., 2008). We use articles from years
1999 to 2011. For training, we randomly choose 70
articles from ACL and NAACL main conferences.
Similarly, we obtain a development corpus of 36
ACL-NAACL articles. We create two test sets: one
has 500 ACL-NAACL conference articles and an-
other has 500 articles from ACL-sponsored work-
shops. We only choose articles in which all three
sections—abstract, introduction and related work—

6Some articles did not have labelled ‘introduction’ sections
resulting in fewer examples for this setup.

7http://aye.comp.nus.edu.sg/parsCit/

could be successfully identified using Parscit.8

This data was sentence-segmented using MxTer-
minator (Reynar and Ratnaparkhi, 1997) and parsed
with the Stanford Parser (Klein and Manning, 2003).

For each corpus and each section, we train all our
syntactic models: the two local coherence models
using the production and d-sequence representations
and the HMM models with the two representations.
These models are tuned on the respective develop-
ment data, on the task of differentiating the original
from a permuted section. For this purpose, we cre-
ated a maximum of 30 permutations per article.

6.1 Comparison with ART Corpus zones

We perform this analysis using the ART corpus. The
zone annotations present in this corpus allow us to
directly test our first assumption in this work, that
sentences with similar syntax have the same com-
municative goal.

For this analysis, we use the the HMM-prod
model for abstracts and the HMM-d-seq model for
introductions. These models were chosen because
they gave the best performance on the ART corpus
development sets.9 We examine the clusters cre-
ated by these models on the training data and check
whether there are clusters which strongly involve
sentences from some particular annotated zone.

For each possible pair of cluster and zone (Ci,
Zj), we compute c(Ci, Zj): the number of sentences
in Ci that are annotated as zone Zj . Then we use a
chi-square test to identify pairs for which c(Ci, Zj)
is significantly greater than expected (there is a “pos-
itive” association between Ci and Zj) and pairs
where c(Ci, Zj) is significantly less than chance (Ci

is not associated with Zj). A 95% confidence level
was used to determine significance.

The HMM-prod model for abstracts has 9 clusters
(named Clus0 to 8) and the HMM-d-seq model for
introductions has 6 clusters (Clus0 to 5). The pair-
ings of these clusters with zones which turned out to
be significant are reported in Table 7. We also re-
port for each positively associated cluster-zone pair,
the following numbers: matches c(Ci, Zj), preci-
sion c(Ci, Zj)/|Ci| and recall c(Ci, Zj)/|Zj |.

8We also exclude introduction and related work sections
longer than 50 sentences and those shorter than 4 sentences
since they often have inaccurate section boundaries.

9Their test accuracies are reported in the next section.
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Abstracts (HMM-prod 9 clusters)
Positive associations matches prec. recall
Clus5 - Model 7 17.1 43.8
Clus7 - Objective 27 27.6 32.9
Clus7 - Goal 16 16.3 55.2
Clus0 - Conclusion 15 50.0 12.1
Clus6 - Conclusion 27 51.9 21.8
Not associated: Clus7 - Conclusion,
Clus8 - Conclusion

Introductions (HMM-d-seq 6 clusters)
Positive associations matches prec. recall
Clus2-Background 161 64.9 14.2
Clus3-Objective 37 7.9 38.5
Clus4-Goal 29 9.8 32.6
Clus4-Hypothesis 12 4.1 52.2
Clus5-Motivation 61 12.9 37.4
Not associated: Clus1 - Motivation, Clus2 - Goal,
Clus4 - Background, Clus 5 - Model

Table 7: Cluster-Zone mappings on the ART Corpus

The presence of significant associations validate
our intuitions that syntax provides clues about com-
municative goals. Some clusters overwhelmingly
contain the same zone, indicated by high precision,
for example 64% of sentences in Clus2 from intro-
duction sections are background sentences. Other
clusters have high recall of a zone, 55% of all goal
sentences from the abstracts training data is captured
by Clus7. It is particularly interesting to see that
Clus7 of abstracts captures both objective and goal
zone sentences and for introductions, Clus4 is a mix
of hypothesis and goal sentences which intuitively
are closely related categories.

6.2 Original versus permuted sections
We also explore the accuracy of the syntax models
for predicting coherence of articles from the test set
of ART corpus and the 500 test articles from ACL-
NAACL conferences. We use the same experimen-
tal setup as before and create pairs of original and
permuted versions of the test articles. We created a
maximum of 20 permutations for each article. The
baseline accuracy is 50% as before.

For the ART corpus, we also built an oracle model
of annotated zones. We train a first order Markov
Chain to record the sequence of zones in the training
articles. For testing, we assume that the oracle zone
is provided for each sentence and use the model to
predict the likelihood of the zone sequence. Results
from this model represent an upper bound because

an accurate hypothesis of the communicative goal is
available for each sentence.

The accuracies are presented in Table 8. Overall,
the HMM-d-seq model provides the best accuracies.
The highest results are obtained for ACL introduc-
tion sections (74%). These results are lower than
that obtained on the earthquake/accident corpus but
the task here is much harder: the articles are longer
and the ACL corpus also has OCR errors which af-
fect sentence segmentation and parsing accuracies.
When the oracle zones are known, the accuracies are
much higher on the ART corpus indicating that the
intentional structure of academic articles is very pre-
dictive of their coherence.

