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Abstract

We examine the task of resolving complex
cases of definite pronouns, specifically those
for which traditional linguistic constraints
on coreference (e.g., Binding Constraints,
gender and number agreement) as well as
commonly-used resolution heuristics (e.g.,
string-matching facilities, syntactic salience)
are not useful. Being able to solve this task has
broader implications in artificial intelligence:
a restricted version of it, sometimes referred
to as the Winograd Schema Challenge, has
been suggested as a conceptually and practi-
cally appealing alternative to the Turing Test.
We employ a knowledge-rich approach to this
task, which yields a pronoun resolver that out-
performs state-of-the-art resolvers by nearly
18 points in accuracy on our dataset.

1 Introduction

Despite the significant amount of work on pronoun
resolution in the natural language processing com-
munity in the past forty years, the problem is still
far from being solved. Its difficulty stems in part
from its reliance on sophisticated knowledge sources
and inference mechanisms. The sentence pair below,
which we will subsequently refer to as theshoutex-
ample, illustrates how difficult the problem can be:

(1a) Ed shouted at Tim because he crashed the car.
(1b) Ed shouted at Tim because he was angry.

The pronounhe refers toTim in 1a andEd in 1b.
Humans can resolve the pronoun easily, but state-
of-the-art coreference resolvers cannot. The reason
is that humans have the kind ofworld knowledge

needed to resolve the pronouns that machines do not.
Our world knowledge tells us that if someone is an-
gry, he may shout at other people. SinceEdshouted,
he should be the one who was angry. Our world
knowledge also tells us that we may shout at some-
one who made a mistake and that crashing a car is
a mistake. Combining these two pieces of evidence,
we can easily infer thatTimcrashed the car.

Our goal in this paper is to examine the resolu-
tion of complexcases of definite pronouns that ap-
pear in sentences exemplified by theshoutexample.
Specifically, each sentence (1) has two clauses sepa-
rated by a discourse connective (i.e., the connective
appearsbetweenthe two clauses, just likebecause
in the shoutexample), where the first clause con-
tains two or more candidate antecedents (e.g.,Ed
and Tim), and the second clause contains the tar-
get pronoun (e.g.,he); and (2) the target pronoun
agrees in gender, number, and semantic class with
each candidate antecedent, but does not have any
overlap in content words with any of them. For con-
venience, we will refer to the target pronoun that ap-
pears in this kind of sentences as adifficult pronoun.

Note that many traditional linguistic constraints
on coreference are no longer useful for resolving dif-
ficult pronouns. For instance, syntactic constraints
such as the Binding Constraints will not be useful,
since the pronoun and the candidate antecedents ap-
pear in different clauses separated by a discourse
connective; and constraints concerning agreement in
gender, number, and semantic class will not be use-
ful, since the pronoun and the candidate antecedents
are compatible with respect to all these attributes.
Traditionally important clues provided by various
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I(a) The city councilmenrefused the demonstrators a permit becausetheyfeared violence.
I(b) The city councilmen refusedthe demonstratorsa permit becausetheyadvocated violence.
II(a) James askedRobert for a favor, butherefused.
II(b) Jamesasked Robert for a favor, buthewas refused.
III(a) Keith fired Blaine buthedid not regret.
III(b) Keith fired Blaine althoughhe is diligent.
IV(a) Emma did not pass the ball toJanie, althoughshewas open.
IV(b) Emma did not pass the ball to Janie, althoughsheshould have.
V(a) Medvedev will cede the presidency toPutin becausehe is more popular.
V(b) Medvedevwill cede the presidency to Putin becausehe is less popular.

Table 1: Sample twin sentences. The target pronoun in each sentence is italicized, and its antecedent is boldfaced.

string-matching facilities will not be useful either,
since the pronoun and its candidate antecedents do
not have any words in common.

As in theshoutexample, we ensure that each sen-
tence has atwin. Twin sentences were used ex-
tensively by researchers in the 1970s to illustrate
the difficulty of pronoun resolution (Hirst, 1981).
We consider two sentences as twins if (1) they
are identical up to and possibly including the dis-
course connective; and (2) the difficult pronouns in
them are lexically identical but have different an-
tecedents. The presence of twins implies that syn-
tactic salience, a commonly-used heuristic in pro-
noun resolution that prefers the selection of syntac-
tically salient candidate antecedents, may no longer
be useful, since the candidate in the subject position
is not more likely to be the correct antecedent than
the other candidates.

To enable the reader to get a sense of how hard it is
to resolve difficult pronouns, Table 1 shows sample
twin sentences from our dataset. Note that state-of-
the-art pronoun resolvers (e.g., JavaRAP (Qiu et al.,
2004), GuiTaR (Poesio and Kabadjov, 2004), as well
as those designed by Mitkov (2002) and Charniak
and Elsner (2009)) and coreference resolvers (e.g.,
BART (Versley et al., 2008), CherryPicker (Rahman
and Ng, 2009), Reconcile (Stoyanov et al., 2010),
the Stanford resolver (Raghunathan et al., 2010; Lee
et al., 2011)) cannot accurately resolve the difficult
pronouns in these structurally simple sentences, as
they do not have the mechanism to capture the fine
distinctions between twin sentences. In other words,
when given these sentences, the best that the existing
resolvers can do to resolve the pronouns is guess-
ing. This could be surprising to a non-coreference

researcher, but it is indeed the state of the art.
A natural question is: why do existing resolvers

not attempt to handle difficult pronouns? One rea-
son could be that these difficult pronouns do not
appear frequently in standard evaluation corpora
such as MUC, ACE, and OntoNotes (Bagga, 1998;
Haghighi and Klein, 2009). In fact, the Stanford
coreference resolver (Lee et al., 2011), which won
the CoNLL-2011 shared task on coreference resolu-
tion, adopts the once-popular rule-based approach,
resolving pronouns simply with rules that encode
the aforementioned traditional linguistic constraints
on coreference, such as the Binding constraints and
gender and number agreement.

