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Abstract

This paper proposes cross-lingual language
modeling for transcribing source resource-
poor languages and translating them into tar-
get resource-rich languages if necessary. Our
focus is to improve the speech recognition
performance of low-resource languages by
leveraging the language model statistics from
resource-rich languages. The most challeng-
ing work of cross-lingual language modeling
is to solve the syntactic discrepancies between
the source and target languages. We therefore
propose syntactic reordering for cross-lingual
language modeling, and present a first result
that compares inversion transduction grammar
(ITG) reordering constraints to IBM and lo-
cal constraints in an integrated speech tran-
scription and translation system. Evaluations
on resource-poor Cantonese speech transcrip-
tion and Cantonese to resource-rich Mandarin
translation tasks show that our proposed ap-
proach improves the system performance sig-
nificantly, up to 3.4% relative WER reduction
in Cantonese transcription and 13.3% relative
bilingual evaluation understudy (BLEU) score
improvement in Mandarin transcription com-
pared with the system without reordering.

Introduction

it is very difficult to build a practical and usable sta-
tistical language model. Therefore, most of the ad-
vances have been reported in so catlesburce-rich
language such as English, Mandarin and Japanese,
after creating linguistic resources of these languages
at considerable cost. Today there are more than
6000 living languages spoken in the world (Gordon
et al., 2005), and most of them have little transcribed
texts and are considered @source-pootanguages
(Nakov and Ng, 2009). Many of these languages are
actually spoken by a huge number of speakers (e.g.
some Chinese and Indian languages), and thus there
is still a great demand to build speech and language
processing systems for these languages.

Owing to data scarcity, most often an interpo-
lation (Bellegarda, 2004) of language models be-
tween a resource-poor language and a resource-rich
language is used in most low-resource ASR sys-
tems. Some researchers have proposed transform-
ing resource-rich language models to resource-poor
language models by word-level transduction, either
in a context-independent or context-dependent man-
ner (Hori et al., 2003; Akita and Kawahara, 2006;
Jensson et al., 2009; Neubig et al., 2010). In (Jens-
son et al., 2009), a simple dictionary based context-
independent transduction from a resource-rich lan-
guage to a resource-poor language is exploited to
improve speech recognition of the resource-poor

language modeling techniques havianguage. In (Horietal., 2003; Akita and Kawahara,

achieved remarkable success in speech and langu&f®6; Neubig et al., 2010), context-dependent trans-
processing (Clarkson and Rosenfeld, 1997; Stolckduction is exploited. In their case, the resource-poor
2002). However, this success largely depends on tllenguage is a spoken language, and the resource-rich
availability of a large amount of suitable text data iHanguage is a written language. They carried out lan-
a language. Without sufficient text data for trainingguage model transformation since the input speech
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is in speaking-style and the output text is in writtening. A reordering model with reordering constraints,
style. such as ITG constraints (Wu, 1997), IBM con-
Others have investigated cross-lingual informastraints (Berger et al., 1996), and local constraints
tion between a resource-poor language and (Kumar and Byrne, 2005) can account for the syn-
resource-rich language. In (Khudanpur and Kimtactic differences. It has been shown in (Zens and
2002), cross-language cues are used to improveNgy, 2003; Kanthak et al., 2005; Dreyer et al., 2007)
language model of a resource-poor language. Thé&yat ITG constraints perform better than other con-
used cross-lingual unigram probabilities trainedtraints when tackling the reordering between many
from a story-specific parallel corpus of the resourcdanguage pairs. Previous work on weighted finite-
poor and resource-rich languages. They interpstate transducer (WFST) based speech translation
late the language model of the resource-poor lasuch as (Casacuberta et al., 2004; Zhou et al., 2005;
guage with those unigram probabilities. In (Kim andZhou et al., 2006; Mathias and Byrne, 2006; Ma-
Khudanpur, 2003), an n-gram language model in @sov et al., 2006; Saon and Picheny, 2007) only
resource-poor language is interpolated with crosgrain the reordering model using IBM constraints,
lingual unigram trigger probabilities. These triggerdocal constraints or ad hoc rules. We will use
are word pairs of the resource-poor and resourcéfG constraints, which have only been applied to
rich languages with the highest mutual informatioriext translation tasks before, to model the syntactic
across these two languages. Another way of es#lifferences in cross-lingual language modeling for
mating those unigram probabilities is using latengspeech recognition.
semantic analysis by measuring cosine similarities We will implement a cross-lingual language
from a document-aligned corpus for any given wordnodelusing WFSTSs, and integrate it into a WFST-
pair (Kim and Khudanpur, 2004). based speech recognition search space to give both
Both interpolation and word-level transductionresource-poor language and resource-rich language
approaches fail to meet the challenge of syntadranscriptions. This creates an integrated speech
tic discrepancies between the resource-poor afgnscription and translation framework.
resource-rich languages. This syntactic discrepan- This paper is organized as follows: Section 2
cies exist, for example, even between the Sinitic larpresents our proposed cross-lingual language mod-
guages and Indian languadesf the same family. eling with syntactic reordering. In Section 3, we dis-
Sinitic languages such as Cantonese/Yue, Shangjss speech recognition with cross-lingual language
hai/Wu, etc. are officially considered as "dialects’models. Section 4 and 5 give the experimental setup
of the standard Chinese Mandarin (or Putonghua)and results. We conclude our work at the end of this
However, they differ greatly from Mandarin in all paper.
aspects and are not mutually comprehensible. For
instance, in addition to lexical and pronunciation2 Cross-lingual Language Modeling with
differences, Cantonese Chinese (Lee, 2011) differs Syntactic Reordering
syntactically from Mandarin as well - we found that
there are approximately 10% syntactic inversion§l automatic speech recognition (ASR), given an ob-
between sentences of the two forms of Chinese. Served source speech vectst, the decoding pro-
We suggest that a better approach than interpGeSS Searches the best word sequericconsists
lation and word-level transduction is to usmss- ©Of Wordswvy, v, ..., vr) by maximizing the posterior
lingual language modelingvith syntactic reorder- Probability P(v1]X), wherev; is the source tran-
script representing the transcription of the source
For example, Hindi and Malayalam (Geethakumary, 2002)$peeCh (see Eq. (1)). According to Bayes’ law,
2Since Cantonese does not have an official written formwe can decomposB(v!|X) into an acoustic model
there are very few written texts available for training laage P(X\v{) and a language modél(v{). If a source