6.3 Conference versus workshop papers
Finally, we test whether the syntax-based model can
distinguish the structure of conference from work-
shop articles. Conferences publish more complete
and tested work and workshops often present pre-
liminary studies. Workshops are also venues to dis-
cuss a focused and specialized topic. So the way
information is conveyed in the abstracts and intro-
ductions would vary in these articles.

We perform this analysis on the ACL corpus and
no permutations are used, only the original text of
the 500 articles each in the conference and work-
shop test sets. While permutation examples provide
cheap training/test data, they have a few unrealistic
properties. For example, both original and permuted
articles have the same length. Further some permu-
tations could result in an outstandingly incoherent
sample which is easily distinguished from the origi-
nal articles. So we use the conference versus work-
shop task as another evaluation of our model.

We designed a classification experiment for this
task which combines features from the different syn-
tax models that were trained on the ACL conference
training set. We include four features indicating the
perplexity of an article under each model (Local-
prod, Local-d-seq, HMM-prod, HMM-d-seq). We
use perplexity rather than probability because the
length of the articles vary widely in contrast to the
previous permutation-based tests, where both per-
mutation and original article have the same length.
We compute perplexity as P (T )−1/n, where n is
the number of words in the article. We also obtain
the most likely state sequence for the article under
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Data Section Test pairs Local-prod Local-d-seq HMM-prod HMM-d-seq Oracle zones

ART Corpus Abstract 1633 57.0 52.9 64.1 55.0 80.8
Intro 1640 44.5 54.6 58.1 64.6 94.0

ACL Conference
Abstract 8815 44.0 47.2 58.2 63.7
Intro 9966 54.5 53.0 64.4 74.0
Rel. wk. 10,000 54.6 54.4 57.3 67.3

Table 8: Accuracy in differentiating permutation from original sections on ACL and ART test sets.

HMM-prod and HMM-d-seq models using Viterbi
decoding. Then the proportion of sentences from
each state of the two models are added as features.

We also add some fine-grained features from the
local model. We represent sentences in the train-
ing set as either productions or d-sequence items and
compute pairs of associated items (xi, xj) from ad-
jacent sentences using the same chi-square test as
in our pilot study. The most significant (lowest p-
values) 30 pairs (each for production and d-seq) are
taken as features.10 For a test article, we compute
features that represent how often each pair is present
in the article such that xi is in Sm and xj is in Sm+1.

We perform this experiment for each section and
there are about 90 to 140 features for the different
sections. We cast the problem as a binary classifi-
cation task: conference articles belong to one class
and workshop to the other. Each class has 500 ar-
ticles and so the baseline random accuracy is 50%.
We perform 10-fold cross validation using logistic
regression. Our results were 59.3% accuracy for dis-
tinguishing abstracts of conference verus workshop,
50.3% for introductions and 55.4% for related work.
For abstracts and related work, these accuracies are
significantly better than baseline (95% confidence
level from a two-sided paired t-test comparing the
accuracies from the 10 folds). It is possible that in-
troductions in either case, talk in general about the
field and importance of the problem addressed and
hence have similar structure.

Our accuracies are not as high as on permutations
examples because the task is clearly harder. It may
also be the case that the prediction is more difficult
for certain papers than for others. So we also ana-
lyze our results by the confidence provided by the
classifier for the predicted class. We consider only
the examples predicted above a certain confidence
level and compute the accuracy on these predictions.

10A cutoff is applied such that the pair was seen at least 25
times in the training data.

Conf. Abstract Intro Rel wk
>= 0.5 59.3 (100.0) 50.3 (100.0) 55.4 (100.0)
>= 0.6 63.8 (67.2) 50.8 (71.1) 58.6 (75.9)
>= 0.7 67.2 (32.0) 54.4 (38.6) 63.3 (52.8)
>= 0.8 74.0 (10.0) 51.6 (22.0) 63.0 (25.7)
>= 0.9 91.7 (2.0) 30.6 (5.0) 68.1 (7.2)

Table 9: Accuracy (% examples) above each confidence
level for the conference versus workshop task.

These results are shown in Table 9. The proportion
of examples under each setting is also indicated.

When only examples above 0.6 confidence are ex-
amined, the classifier has a higher accuracy of 63.8%
for abstracts and covers close to 70% of the exam-
ples. Similarly, when a cutoff of 0.7 is applied to the
confidence for predicting related work sections, we
achieve 63.3% accuracy for 53% of examples. So
we can consider that 30 to 47% of the examples in
the two sections respectively are harder to tell apart.
Interestingly however even high confidence predic-
tions on introductions remain incorrect.

These results show that our model can success-
fully distinguish the structure of articles beyond just
clearly incoherent permutation examples.

7 Conclusion
Our work is the first to develop an unsupervised
model for intentional structure and to show that
it has good accuracy for coherence prediction and
also complements entity and lexical structure of dis-
course. This result raises interesting questions about
how patterns captured by these different coherence
metrics vary and how they can be combined usefully
for predicting coherence. We plan to explore these
ideas in future work. We also want to analyze genre
differences to understand if the strength of these co-
herence dimensions varies with genre.
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