The infrequency of occurrences of difficult pro-
nouns in these standard evaluation corpora by no
means undermines their significance, however. In
fact, being able to automatically resolve difficult
pronouns has broader implications in artificial intel-
ligence. Recently, Levesque (2011) has argued that
the problem of resolving the difficult pronouns in
a carefully chosen set of twin sentences, which he
refers to as the Winograd Schema Challenge1, could
serve as a conceptually and practically appealing
alternative to the well-known Turing Test (Turing,

1Levesque (2011) defines a Winograd Schema as a small
reading comprehension test involving the question of whichof
the two candidate antecedents for the definite pronoun in a given
sentence is its correct antecedent. Levesque names this chal-
lenge after Winograd because of his pioneering attempt to use a
well-known pair of twin sentences — specifically the first pair
in Table 1 — to illustrate the difficulty of natural language un-
derstanding (Winograd, 1972). Strictly speaking, we are ad-
dressing a relaxed version of the Challenge: while Levesque
focuses solely on definite pronouns whose resolution requires
background knowledgenot expressed in the words of a sen-
tence, we do not impose such a condition on a sentence.
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1950). The reason should perhaps be clear given the
above discussion: this is an easy task for a subject
who can “understand” natural language but a chal-
lenging task for one who can only make intelligent
guesses. Levesque believes that “with a very high
probability”, anything that can resolve correctly a
series of difficult pronouns “is thinking in the full-
bodied sense we usually reserve for people”. Hence,
being able to make progress on this task enables us
to move one step closer to building an intelligent ma-
chine that can truly understand natural language.

To sum up, an important contribution of our work
is that it opens up a new line of research involving
a problem whose solution requires a deeper under-
standing of a text. With recent advances in knowl-
edge extraction from text, we believe that time is ripe
to tackle this problem. It is worth noting that some
researchers have focused on other kinds of anaphors
that are hard to resolve, including bridging anaphors
(e.g., Poesio et al. (2004)) and anaphors referring
to abstract entities, such as those realized by verb
phrases in dialogs (e.g., Byron (2002), Strube and
Müller (2003), Müller (2007)). Nevertheless, to our
knowledge, there has been little work that specifi-
cally targets difficult pronouns.

Given the complexity of our task, we investigate
a variety of sophisticated knowledge sources for re-
solving difficult pronouns, and combine them via a
machine learning approach. Note that there has been
a recent surge of interest in extracting world knowl-
edge from online encyclopedias such as Wikipedia
(e.g., Ponzetto and Strube (2006, 2007), Poesio et
al. (2007)), YAGO (e.g., Bryl et al. (2010), Rahman
and Ng (2011), Uryupina et al. (2011)), and Free-
base (e.g., Lee et al. (2011)). However, the resulting
extractions are primarily IS-A relations (e.g.,Barack
ObamaIS-A U. S. president), which would not be
useful for resolving definite pronouns.

2 Dataset Creation

We asked 30 undergraduate students who are not af-
filiated with this research to compose sentence pairs
(i.e., twin sentences) that conform to the constraints
specified in the introduction. Each student was also
asked to annotate the candidate antecedents, the tar-
get pronoun, and the correct antecedent for each
sentence she composed. Note that a sentence may

contain multiple pronouns, but exactly one of them
— the one explicitly annotated by its author — is
the target pronoun. Each sentence pair was cross-
checked by one other student to ensure that it (1)
conforms to the desired constraints and (2) does not
contain pronouns with ambiguous antecedents (in
other words, a human should not be confused as
to which candidate antecedent is the correct one).
At the end of the process, 941 sentence pairs were
considered acceptable, and they formed our dataset.
These sentences cover a variety of topics, ranging
from real events (e.g., Iran’s plan to attack the Saudi
ambassador to the U.S.), to events and characters in
movies (e.g., Batman and Robin), to purely imagi-
nary situations (e.g., theshoutexample). We parti-
tion these sentence pairs into a training set and a test
set following a 70/30 ratio.

While not requested by us, the students annotated
exactly two candidate antecedents for each sentence.
For ease of exposition, we will assume below that
there are two candidate antecedents per sentence.

3 Machine Learning Framework

Since our goal is to determine which of the two can-
didate antecedents is the correct antecedent for the
target pronoun in each sentence, our system assumes
as input the sentence, the target pronoun, and the two
candidate antecedents.

We employ machine learning to combine the
features derived from different knowledge sources.
Specifically, we employ aranking-basedapproach.
Ranking-based approaches have been shown to out-
perform their classification-based counterparts (De-
nis and Baldridge, 2007, 2008; Iida et al., 2003;
Yang et al., 2003). Given a pronoun and two can-
didate antecedents, we aim to train a ranking model
that ranks the two candidates such that the correct
antecedent is assigned a higher rank.

More formally, given training sentenceSk con-
taining target pronounAk, correct antecedentCk

and incorrect antecedentIk, we create two feature
vectors,xCAk

and xIAk
, wherexCAk

is generated
from Ak and Ck, and xIAk

is generated fromAk

and Ik. The training set consists of ordered pairs
of feature vectors (xCAk

, xIAk
), and the goal of the

training procedure is to acquire a ranker that mini-
mizes the number of violations of pairwise rankings
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provided in the training set. We train this ranker us-
ing Joachims’ (2002) SVMlight package. It is worth
noting that we donot exploit the fact that each sen-
tence has a twin in training or testing.