models. In this paper, we treat Cantonese as a typical resour . .
poor language and Mandarin as a typical resource-rich Iar@nguagez’” is a resource-rich language, then the

guage. This language pair will be used for illustration pses lanNguage modeP(v{) can be well estimated from
throughout this paper. sufficient training texts. However, if the source lan-
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guageL, is a resource-poor language, then the lar2.1 Preprocessing: Phrase Extraction and
guage modelP(v1) cannot be reliably or robustly Segmentation

estimated due to lack of training texts. Our discussion starts with phrase extraction from the

parallel corpus. We define a phrase sequefite
(consists of phrases, 05, ..., V) segmented from

ol = argmax P(v]|X) (1) the word-levelL, transcriptv! and@f (consists of

vf phrasesiy, wo, ..., wx) segmented from the word-
= argmax P(X|v])P(v]) level L,, transcriptwy. Furthermore, we define a

vf reordering sequence®, of which the detail can be
= argmax P(X|v]) ZP(U{‘w{)P(w{) found in Section 2.2. . .

ol >, The phrase-level translation modE{(v;|wy) is

/ ! I J decomposed into four components (see Eq. (2)):

~ argﬂnaXP(X‘vl)I?ﬁXP(vl‘wl)P(wl) segmentation modeP (! |w{), phrasal reorder-

vy 1

ing model P(r|w!  w{), phrase-to-phrase trans-

_ _ _duction modelP (o4 |r¥ @ w{) andreconstruc-
Since this paper tackles the language mOdeI'nt%n modelP(v! 5K, K @K w{). Before present-

challenge for low-resource speech recognition, heriﬁg each component model, we need to extract two

we just assume that the source langudgeis a ,pase taples for the, transcript and the.,, tran-
resource-poor language. We further assume thétlzript respectively

there is a target language,, which is a resource-

rich language closely related to the languaje Pl|lw]) =~ i m2X~KP(tD{(|w‘1])-

In order to improve the language modé&l(v!) i ’T}(’le p

of the resource-poor languagg,, we introduce P(ri oy, wy) -

cross-lingual Ianguagej modelingy decomposing P el o wl) -

the 5an%uage modeP(v;) into a translaﬁlon model P!k K oK wi)  (2)
P(vi|wj) and a language modeP(w;) of the

resource-rich languagé., (see Eq. (1)). w{ is The phrase extraction is based on word-to-word

the target resource-rich language transcript that coalignments of the parallel corpus. We train word
sists of wordswy, ws, ...,w;. P(vf|w])P(w{)is alignments in both directions with GIZA++, and
defined as @ross-lingual language modelt lever-  then symmetrize the two alignments using tee
ages the abundant statistics from the language mod#led methodOch and Ney, 2003). Figure 1 shows
P(w{) to improve the language modB(v!) of the an example of word-to-word alignment results be-
resource-poor language. tween anL, transcript (Cantonese) and ah,
The translation modelP(v!|w!) can be esti- transcript (Mandarin), from which phrase-to-phrase

mated by addressing the discrepancies between tAgnments are derived by identifying deletion, sub-

resource-poor languagé, and the resource-rich Stitution, insertion and inversion. _
languageL,,, which can be modeled from a paral- Prior to Kphr?sgl reordering, the segmentgtlon
lel corpus of theL, transcriptv! and theL,, tran- Model P(wf* [wi) implemented by a segmentation
scriptwy. For the syntactic inversions, we reordeNVJF_ST Sw is applied to segment a word sequence
the word or phrase positions of the,, language i inthe L,, language mod_el into a phrase sequence
model into those of the., language model. We {@1, @2, -, Wk }. The maximum number of words
have observed that most of the words are aligndifat can be segmented into one phrase is controlled
monotonically betweer, and L,, within a phrase. PY @seégmentation ordes. An example ofS,, is
This paper, therefore only considers phrase-level r&10Wn in Figure 3(al). It ssgments a word sequence
ordering, which effectively preserves the monotonid W1+ w2: s} into a phrase sequendevs, ws-ws}

word sequences within phrases, and significantly ré&fter performingcompositior(Mohri, 2009) with the

duces the number of reordering paths compared wifA"9€tLw language model (see Figure 3(b1 & b2)

word-level reordering. 3The " symbol is used to indicate the concatenation of con-
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How many permutations of
{1,2,...k...,K} satisfy|r, — k| < L
for all k?

IBM constraints, a superset of local constraints
(Dreyer et al., 2007), generate permutatiofisde-
viate from the monotonic phrase ordpr™ : rj, =

Wi
w, k}. More specifically, any phrase positiop can be
j selected from the positions of the firatyet uncov-

ered phrases (see Eq. (3)). A typical valuerofs 4
Figure 1: An example (in English: Please give me an adZens and Ney, 2003), and we write IBM constraints

dress first) of phrase extraction from word-to-word alignwith m = 4 as IBM(4).
ments. ¢ and j are word indexes.k’ andk are phrase

indexes. i< j represents the word-to-word alignment. {1,2, .k =1+ m;rp # rprsr )

k<K' represents the indentified phrase-to-phrase align- if k< K+1—m,

ment. T € . ()
{17 27 ceey Ka Tk 7é Tk’;ﬁk}

2.2 Phrasal Reordering Model fK+1-m<k<K.

Given a phrase sequende,, ws, ..., wk } of the ITG constraints provide a more faithful coverage

L,, transcript, the role of the reordering modelof syntactic reordering in the parallel data than lo-
P(rf|wi  w) is to reorder phrase positions of thecal constraints and IBM constraints. Our presenta-
L., transcript into those of th&,, transcript by per- tion of ITG constraints starts with defining of some
mutation ofw{ according to a reordering sequenceeérmutation sets. Lefx be the set of permuta-
{rf +r € {1,2,.,K},ry # riert. The tionson{l.2,... K. A permutationrf € Sk,
phrase sequencéw;,ws, ..., wx } IS therefore re- wherer{* = riry ...7g, contains a subsequence
ordered into{<@,, , Wy.,, ..., W, } consequently (see of type 7 € Sy, if and only if a sequence of in-
Figure 2 whereK = 3). Since arbitrary permuta- dicesl < i; < iy < ... < iy < K exists such
tions of K phrases are NP-hard (Knight, 1999), rethatr; r;, ...r;,, has all the same pairwise compar-
ordering constraints have to be set owgrto reduce isons as. We denote the set of permutations%#f
the number of permutations. not containing subsequences of typby Sk (7). If
There are three reordering constraints widely useie have set$ (1), ..., Sk(7,), we denote the set
in statistical machine translation, namely local conSx (1) N...NSk(7) by Sk (71, ..., 7,) (Barcucci
straints, IBM constraints and ITG constraints. Heré&t al., 2000). ITG constraints allow the permutation
we would like to point out that this is the first S€tSk(3142,2413), which forbids subsequence of
time that reordering constraints have been incorpdypPe (3,1,4,2) and its dual(2,4,1,3). Explicitly,
rated into a cross-lingual language model for speedfG constraints avoid any permutatiorf® satisfy-

recognition. ing eitherr;, < r;, < 1y < rig Or gy < 15y <
ri, < Ty, Wherel < i) < iy < i3 <iy < K. In
Reordering Constraints (Wu, 1997), these forbidden subsequences are called

Local constraints make the restriction that Oneinside_-out" transpositions. They.are fairly distorted
phrase can jump at mokt— 1 phrases either forward matchings, and hardly observed in real parallel data.

or backward, wherd, is the reordering distance (or In order to get an intuitive sense of the reordering
window size of permutatioﬁ) The generation of{< capability of those three constraints, we list the num-

under local constraints can be viewed as solving &7 ©f permutations under local constraints, 1BM
the following problem (Klgve, 2009): constraints as well as ITG constraihis Table 1.