After training, the ranker can be applied to the test
instances, which are created in the same way as the
training instances. For each test instance, the target
pronoun is resolved to the higher-ranked candidate
antecedent.

4 Linguistic Features

We derive linguistic features for resolving difficult
pronouns from eight components, as described be-
low. To enable the reader to keep track of these fea-
tures more easily, we summarize them in Table 2.

4.1 Narrative Chains

Consider the following sentence:

(2) Ed punished Tim because he tried to escape.

Humans resolvehe to Tim by exploiting the world
knowledge that someone who tried to escape is bad
and therefore should be punished. Such kind of
knowledge can be extracted fromnarrative chains.

Narrative chains are partially ordered sets of
events centered around a commonprotagonist, aim-
ing to encode the kind of knowledge provided by
scripts (Schank and Abelson, 1977). While scripts
are hand-written, narrative chains can be learned
from unannotated text. Below is a chain learned by
Chambers and Jurafsky (2008):

borrow-s invest-s spend-s pay-s raise-s lend-s

As we can see, a narrative chain is composed of a
sequence of events (verbs) together with the roles of
the protagonist. Here, “s” denotes the subject role,
even though a chain can contain a mix of “s” and “o”
(the object role). From this chain, we know that the
person who borrows something (probably money)
may invest, spend, pay, or lend it.

We employ narrative chains to heuristically pre-
dict the antecedent for the target pronoun, and en-
code the prediction as a feature. The heuristic de-
cision procedure operates as follows. Given a sen-
tence, we first determine the event the target pro-
noun participates inand its role in the event. As
an example, we determine that in sentence (2)he
participates in thetry event and theescapeevent

Component # Features Features
Narrative Chains 1 NC
Google 4 G1, G2, G3, G4
FrameNet 4 FN1, FN2, FN3, FN4
Heuristic Polarity 3 HPOL1, HPOL2, HPOL3
Learned Polarity 3 LPOL1, LPOL2, LPOL3
Connective-Based 1 CBR

Relation
Semantic Compat. 3 SC1, SC2, SC3
Lexical Features 68,331 antecedent- independent

and dependent features

Table 2: Summary of the features described in Section 4.

as asubject.2 Second, we determine the event(s)
that the candidate antecedents participate in. In (2),
both candidate antecedents participate in thepun-
ish event. Third, we pair each event participated
by each candidate antecedent with each event par-
ticipated by the pronoun. In our example, we would
create two pairs, (punish, try-s) and (punish, escape-
s). Note thattry andescapeare associated with the
role of the pronoun that we extracted in the first step.
Fourth, for each such pair, we extract all the narra-
tive chains containing both elements in the pair from
Chambers and Jurafsky’s output.3 This step results
in one chain being extracted, which contains punish-
o and escape-s. In other words, the protagonist in
this chain is the subject of anescapeevent and the
object of apunishevent. Fifth, from the extracted
chain, we obtain the role played by the pronoun (i.e.,
the protagonist) in the event in which the candidate
antecedents participate. In our example, the pronoun
plays an object role in thepunishevent. Finally, we
extract the candidate antecedent that plays the ex-
tracted role, which in our example is the second an-
tecedent,Tim.4

We create a binary feature, NC, which encodes
this heuristic decision, and compute its value as fol-
lows. Assume in the rest of the paper thati1 and
i2 are the feature vectors corresponding to the first
candidate antecedent and the second candidate an-

2Throughout the paper, the subject/object of an event refers
to its deeprather thansurfacesubject/object. We determine
the grammatical role of an NP using the Stanford dependency
parser (de Marneffe et al., 2006) and a set of simple heuristics.

3We employ narrative chains of length 12, which are
available from http://cs.stanford.edu/people/
nc/schemas/schemas-size12.

4For an alternative way of using narrative chains for coref-
erence resolution, see Irwin et al. (2011).
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tecedent, respectively.5 For our running example,
sinceTim is predicted to be the antecedent ofhe,
the value of NC ini2 is 1, and its value ini1 is 0.
For notational convenience, we write NC(i1)=0 and
NC(i2)=1, and will follow this convention when de-
scribing the features in the rest of the paper.

Finally, we note that NC(i1) and NC(i2) will
both be set to zero if (1) the pronoun and the an-
tecedents do not participate in events, or (2) no nar-
rative chains can be extracted in step 4 above, or (3)
step 4 enables us to extract more than one chain and
these chains indicate that the candidate antecedent
can have both a subject role and an object role.

4.2 Google

Consider the following sentences:

(3a) Lions eat zebras because they are predators.
(3b) The knife sliced through the flesh because

it was sharp.

Humans resolvethey to Lions in (3a) by exploiting
the world knowledge that predators attack and eat
other animals. Similarly, humans resolveit to the
knife in (3b) by exploiting the world knowledge that
the wordsharpcan be used to describe a knife but
not flesh. To acquire this kind of world knowledge,
we learn patterns of word usage from the Web by
issuing search queries. To facilitate our discussion,
let us first introduce some notation. Let a sentence
S be denoted by a triple (Z1, Conn, Z2), whereZ1

andZ2 are the clauses preceding and following the
discourse connectiveConn, respectively;A ∈ Z2

be the pronoun governed by the verbV ; W be the
sequence of words followingV in S; andC1, C2 ∈
Z1 be the candidate antecedents.