®Interestingly, whenK = L, the number of permuta-
secutive words forming a phrase. tions under ITG constraintd’;r¢ = |Sk(3142,2413)|, and
“The concept of reordering distance also applies to othdiSx (3142, 2413)| equals thei — 1-th Schroder numbersy 1
constraints. (Ehrenfeucht et al., 1998)
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Table 1: Comparison of permutation number under local caimgs (Vrocq:), IBM constraints (V;5(4)) and ITG
constraints ;). The comparison is constrained by the phrase nuriband the reordering distande

K=2 | K=3 | K=4 | K=5 | K=6 | K=7 | K=8 | K=9 | K=10
Niew | 2 | 3| 5 | 8 | 13| 21 | 34 | 55 89
L=2 | Nyjpyy | 2 | 3 | 5 | 8 | 13| 21 | 34 55 89
Nirg | 2 | 3| 5| 8 | 13| 21 | 34 55 89
Niges | 2 | 6 | 14 | 31| 73 | 172 | 400 | 932 | 2177
L=3 | Ny | 2 | 6 | 14 | 31 | 73 | 172 | 400 | 932 | 2177
Nirg | 2 | 6 | 12 | 25 | 57 | 124 | 268 | 588 | 1285
Nieew | 2 | 6 | 24 | 78 | 230 | 675 | 2069 | 6404 | 19708
L=4 | Nypyay | 2 | 6 | 24 | 78 | 230 | 675 | 2069 | 6404 | 19708
Nirg | 2 | 6 | 22| 52 | 122| 321 | 885 | 2304 | 5880
Nioew | 2 | 6 | 24 | 120 | 504 | 1902 | 6902 | 25231| 95401
L=5 | Nipyuy | 2 | 6 | 24 | 96 | 330 | 1066 3451 | 11581| 39264
Nirg | 2 | 6 | 22| 90 | 236 | 602 | 1714 | 5269 | 16385
Nieew | 2 | 6 | 24 | 120 720 | 3720 17304 | 76110| 329462
L=6 | Nipmuy | 2 | 6 | 24 | 96 | 384 | 1374 4718 | 16275| 57749
Nirg | 2 | 6 | 22 | 90 | 394 | 1108| 3014 | 9038 | 29618

We can see that given the sarhe(K < 10) and that all permutations are equally probable. However,
L (L < 6), IBM constraints have less permutationdt makes sense to restrict those non-monotonic re-
than local constraints, and ITG constraints have lessderings when performing the translation. This not
permutations than IBM constraints in general (onhonly helps the search of the most likely permutation,
one exception whelk’ = L = 6). These obser- but also guides the pruning of unlikely permutations.
vations indicate that ITG constraints can filter out

K
more unlikely permutations for a fixed reordering p(rﬂ@{<7w{) = P(r) H P(Tk|7“k—1ﬂl7f()
distance, resulting in longer distance reordering ca- ke
pability. K

Table 1 also tells us that the phrase numbér = P(r) HP(rk]rk,l) 4)
and the reordering distande for any of the con- k=2

straints cannot be too large for practical implemen- e make a first order Markov assumption over the
tation. For instance, LL = 6 andK goes from6to  phrasal reordering modeP(r|wf, w{) (see Eq.

7, the order of magnitude QVrocar, Nrpara) @nd  (4)). The reordering sequence distribution is param-
Nire increases fron2 to 3. Hence, phrases for per- eterized to assign decreasing likelihood to phrase re-
mutation should be selective to cover the most pogsrderings{,, , @y, . . . , W, } that diverge from the
sible re-orderings. If long reordering distances areriginal word order (Och et al., 1999; Kumar et al.,
allowed, unlikely permutations should be pruned seogs). Supposep,, = w!' and@,, , = w? | the
that the memory consumption becomes manageabl@ordering sequence distribution is set as Eq. (5),

wherepg is a tuning factor. We normalize the proba-

Reordering Sequence Distribution it h thats K
So far we have discussed the issue that how Gn1eS P(relre—1) suchthad by o, , Plri =

/ —
generate permutations for the reordering model u lrk-1) = 1.

ing reordering constraints. Another issue is how to P(ri|re_1) = p(ljl*quI
parameterize the reordering sequence distribution. 1 (5)
Both ITG constraints and other constraints assume P(ri=k)= f; ke{1,2,.. K}
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Assume that we have a phrase sequenceodel. It generates a word sequengefrom a
{41,109, w3}, Figure 2 shows the phrasal reorderingohrase sequendg®. The reconstruction model can
model implemented by a reordering WFSTunder be implemented by a WFSR,. An example of
the first order Markov assumption for this phrase seR,, is shown in Figure 3(a4), which reconstructs a
quence. phrasev,_vs into a word sequencgvs, vs }.

Figure 3(a2) gives one more example Qf., . ) )
which reorders the phrase sequerae;,w;_ws} 3 Speech Recognition with Cross-Lingual
into {wy_ws, w1 }8. Within the WFST paradigm, re- L anguage M odels
ordering models under any of those constraints cafhe translation modeP(v! [w?) can be constructed
be integrated into the cross-lingual language modelia WEST composition (denoted byo) (Mohri,

W, W P(R) W, Wy POy |R) W, Py | 1) 2009) of all the component models as shown in Eq.
O~ O— O— O (7) and Figure 3, wheré is the final composed
WFST that transduces to wy.

Figure 2. An example of reordering WFST,. imple-
menting the phrasal reordering model under the first or- T =R,0Ty,0,.08, @)

der Markov assumption. . .
The cross-lingual language modél,; is con-

structed through composition (see Eq. (8)) of

2.3 Phraseto-Phrase Transduction Model . .
the translation model and a resource-rich language
Once the phrase sequence of thg transcript modeld.

is reordered into the., transcript order, we use
the phrase-to-phrase transduction model specified in Gt =7 0 G = Ry 0 Ty 0§ 05y 0 G (8)

Eq. (6) to perform the cross-language transduction. as the way of integrating a resource-rich lan-
Given sufficient parallel training data, the contextyage modets into ASR search space (Mohri et al.,
dependent phrase-to-phrase transduction model C8h08), we can integrate the cross-lingual language
be estimated using the GIATI method (Casacumode@d into ASR search space in a globally op-
berta and Vidal, 2004). However, for the transtimized way as well. The search space can be im-
lation task with scarce training data, the contextplemented using a transduceiSR, which is for-
dependent transduction probabilities may not be repyjated with a unified WEST approach as shown
liably estimated. Therefore, we assume that a phrage Eq. (9). HereH transduces HMM states to
vy, is generated independently by each phrase.  context-dependent phonesC' represents a trans-
C(Uk, wy,,) is the number of times that phrasgis  gyction from context-dependent phones to context-
aligned tow,, in the parallel corpus. This model canjndependent phoned is a lexicon transducer which
be implemented by a WFST,,, which transduces maps context-independent phone sequences to word
Uy to w,,,. Figure 3(a3) shows an example Bf.  strings restricted to the input symbols of the cross-

transducing; w3 t0 wy_ws. lingual language model transdud@y;.
P(of |, @t ,wi) = P@f [r{, @) ASR=HoCoLoGy 9)
K
- H Py (0p |1y, Eq. (9) outputs the recognition result in a resource-
Pt} rich language. If recognition system requires recog-
K nition outputs in a resource-poor language, then the
=11 M (6) search space should be constructed as Eq. (10),
it 2o, OO, Ory) where 7 is a projection (Mohri, 2009) operator
24 Reconstruction Modd which projects the input label to the output label.

K Before decoding, the recognition transduck$ R

i 115K K ~ J .
Reconstruction mode® (vy |01, 71", w1, wi) OPEr- a0 ho gotimized by a determinization operation
ates in the opposite direction as the segmentath‘bht after each composition

®For simplicity, reordering sequence distributions are not
shown there. ASR=HoCoLom(Gy) (10)
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. wlwl . w2:w2 . w3:w3 .

(al) Segmentation WFSY,, (b1) Written-style language modél

w2_w3_#l:w2_w3

w2:w2 ° w3:w3
O~ 30

(a2) Reordering WFST,. (b2) Sy o G

v2_v3_#Ll:w2_w3_#1

2
O

wl_#1l:wl

(a3) Phrase-to-phrase transduction WHSJ, (b3)2,.085,0G

wliwl

v2_v3:wl @7
wil_#1:wl v2_v3_#1:w2

(b4) Ty 02r 08,0 G

(bS) Ry 0 Ty 0 Q0 Sy 0o G

Figure 3: lllustration of constructing a cross-lingual dailage model via WFSTs: a word sequeres , ws, ws }
represented by the,, language modet (b1) is segmented into a phrase sequeneg ws-ws} (02); {wy, wa_ws} is
reordered intdws_ws, w1 } (b3); phrasev, ws is transduced to,_vs (b4); phrases _vs is reconstructed into a word
sequencéguq, vs} (b5). wk andvk representv, anduvy, respectively. "-" refers te or null symbol. Auxiliary symbols
#1,#2,--- are used to make the WFSIEterminizabléMohri, 2009) such that the transducer can be optimized by a
determinizatior(Mohri, 2009) operation which significantly reduces thersbanetwork size.
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4 Experimental Setup The parallel corpus is used for training the trans-
lation model7. Together with the parallel corpus,
the additional Mandarin transcriptions are used for
To investigate the performance of our proposegtaining an interpolated word-level trigram language
cross-lingual language models, we have chosefodel G, where the lexicon size is about 28K. A
Cantonese as a resource-poor language and Manodified scheme of Kneser-Ney discounting is ap-
darin as a resource-rich language. We have cqblied for the language model with a back-off
lected Cantonese parliamentary speech from thareshold of 1 for unigram and 2 for bigram. The

Hong Kong Legislative Council. Currently we only cross-lingual language modél,; can be obtained
have 4152 parallel transcribed sentences containimg composition off andG.

19.4 hours of speech. It is separated into three sets,

a training set (11.9 hours, 2700 sentences), a dé2 Decodingand Evaluation Method

velopment set (3.7 hours, 788 sentences), and &ecoding of the speech recognition search space
evaluation set (3.8 hours, 664 sentences). The senSR is performed by72 Decoder (Dixon et
tences in the evaluation set are a bit longer thagl., 2009), which is a state-of-the-art WFST-based
those in the development set. The parallel transcripy/CSR speech decoder. Decoding 45 R in Eq.

tions of the training set constitute a parallel cor{(9) gives Mandarin outputs. Decoding diSR in
pus, which includes Cantonese transcription (margq. (10) gives Cantonese outputs.

ual transcription) of 106k words and Mandarin tran- |n our experiments, we use the following evalua-
scription (Hansarfitranscription) of 80k words. The tion criteria:

statistics of substitutions, insertions, deletions and WER (word error rate). The WER is computed
inversions identified in the parallel corpus are showgs the minimum number of substitution, insertion
in Table 2. Besides the parallel corpus, we have and deletion operations that have to be performed
set of additional Mandarin transcriptions, which haso convert the generated sentence into the reference
31M words. sentence (Zens et al., 2004). The WER relates the

speech recognition accuracy. The lower WER, the
Table 2: No. of substitutions, insertions, deletions an@atter.

inversions identified in the parallel corpus with different
segmentation ordey.