Given a sentence, we generate four queries: (Q1)
C1V ; (Q2)C2V ; (Q3)C1V W ; and (Q4)C2V W . If
v is a verb-to-be followed by an adjectiveJ , we gen-
erate two more queries: (Q5)JC1 and (Q6)JC2.
To exemplify, six queries are generated for (3b):
(Q1) “knife was”; (Q2) “flesh was”; (Q3) “knife was
sharp”; (Q4) “flesh was sharp”; (Q5) “sharp knife”;
and (Q6) “sharp flesh”. On the other hand, only four
queries are generated for (3a): (Q1) “lions are”; (Q2)

5The nth candidate antecedent in a sentence is thenth an-
notated NP encountered when processing the sentence in a left-
to-right manner. In sentence (2),Ed is the first candidate an-
tecedent andTim is the second.

“zebras are”; (Q3) “lions are predators”; and (Q4)
“zebras are predators”.

Using the counts returned by Google for these
queries, we create four features, G1, G2, G3, and
G4, whose values are determined by Rules 1, 2, 3,
and 4, respectively, as described below.

Rule 1: if count(Q1)> count(Q2) by at
least x% then G1(i1)=1 and G1(i2)=0;
else ifcount(Q2)> count(Q1) by at least
x% then G1(i2)=1 and G1(i1)=0; else
G1(i1)=G1(i2)=0.

Rule 2: if count(Q3)> count(Q4) by at
least x% then G2(i1)=1 and G2(i2)=0;
else ifcount(Q4)> count(Q3) by at least
x% then G2(i2)=1 and G2(i1)=0; else
G2(i1)=G2(i2)=0.

Rule 3: if count(Q5)> count(Q6) by at
least x% then G3(i1)=1 and G3(i2)=0;
else ifcount(Q6)> count(Q5) by at least
x% then G3(i2)=1 and G3(i1)=0; else
G3(i1)=G3(i2)=0.

Rule 4: if one of G1(i1) and G1(i2) is 1,
then G4(i1)=G1(i1) and G4(i2)=G1(i2);
else if one of G2(i1) and G2(i2) is 1,
then G4(i1)=G2(i1) and G4(i2)=G2(i2);
else if one of G3(i1) and G3(i2) is 1,
then G4(i1)=G3(i1) and G4(i2)=G3(i2);
elseG4(i1)=G4(i2)=0.

The role of the thresholdx should be obvious: it
ensures that a heuristic decision is made only if the
difference between the counts for the two queries are
sufficiently large, because otherwise there is no rea-
son for us to prefer one candidate antecedent to the
other. In all of our experiments, we setx to 20.

Note that other researchers have also used lexico-
syntactic patterns to generate search queries for
bridging anaphora resolution (e.g., Poesio et al.
(2004)), other-anaphora resolution (e.g., Modjeska
et al. (2003)), and learning selectional preferences
for pronoun resolution (e.g., Yang et al. (2005)).
However, in each of these three cases, the targetre-
lations (e.g., the part-whole relation in the case of
bridging anaphora resolution, and the subject-verb
and verb-object relations in the case of selectional
preferences) are specific enough that they can be ef-
fectively captured by specific patterns. For example,
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to determine whetherthe wheelis part ofthe car in
bridging anaphora resolution, Poesio et al. employ
queries of the form “X of Y”, where X and Y would
be replaced withthe wheelandthe car, respectively.
On the other hand, we are not targeting a particular
type of relation. Rather, we intend to capture world
knowledge likelions rather than zebras are preda-
tors. Such knowledge may not be expressed as a
relation and hence may not be easily captured using
specific patterns. For this reason, we need to employ
patterns as general as those such as Q3 and Q4.

4.3 FrameNet

If we generate search queries as described in the pre-
vious subsection for theshoutexample, it is unlikely
that Google will return meaningful counts to us. The
reason is that both candidate antecedents in the sen-
tence are proper names belonging to the same type
(which in this case is PERSON).

However, in some cases, we may be able to gener-
ate more meaningful queries from such kind of sen-
tences. Consider the following sentence:

(4) John killed Jim, so he was arrested.

To generate meaningful queries, we make one ob-
servation:JohnandJim played different roles in a
kill event. Hence, we can replace these proper names
with their roles. We propose to obtain these roles
from FrameNet (Baker et al., 1998). More gener-
ally, for each proper namee in a given sentence, we
(1) determine the event in whiche is involved (using
the Stanford dependency parser); (2) search for the
FrameNet frame corresponding to the event as well
as e’s role in the event; and (3) replace the name
with its FrameNet role. In our example, since both
names are involved in thekill event, we retrieve the
FrameNet frame forkill . Given thatJohnandJimare
the subject and object ofkill , we can extract their se-
mantic roles directly from the frame, which arekiller
andvictim, respectively.6 Consequently, we replace
the two names with their extracted semantic roles,
and generate the search queries from the resulting
sentence in the same way as before.

Note that if no frames can be found for the verb in
the first clause, no search queries will be generated.
After obtaining the query counts, we generate four
binary features, FN1, FN2, FN3, FN4, whose values

6We heuristically map grammatical roles to semantic roles.

are computed based on the same four heuristic rules
that were discussed in the previous subsection.

4.4 Heuristic Polarity

Some sentences involve comparing the two candi-
date antecedents. Consider the following sentences:

(5a) John was defeated by Jim in the election
even though he is more popular.

(5b) John was defeated by Jim in the election
because he is more popular.

The pronounhe refers toJohn in (5a) andJim in
(5b). To see how we can design an algorithm for re-
solving these pronouns, it would be useful to under-
stand how humans resolve them. The phrasemore
popular has a positive sentiment. In (5a), the use
of even thoughyields a clause of concession, which
flips the polarity ofmore popular(from positive to
negative), whereas in (5b), the use ofbecauseyields
a clause of cause, which does not change the po-
larity of more popular(i.e., more popularremains
positive). Sincemore popularis used to describehe,
he is “better” in (5b) but “worse” in (5a). Now, the
word defeathas a positive sentiment, and sinceJim
is thedeep subjectof defeat, Jim is “better” andJohn
is “worse”. Finally, in (5b),heandJim are “better”,
sohe is resolved toJim; on the other hand, in (5a),
heandJohnare “worse”, sohe is resolved toJohn.

We automate this (human) method for resolv-
ing pronouns as follows. We begin by determin-
ing whether we can assign arank value(i.e., “bet-
ter” or “worse”) to the pronoun and the two can-
didate antecedents. For instance, to determine the
rank value of the pronounA, we first determine the
polarity valuepA of its anchorword wA, which is
either the verbv for whichA serves as the deep sub-
ject, or the adjective modifyingA if v does not ex-
ist,7 using Wilson et al.’s (2005b) subjectivity lex-
icon.8 If pA is not NEUTRAL, we check whether
it can be flipped by the context ofwA. We con-
sider three kinds of polarity-reversing context: nega-
tion, comparative adverb, and discourse connective.
Specifically, we determine whetherwA is negated
using the Stanford dependency parser, which explic-

7In the sentiment analysis and opinion mining literature,
(wA, pA) is known as an opinion-target pair.

8The lexicon contains 8221 words, each of which is hand
labeled with a polarity of POSITIVE, NEGATIVE, or NEUTRAL.
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itly annotates instances of negation; we determine
the existence of a comparative adverb (e.g., “more”,
“less”) using the POS tag “RBR”; and we determine
whetherA exists in a clause headed by a polarity-
reversing connective, such asalthough. After flip-
pingpA by context, we can inferA’s rank value from
it. Specifically,A’s rank value is “better” ifpA is
positive; “worse” if pA is negative; and “cannot be
determined” ifpA is neutral. The polarity values of
the two candidate antecedents can be determined in
a similar fashion. Note that sometimes we may need
to infer rank values. For example, given the sentence
“Jane is prettier than Jill”,prettier has a positive po-
larity, so its modifying NP,Jane, has a “better” rank,
and we can infer thatJill ’s rank is “worse”.

We create three features, HPOL1, HPOL2, and
HPOL3, based on our heuristic polarity determina-
tion component. Specifically, if the rank value of
the pronoun or the rank value of one or both of the
candidate antecedents cannot be determined, the val-
ues of all three binary features will be set to zero
for both i1 andi2. Otherwise, we compute the val-
ues of the three features as follows. To compute
HPOL1, which is a binary feature, we (1) employ
a heuristic resolution procedure, which resolves the
pronoun to the candidate antecedent with the same
rank value, and then (2) encode the outcome of this
heuristic procedure as the value of HPOL1. For ex-
ample, since the first candidate antecedent,John, is
predicted to be the antecedent in (5a), HPOL1(i1)=1
and HPOL1(i2)=0. The value of HPOL2 is the
concatenation of the polarity values determined
for the pronoun and the candidate antecedent.
Referring again to (5a), HPOL2(i1)=positive-
positive and HPOL2(i2)=positive-negative. To
compute HPOL3 for a given instance, we sim-
ply take its HPOL2 value and append the
connective to it. Using (5a) as an exam-
ple, HPOL3(i1)=positive-positive-even-though and
HPOL3(i1)=positive-negative-even-though.

4.5 Machine-Learned Polarity

In the previous subsection, we compute the polarity
of a word by updating its prior polarity heuristically
with contextual information. We hypothesized that
polarity could be computed more accurately by em-
ploying a sentiment analyzer that can capture richer
contextual information. For this reason, we employ

OpinionFinder (Wilson et al., 2005a), which has a
pre-trained classifier for annotating the phrases in a
sentence with their contextual polarity values.

Given a sentence and the polarity values of the
phrases annotated by OpinionFinder, we determine
the rank values of the pronoun and the two candi-
date antecedents by mapping them to the polarized
phrases using the dependency relations provided by
the Stanford dependency parser. We create three bi-
nary features, LPOL1, LPOL2, and LPOL3, whose
values are computed in the same way as HPOL1,
HPOL2, and HPOL3, respectively, except that the
computation here is based on the machine-learned
polarity values rather than the heuristically deter-
mined polarity values.

4.6 Connective-Based Relations

Consider the following sentences:

(6a) Google bought Motorola because they
want its customer base.

(6b) Google bought Motorola because they
are rich.

Humans resolvetheyto Googlein (6a) by exploit-
ing the world knowledge that there is a causal rela-
tion (signaled by the discourse connectivebecause)
between thewantevent and thebuy event. A simi-
lar mechanism is used to resolvethey to Googlein
(6b): from world knowledge we know that there is a
causal relation betweenrich andbuy.