Segmentation Ordefr s =2 | s=3 | s=4 | s=5
Substitutions 30921 | 22723 | 19011| 17106

4.1 Corpusand Maodd Training

BLEU (bilingual evaluation under study) score.
The BLEU score measures the precisiomegrams
(unigrams, bigrams, trigrams and fourgrams) with
respect to a reference translation with a penalty for

Insertions 4657 | 3820 | 3641 | 3295 too short sentences (Papineni et al., 2002). The
Deletions 1365 | 1158 | 1066 | 1030 BLEU score reflects the translation accuracy. The
Inversions 3000 | 2876 | 2814 | 2779

larger BLEU score, the better.
Total 39943 | 30577 26532 24210 We perform WER evaluation of decoding out-
puts of Eq. (10) and BLEU score evaluation of
The training set is used for training an acoUsgyecoding outputs of Eq. (9) using the evaluation
tic model (including/7 and ') using a Maximum - get The WER evaluation is on the Cantonese output
Likelihood criterion. It adopts 13 MFCC coeffi- 4gainst the Cantonese reference transcription (man-
cients, together with 13 delta coefficients and 13 a4 franscription). The BLEU score evaluation is on

celerat_ion coefficients_as the ac.oustic features. Trﬂﬁe Mandarin output against the Mandarin reference
acoustic model comprises 73 Hidden Markov MOdtranscription (Hansard transcription).

els (HMMs) to represent 70 Cantonese phonemes as
well as silence, short pause, and noise. During th&3 Parameter Settings

acoustic model training, tied-state cross-word triThe performance of our proposed cross-lingual lan-
phones are constructed by decision tree clusteringg age models is sensitive to many parameters.

"Hansard is a name of the printed transcripts of parliamer-I'Stly, segmentation order affects phrase extrac-
tary debates. tion. The optimal value depends on the language
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Table 3: WER and BLEU score for decoding resultdbb C o Lo G, H o C o L o m(G.;) without reordering, and
H o C o L on(G) with reordering under various constraints.

HoCoLon(Gy) HoCoLon(Gy)
Models | HoCoLoG Gy=T30G Gy =T30G,T3=Ry0TpyoQr 08y
73 = R, 0Ty, oS, | Local Constrainty IBM Constraints| ITG Constraints
WER (%) 29.85 27.05 26.35 26.20 26.13
BLEU N/A 29.23 32.29 32.81 33.12

pair and the size of corpus. Second}y in the 6 Conclusions

first order Markov assumption affects the decoding

results. Thirdly, the number of reordering permu¥Ve have proposed cross-lingual language model-
tations or paths are formidable when the reordefd With phrase-level syntactic reordering for low-
ing distancel is long as suggested by Table 1resource speech recognition. The cross-lingual lan-
Therefore, we apply histogram pruning to reorderduage modeling enriches a resource-poor language
ing paths, which only maintains top N most likelymodel by leveraging the language model from a

ones. The development set is used for tuning pararfilosely related resource-rich language. It provides
eterspy andN. an effective method to solve the low-resource lan-

guage modeling challenge by using a large amount
of resource-rich language (e.g. Mandarin) data
5 Experimental Results and a small amount of resource-poor language (e.g.
Cantonese) data, as well as some parallel data of
The evaluation results of the proposed cross-linguaésource-poor and resource-rich languages. With
language modelé:; with reordering under various a cross-lingual language model, our ASR system
constraints are presented in Table 3, wh@tg = can decode speech into transcriptions, either in a
T,0G = T30G.8 In general, reordering has a signif-resource-poor language or a resource-rich language,
icant effect on enhancing the performance of recogssing a single WFST-based speech decoder.
nition and translation in the sense of WER reduc- We have presented a first end-to-end WFST
tion and BLEU improvement. Compared with thespource to target language transcription and transla-
cross-lingual language model without reorderingtion system with syntactic reordering and global op-
the cross-lingual language model with reorderingimization. Our work is the first to use ITG con-
under local constraints gives 0.70% absolute WERBLraints for the syntactic reordering in such an in-
reduction and 3.06 absolute BLEU improvementiegrated system. We also did comparative study
The cross-lingual language model with reorderingf ITG constraints, IBM constraints and local con-
under IBM constraints gives 0.85% absolute WERtraints in the reordering model, for completeness.
reduction and 3.58 absolute BLEU improvementwe have also presented the determinizable design of
The cross-lingual language model with reorderingach transducer for composing a cross-lingual lan-
under ITG constraints yields the best performanceguage model such that we can optimize the search
with 0.92% absolute WER reduction and 3.89 abstetwork by determinization. This is crucially im-
lute BLEU improvement. All WER improvements portant to successfully build a practical integrated
pointed out here are statistically significant at 99%ystem, and, of course, the work is extremely chal-
confidence according to a two-proportional z-testenging.
and all BLEU improvements are statistically signifi-  Experiments on Cantonese recognition and Can-
cant at 95% confidence according to a paired studefnese to Mandarin translation tasks have shown that
t-test using bootstrap resampling. our proposed cross-lingual language model substan-
tially improves the performance of the recognition
~ ®We have chosen segmentation order 3 because itworks and translation. The best system gives 12.5% rel-
the best in our system. ative WER reduction in Cantonese (resource-poor
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language) transcriptions over the system using inter- translation.Computer Speech & LanguagkB(1):25—
polation. The best reordering model gives 3.4% rela- 47.

tive WER reduction and 13.3% relative BLEU score®. Clarkson and R. Rosenfeld. 1997. Statistical lan-
improvement in Mandarin (resource-rich language) 9uage modeling using the cmu-cambridge toolkit. In
transcriptions over the system without reordering. 2th European Conference on Speech Communication

. . . and Technology
The improvements have been found to be statists o "y 1 "+ 5onishi, K. Iwano, and S. Furui. 2009,
cally significant.

o i Recent development of wfst-based speech recognition
Even though the objective of our work is for  gecoder. IrProceedings of 2009 APSIPA Annual Sum-
speech recognition, our proposed cross-lingual lan- mit and Conferencepages 138—147, Sapporo, Japan.
guage modeling can be easily applied to speeal. Dreyer, K. Hall, and S. Khudanpur. 2007. Compar-
translation of other language pairs for efficient di- ing reordering constraints for smt using efficient bleu

rect decoding from source speech to target text. oracle computation. IRroceedings of SSST, NAACL-
HLT 2007 / AMTA Workshop on Syntax and Structure

7 Acknowledgments in Statistical Translationpages 103-110, Rochester,
New York.

This work is partially supported by ITS/189/09 anda, Enrenfeucht, T. Harju, P. Ten Pas, and G. Rozenberg.
CERG#612211. The authors would like to thank Dr. 1998. Permutations, parenthesis words, and schroder
Tasuku Oonishi for providing access to tifié de- numbersDiscrete mathematic490(1):259-264.

coder, and thank Prof. Sadaoki Furui and his teavt Geethakumary. 2002. A contrastive analysis of hindi
for useful discussions. Thanks should go to Yue Yu and malayalamLanguage in India

and Percy Cheung for collecting the Cantonese arftG- Gordon, B.F. Grimes, and Summer Institute of Lin-
Mandarin parallel data. Thanks also go to Ricky guistics. 2005.Ethno|0g.ue: Languages of the world
Chan for training the Cantonese acoustic model aan volume 15. SIL International, Dallas TX, USA.

. .. . Hori, D. Willett, and Y. Minami. 2003. Lan-
Dr. Markus Saers for helping on training the GIZA guage model adaptation using wist-based speaking-

word-to-word alignment models. style translation. IrProceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processingvolume 1, pages 228-231.

A.T. Jensson, T. Oonishi, K. lwano, and S. Furui. 2009.

Y. Akita and T. Kawahara. 2006. Efficient estimation Development of a wfst based speech recognition sys-
of language model statistics of spontaneous speech viatem for a resource deficient language using machine
statistical transformation model. Rroceedings ofthe  translation. InProceedings of APSIPA ASC 2009:
IEEE International Conference on Acoustics, Speech Asia-Pacific Signal and Information Processing Asso-
and Signal Processingolume 1, pages 1049-1052. ciation, 2009 Annual Summit and Conferenpages

E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. 50-56.
2000. Permutations avoiding an increasing numbe$. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney.

References

of length-increasing forbidden subsequenceBis- 2005. Novel reordering approaches in phrase-based
crete Mathematics and Theoretical Computer Science statistical machine translation. Proceedings of the
4(1):31-44. ACL Workshop on Building and Using Parallel Texts

J.R. Bellegarda. 2004. Statistical language model adap- pages 167-174. Association for Computational Lin-
tation: review and perspectiveSpeech communica-  gulistics.
tion, 42(1):93-108. S. Khudanpur and W. Kim. 2002. Using cross-language
A.L. Berger, P.F. Brown, S.A. Della Pietra, V.J. cues for story-specific language modeling. 7k In-
Della Pietra, A.S. Kehler, and R.L. Mercer. 1996. ternational Conference on Spoken Language Process-
Language translation apparatus and method us-ing.
ing context-based translation models. US Paterw. Kim and S. Khudanpur. 2003. Cross-lingual lexical

5,510,981. triggers in statistical language modeling. Proceed-

F. Casacuberta and E. Vidal. 2004. Machine translation ings of the 2003 conference on Empirical methods in
with inferred stochastic finite-state transduceZem- natural language processingages 17—-24. Associa-
putational Linguistics30(2):205—-225. tion for Computational Linguistics.