We automate this (human) method for resolving
pronouns as follows. First, we gather connective-
based relations of this kind from a large, unanno-
tated corpus. In our experiments, we use as our
unannotated corpus the documents in three text cor-
pora (namely, BLLIP, Reuters, and English Giga-
word), but retain only those sentences that con-
tain a single discourse connective and do not be-
gin with the connective. From these sentences,
we collect triples and their frequencies of occur-
rences in the corpus. Each triple is of the form
(V ,Conn,X), whereConn is a discourse connec-
tive, V is a stemmed verb in the clause preceding
Conn, andX is a stemmed verb or an adjective in
the clause followingConn. Each triple essentially
denotes a relation betweenV andX expressed by
Conn. Conceivably, the strength of the relation in a
triple increases with its frequency count.
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We use the frequency counts of these triples to
heuristically predict the correct antecedent for a tar-
get pronoun. Given a sentence whereConn is the
discourse connective,X is the stemmed verb gov-
erning the target pronounA or the adjective modify-
ing A (if X is a to beverb), andV is the stemmed
verb governing the candidate antecedents, we re-
trieve the frequency count of the triple (V ,Conn,X).
If the count is at least 100, we employ a procedure
for heuristically selecting the antecedent for the tar-
get anaphor. Specifically, ifX is a verb, then it re-
solves the target pronoun to the candidate antecedent
that has the same grammatical role as the pronoun.
However, ifX is an adjective and the sentence does
not involve comparison, then it resolves the target
pronoun to the candidate antecedent serving as the
subject ofV .

We create a binary feature,CBR, that encodes
this heuristic decision. In our running example, the
triple (buy, because, want) occurs 860 times in our
corpus, so the pronounthey is resolved to the can-
didate antecedent that occurs as the subject ofbuy.
Hence, CBR(i1)=1 and CBR(i2)=0. However, had
the triple occurred less than 100 times, both of these
features would have been set to zero.

4.7 Semantic Compatibility

Some of the queries generated by the Google com-
ponent, such as Q1 and Q2, aim to capture the
semantic compatibility between a candidate an-
tecedent,C, and the verb governing the target pro-
noun,V . However, using web search queries to esti-
mate semantic compatibility has potential problems,
including (1) aprecisionproblem: the fact thatC
and V appear next to each other in a query does
not necessarily imply that a subject-verb relation ex-
ists between them; and (2) arecall problem: these
queries fail to capture subject-verb relations where
C andV are not immediately adjacent to each other.

To address these potential problems, we com-
pute knowledge of selectional preferences from a
large, unannotated corpus. As before, we cre-
ate our unannotated corpus using the documents in
BLLIP, Reuters, and English Gigaword. Specifi-
cally, we first parse each sentence in the corpus us-
ing the Stanford dependency parser. Then, for each
stemmed verbv and each stemmed nounn in the
corpus, we collect the following statistics: (1) the

number of timesn is the subject ofv; (2) the num-
ber of timesn is the direct object ofv; (3) the mutual
information (MI) of v andn (with n as the subject
of v); and (4) the MI ofv andn (with n as the direct
object ofv).9

To understand how we use these statistics to gen-
erate features for resolving pronouns, consider the
following sentence:

(7) The man stole the neighbor’s bike because
he needed one.

Assuming that the target pronoun and its govern-
ing verbV has grammatical relationGR, we create
three features, SC1, SC2, and SC3, based on our se-
mantic compatibility component. SC1 encodes the
MI value of the head noun of a candidate antecedent
and V (and GR). SC2 is a binary feature whose
value indicates which of the candidate antecedents
has a larger MI value withV (andGR). SC3 is the
same as SC2, except that MI is replaced with corpus
frequency. In other words, SC2 and SC3 employ
different measures to heuristically predict the cor-
rect antecedent for the target pronoun. If the target
pronoun is governed by ato beverb, the values of
these three features will all be set to zero.

Given our running example, we first retrieve
the following corpus-based statistics: MI(need:subj,
man)=0.6322; MI(need:subj, neighbor)=0.3975;
count(need:subj, man)=474; and count(need:subj,
neighbor)=68. Using these statistics, we can then
compute the aforementioned features for our exam-
ple. Specifically, SC1(i1)=0.6322, SC1(i2)=0.3975,
SC2(i1)=1, SC2(i2)=0, SC3(i1)=1, and SC3(i2)=0.

4.8 Lexical Features

We exploit the coreference-annotated training docu-
ments by creatinglexical features from them. These
lexical features can be divided into two categories,
depending on whether they are computed based on
the candidate antecedents.

Let us begin with theantecedent-independentfea-
tures. Assuming thatW is an arbitrary word in a
sentenceS that is not part of a candidate antecedent
and Conn is the connective inS, we create three
types of binary-valued antecedent-independent fea-
tures, namely (1)unigrams, where we create one

9We use the same formula as described in Section 4.2 of
Bergsma and Lin (2006) to compute MI values.
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feature for eachW ; (2) word pairs, where we cre-
ate features by pairing eachW appearing before
Conn with eachW appearing afterConn, exclud-
ing adjective-noun and noun-adjective pairs10; and
(3) word triples, where we augment each word pair
in (2) with Conn. The value of each featuref indi-
cates the presence or absence off in S.

Next, we compute theantecedent-dependentfea-
tures. Let (1)HC1

andHC2
be the head words of

candidate antecedentsC1 andC2, respectively; (2)
VC1

, VC2
, andVA be the verbs governingC1, C2,

and the target pronounA, respectively; and (3)JC1
,

JC2
, andJA be the adjectives modifyingC1, C2, and

A, respectively.11 We create from each candidate an-
tecedent four features, each of which is a word pair.
FromC1, we create (HC1

, VC1
), (HC1

, JC1
), (HC1

,
VA), and (HC1

, JA), all of which will appear in the
feature vector corresponding toC1. A similar set of
four features are created fromC2. These antecedent-
dependent features are all binary-valued.

It is worth mentioning that while we also consid-
ered word triples in the connective-based relations
component and word pairs in the semantic compat-
ibility component, in those components we deter-
mine their usefulness in an unsupervised manner,
whereas by employing them as lexical features we
determine their usefulness in a supervised manner.

5 Evaluation

5.1 Experimental Setup

Dataset. We report results on the test set, which
comprises 30% of our hand-annotated sentence pairs
(see Section 2 for details).

Evaluation metrics. Results are expressed in
terms of accuracy, which is the percentage of cor-
rectly resolved target pronouns. We also report the
percentages of these pronouns that are (1) not re-
solved and (2) incorrectly resolved.

5.2 Results and Discussion

The Random baseline. Our first baseline is a re-
solver that randomly guesses the antecedent for the

10Pairing an adjectiveA in one clause with a nounN in an-
other clause may mislead the learner into thinking thatN is
modified byA, and hence we do not create such pairs.

11If C1, C2, and A are not modified by adjectives, no
adjective-based features will be created.

target pronoun in each sentence. Since there are
two candidate antecedents per sentence, the Random
baseline should achieve an accuracy of 50%.

The Stanford resolver. Our second baseline is the
Stanford resolver (Lee et al., 2011), which achieves
the best performance in the CoNLL 2011 shared task
(Pradhan et al., 2011). As a rule-based resolver, it
does not exploit any coreference-annotated data.

Recall from Section 3 that our system assumes as
input not only a sentence containing a target pronoun
but also the two candidate antecedents. To ensure a
fair comparison, the same input is provided to this
and other baselines. Hence, if the Stanford resolver
decides to resolve the target pronoun, it will resolve
it to one of the two candidate antecedents. However,
if it does not have enough confidence about resolv-
ing it, it will leave it unresolved. Its performance on
the test set is shown in the “Unadjusted Scores” col-
umn in row 1 of Table 3. As we can see, it correctly
resolves 40.1% of the pronouns, incorrectly resolves
29.8% of them, and does not make any decision on
the remaining 30.1%.

Given that the Random baseline correctly resolves
50% of pronouns and the Stanford resolver correctly
resolves only 40.1% of the pronouns, it is tempting
to conclude that Stanford does not perform as well
as Random. However, recall that Stanford leaves
30.1% of the pronouns unresolved. Hence, to ensure
a fairer comparison, we produce “adjusted” scores
for the Stanford resolver, where we “force” it to re-
solve all of the unresolved target pronouns by as-
suming that probabilistically half of them will be re-
solved correctly. This adjusted score is shown in the
“Adjusted Scores” column in row 1 of Table 3. As
we can see, Stanford achieves an accuracy of 55.1%,
which is 5.1 points higher than that of Random.

The Baseline Ranker. To understand whether the
somewhat unsatisfactory Stanford results can be at-
tributed to its inability to exploit the training data,
we employ as our third baseline a mention ranker
that is trained in the same way as our system (see
Section 3), except that it employs 39 commonly-
used linguistic features for learning-based corefer-
ence resolution (see Table 1 of Rahman and Ng
(2009) for a description of these features). Hence,
the performance difference between this Baseline
Ranker and our system can be attributed entirely
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Unadjusted Scores Adjusted Scores
Coreference System Correct Wrong No Decision Correct Wrong No Decision

1 Stanford 40.07% 29.79% 30.14% 55.14% 44.86% 0.00%
2 Baseline Ranker 47.70% 47.16% 5.14% 50.27% 49.73% 0.00%
3 Stanford+Baseline Ranker 53.49% 43.12% 3.39% 55.19% 44.77% 0.00%
4 Our system 73.05% 26.95% 0.00% 73.05% 26.95% 0.00%

Table 3: Results of the Stanford resolver, the Baseline Ranker, the Combined resolver, and our system.

to the difference between the two linguistic feature
sets. Results of the Baseline Ranker are shown in
row 2 of Table 3. Before score adjustment, it cor-
rectly resolves 47.7% of the target pronouns, incor-
rectly resolves 47.2% of them, and leaves the re-
maining 5.1% unresolved. (Note that we output “no
decision” if the ranker assigns the same rank value
to both candidate antecedents.) After score adjust-
ment, its accuracy is 50.3%, which is 0.3 points
higher than that of Random but statistically indis-
tinguishable from it.12 On the other hand, its accu-
racy is 4.9 points lower than that of Stanford, and
the difference between their performance is signifi-
cant. While it seems somewhat surprising that a su-
pervised resolver does not perform as well as a rule-
based resolver, neither of them employs knowledge
sources that are particularly useful for our dataset. In
other words, despite given access to annotated data,
the Baseline Ranker may not be able to make effec-
tive use of it due to the lack of useful features.

The Combined resolver. We create a fourth base-
line by combining the Stanford resolver and the
Baseline Ranker. The motivation is that the former
can provide better precision and the latter can pro-
vide better recall by handling “no decision” cases
not covered by the former. Note that the Baseline
Ranker will be applied to resolve only those pro-
nouns that are left unresolved by Stanford. Results
in row 3 of Table 3 show that the adjusted accuracy
of this Combined resolver is 55.2%, which is sta-
tistically indistinguishable from Stanford’s adjusted
accuracy. Hence, these results show that the addi-
tion of the Baseline Ranker does not help improve
Stanford’s resolution accuracy.

Our system. Results of our system, which is
trained using the features described in Section 4 in
combination with a ranking model, are shown in
row 4 of Table 3. As we can see, our system achieves

12All statistical significance test results in this paper are ob-
tained using the pairedt-test, withp < 0.05.