F. Casacuberta, H. Ney, F.J. Och, et al. 2004. Some ayt Kim and S. Khudanpur. 2004. Cross-lingual latent
proaches to statistical and finite-state speech-to-speechsemantic analysis for language modelingPhoceed-

775



ings of the IEEE International Conference on AcousF.J. Och, C. Tillmann, and H. Ney. 1999. Improved

tics, Speech and Signal Processinmglume 1, pages  alignment models for statistical machine translation.

1257-1260. IEEE. In Proceedings of the Joint SIGDAT Conf. on EMNLP
T. Klgve. 2009. Generating functions for the number and VLG pages 20-28, College Park, MD, USA.

of permutations with limited displacemerithe Elec- K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2002.

tronic Journal of Combinatorigsl6(R104). Bleu: a method for automatic evaluation of machine
K. Knight. 1999. Decoding complexity in word- translation. InProceedings of the 40th annual meet-

replacement translation model€omputational Lin-  iNg on association for computational linguistjgmges

guistics 25(4):607—-615. 311-318. Association for Computational Linguistics.

S. Kumar and W. Byrne. 2005. Local phrase reorder>: Sa0n and M. Picheny. 2007. Lattice-based viterbi
decoding techniques for speech translation. Al

ing models for statistical machine translation. In . " .
. _ tomatic Speech Recognition & Understanding, 2007.
Proceedings of Human Language Technology Confer: ASRU. IEEE Workshop opages 386-389. IEEE.

ence / Conference on Empirical Methods in Natural

Language Processing (HLT/EMNLR)ages 161168, A. .Stolcke.' 2002. Srilm—an extensible language model-
Vancouver. Canada. ing toolkit. In7th International Conference on Spoken

. Language Processing
S Kgmar, Y. Deng, and W. Byrng. 2005. A we|ghtedD. Wu. 1997. Stochastic inversion transduction gram-
finite state transducer translation template model for " i
mars and bilingual parsing of parallel corpor@om-

statistical machine translatiolNatural Language En- putational Linguistics23(3):377—403.

ineering 12(1):35-75. .
9 g12(1) R. Zens and H. Ney. 2003. A comparative study on re-
J. Lee. 2011. Toward a parallel corpus of spoken can- o jering constraints in statistical machine translation.
tonese and written chinese. Rioceedings of the 5th |, proceedings of the 41st Annual Meeting on Associ-

Internati_onal Joint Conference on Natura! Language ation for Computational Linguisticpages 144—151,
Processingpages 1462-1466, Chiang Mai, Thailand.  g5056r0, Japan. Association for Computational Lin-

L. Mathias and W. Byrne. 2006. Statistical phrase-based guistics.

speech translation. IRroceedings of the IEEE Inter- R zens, H. Ney, T. Watanabe, and E. Sumita. 2004.
national Conference on Acoustics, Speech and Signal Reordering constraints for phrase-based statistical ma-
Processingvolume 1, pages 561-564. chine translation. IfProceedings of the 20th interna-

E. Matusov, S. Kanthak, and H. Ney. 2006. Integrating tional conference on Computational Linguistipages
speech recognition and machine translation: Where do 205-211, Geneva, Switzerland. Association for Com-
we stand? IrProceedings of the IEEE International  putational Linguistics.

Conference on Acoustics, Speech and Signal Proce$s- Zhou, S.F. Chen, and Y. Gao. 2005. Constrained
ing, volume 5, pages V1217-V1220. IEEE. phrase-based translation using weighted finite-state

M. Mohri, F. C. N. Pereira, and M. Riley. 2008. transducers. liroceedings of the IEEE International
Speech recognition with weighted finite-state trans- Conference on Acoustics, Speech and Signal Process-
ducers. Handbook on Speech Processing and Speech ing, volume 1, pages 1017-1020.

Communication, Part E: Speech Recognition B. Zhou, S. F. Chen, and Y. Gao. 2006. Folsom: A fast
M. Mohri. 2009. Weighted automata algorithntsand- ~ and memory-efficient phrase-based approach to statis-
book of Weighted Automatpages 213-254. tical machine translation. |8poken Language Tech-

P. Nakov and H.T. Ng. 2009. Improved statistical ma- nology Workshoppages 226-229. IEEE.
chine translation for resource-poor languages using re-
lated resource-rich languages. Pnoceedings of the
2009 Conference on Empirical Methods in Natural
Language Processingvolume 3, pages 1358-1367.
Association for Computational Linguistics.

G. Neubig, Y. Akita, S. Mori, and T. Kawahara. 2010.
Improved statistical models for smt-based speaking
style transformation. IfProceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processingpages 5206-5209.

F.J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment model€Computational
Linguistics 29(1):19-51.

776