Feature Type Correct Wrong No Decision
All features 73.05% 26.95% 0.00%
−Narrative Chains 68.97% 31.03% 0.00%
−Google 65.96% 34.04% 0.00%
−FrameNet 72.16% 27.84% 0.00%
−Heuristic Polarity 71.45% 28.55% 0.00%
−Learned Polarity 72.70% 27.30% 0.00%
−Connective-Based Rel. 71.28% 28.72% 0.00%
−Semantic Compat. 71.81% 28.19% 0.00%
−Lexical Features 60.11% 25.35% 14.54%

Table 4: Results of feature ablation experiments.

an accuracy of 73.1%, significantly outperforming
the Combined resolver by 17.9 points in accuracy.
These results suggest that our features are more use-
ful for resolving difficult pronouns than those com-
monly used for coreference resolution.

5.3 Feature Analysis

In an attempt to gain additional insight into the per-
formance contribution of each of the eight types of
features used in our system, we conduct feature ab-
lation experiments. The unadjusted scores of these
experiments are shown in Table 4, where each row
shows the performance of the model trained on all
types of features except for the one shown in that
row. For easy reference, the performance of the
model trained on all types of features is shown in
row 1 of the table.

A few points deserve mention. First, perfor-
mance drops significantly whichever feature type is
removed. This suggests that all eight feature types
are contributing positively to overall accuracy. Sec-
ond, theGoogle-based features and theLexical Fea-
tures are the most useful, and those generated via
FrameNetand Learned Polarityare the least use-
ful in the presence ofother feature types. While it
is somewhat surprising thatLearned Polarityis not
more useful thanHeuristic Polarity, we speculate
the reason can be attributed to the fact that the cor-
pus on which OpinionFinder was trained was quite
different from ours. Finally, even without using the
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Feature Type Correct Wrong No Decision
Narrative Chains 30.67% 24.47% 44.86%
Google 33.16% 7.09% 59.75%
FrameNet 7.27% 4.08% 88.65%
Learned Polarity 4.79% 2.66% 92.55%
Heuristic Polarity 7.27% 1.77% 90.96%
Connective-Based Rel. 14.01% 8.69% 77.30%
Semantic Compat. 23.58% 13.12% 63.30%
Lexical Features 56.91% 43.09% 0.00%

Table 5: Results of single-feature coreference models.

Lexical Features, our system still outperforms all the
baseline resolvers: as can been implied from the last
row of Table 4, in the absence of theLexical Fea-
tures, our resolver achieves an adjusted accuracy of
67.4%, which is only 5.7 points less than that ob-
tained when the full feature set is employed. Hence,
while the Lexical Featuresare useful, their impor-
tance should not be over-emphasized.

To get a better idea of the utility of each feature
type, we conduct another experiment in which we
train eight models, each of which employs exactly
one type of features. Their unadjusted scores are
shown in Table 5. As we can see,Learned Polarity
has the smallest contribution, whereas theLexical
Featureshave the largest contribution.

5.4 Error Analysis

While our resolver significantly outperforms state-
of-the-art resolvers, there is a lot of room for im-
provement. To help direct future research on the res-
olution of difficult pronouns, we analyze the major
sources of errors made by our resolver.

Our analysis reveals that many of the errors cor-
respond to cases that cannot be handled by any of
the eight components of our resolver. To understand
these cases, consider first the strengths and weak-
nesses ofNarrative Chainsand Google, the two
components that contribute the most to overall per-
formance afterLexical Features.

Googleis especially good at capturing facts, such
aslions are predatorsandzebras are not predators,
helping us correctly resolve sentences such as (5a)
and (5b), as well as those in sentence pair (I) in Ta-
ble 1. However, it may not be good at handling pro-
nouns whose resolution requires an understanding of
the connection between the facts or events described
in the two clauses of a sentence. The reason is that
establishing such a connection requires that we con-

struct a search query composed of information ex-
tracted from both clauses, and the resulting, possi-
bly long, query is likely to receive no hit count due
to data sparseness. Investigating how to construct
such queries while avoiding data sparseness would
be an interesting line of future work.

Narrative chains, on the other hand, are useful
for capturing the relationship between the events de-
scribed in the two clauses. However, they are com-
puted over verbs, and therefore cannot capture such
a relationship when one or both of the events in-
volved are not described by verbs. For example,
narrative chains fail to capture the causal relation
between the event expressed byangry andshoutin
sentence (1b). It is also worth mentioning that some
pronouns that could have been resolved using nar-
rative chains are not owing to thecoverageandac-
curacy of Chambers and Jurafsky’s (2008) chains,
but we believe that these recall and precision prob-
lems could be addressed by (1) inducing chains from
a larger corpus and (2) using semantic roles rather
than grammatical roles in the induction process.

Some resolution errors arise from errors in polar-
ity analysis. This can be attributed to the simplicity
of our Heuristic Polarity component: determining
the polarity of a word based on its prior polarity is
too naı̈ve. Fine-grained polarity analysis would be
a promising solution to this problem (see Pang and
Lee (2008) and Liu (2012) for related work).

6 Conclusions

We investigated the resolution of complex cases of
definite pronouns, a problem that was under exten-
sive discussion by coreference researchers in the
1970s but has received revived interest owing in part
to its relevance to the Turing Test. Our experimental
results indicate that it is a challenge for state-of-the-
art resolvers, and while we proposed new knowledge
sources for addressing this challenge, our resolver
still has a lot of room for improvement. In partic-
ular, our error analysis indicates that further gains
could be achieved via more accurate sentiment anal-
ysis and induction of world knowledge from corpora
or the Web. In addition, we plan to integrate our
resolver into a general-purpose coreference system
and evaluate the resulting resolver on standard eval-
uation corpora such as MUC, ACE, and OntoNotes.
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