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Abstract

This paper proposes cross-lingual language
modeling for transcribing source resource-
poor languages and translating them into tar-
get resource-rich languages if necessary. Our
focus is to improve the speech recognition
performance of low-resource languages by
leveraging the language model statistics from
resource-rich languages. The most challeng-
ing work of cross-lingual language modeling
is to solve the syntactic discrepancies between
the source and target languages. We therefore
propose syntactic reordering for cross-lingual
language modeling, and present a first result
that compares inversion transduction grammar
(ITG) reordering constraints to IBM and lo-
cal constraints in an integrated speech tran-
scription and translation system. Evaluations
on resource-poor Cantonese speech transcrip-
tion and Cantonese to resource-rich Mandarin
translation tasks show that our proposed ap-
proach improves the system performance sig-
nificantly, up to 3.4% relative WER reduction
in Cantonese transcription and 13.3% relative
bilingual evaluation understudy (BLEU) score
improvement in Mandarin transcription com-
pared with the system without reordering.

1 Introduction

Statistical language modeling techniques have
achieved remarkable success in speech and language
processing (Clarkson and Rosenfeld, 1997; Stolcke,
2002). However, this success largely depends on the
availability of a large amount of suitable text data in
a language. Without sufficient text data for training,

it is very difficult to build a practical and usable sta-
tistical language model. Therefore, most of the ad-
vances have been reported in so calledresource-rich
language such as English, Mandarin and Japanese,
after creating linguistic resources of these languages
at considerable cost. Today there are more than
6000 living languages spoken in the world (Gordon
et al., 2005), and most of them have little transcribed
texts and are considered asresource-poorlanguages
(Nakov and Ng, 2009). Many of these languages are
actually spoken by a huge number of speakers (e.g.
some Chinese and Indian languages), and thus there
is still a great demand to build speech and language
processing systems for these languages.

Owing to data scarcity, most often an interpo-
lation (Bellegarda, 2004) of language models be-
tween a resource-poor language and a resource-rich
language is used in most low-resource ASR sys-
tems. Some researchers have proposed transform-
ing resource-rich language models to resource-poor
language models by word-level transduction, either
in a context-independent or context-dependent man-
ner (Hori et al., 2003; Akita and Kawahara, 2006;
Jensson et al., 2009; Neubig et al., 2010). In (Jens-
son et al., 2009), a simple dictionary based context-
independent transduction from a resource-rich lan-
guage to a resource-poor language is exploited to
improve speech recognition of the resource-poor
language. In (Hori et al., 2003; Akita and Kawahara,
2006; Neubig et al., 2010), context-dependent trans-
duction is exploited. In their case, the resource-poor
language is a spoken language, and the resource-rich
language is a written language. They carried out lan-
guage model transformation since the input speech
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is in speaking-style and the output text is in written-
style.

Others have investigated cross-lingual informa-
tion between a resource-poor language and a
resource-rich language. In (Khudanpur and Kim,
2002), cross-language cues are used to improve a
language model of a resource-poor language. They
used cross-lingual unigram probabilities trained
from a story-specific parallel corpus of the resource-
poor and resource-rich languages. They interpo-
late the language model of the resource-poor lan-
guage with those unigram probabilities. In (Kim and
Khudanpur, 2003), an n-gram language model in a
resource-poor language is interpolated with cross-
lingual unigram trigger probabilities. These triggers
are word pairs of the resource-poor and resource-
rich languages with the highest mutual information
across these two languages. Another way of esti-
mating those unigram probabilities is using latent
semantic analysis by measuring cosine similarities
from a document-aligned corpus for any given word
pair (Kim and Khudanpur, 2004).

Both interpolation and word-level transduction
approaches fail to meet the challenge of syntac-
tic discrepancies between the resource-poor and
resource-rich languages. This syntactic discrepan-
cies exist, for example, even between the Sinitic lan-
guages and Indian languages1 of the same family.
Sinitic languages such as Cantonese/Yue, Shang-
hai/Wu, etc. are officially considered as ”dialects”
of the standard Chinese Mandarin (or Putonghua)2.
However, they differ greatly from Mandarin in all
aspects and are not mutually comprehensible. For
instance, in addition to lexical and pronunciation
differences, Cantonese Chinese (Lee, 2011) differs
syntactically from Mandarin as well - we found that
there are approximately 10% syntactic inversions
between sentences of the two forms of Chinese.

We suggest that a better approach than interpo-
lation and word-level transduction is to usecross-
lingual language modelingwith syntactic reorder-

1For example, Hindi and Malayalam (Geethakumary, 2002).
2Since Cantonese does not have an official written form,

there are very few written texts available for training language
models. In this paper, we treat Cantonese as a typical resource-
poor language and Mandarin as a typical resource-rich lan-
guage. This language pair will be used for illustration purposes
throughout this paper.

ing. A reordering model with reordering constraints,
such as ITG constraints (Wu, 1997), IBM con-
straints (Berger et al., 1996), and local constraints
(Kumar and Byrne, 2005) can account for the syn-
tactic differences. It has been shown in (Zens and
Ney, 2003; Kanthak et al., 2005; Dreyer et al., 2007)
that ITG constraints perform better than other con-
straints when tackling the reordering between many
language pairs. Previous work on weighted finite-
state transducer (WFST) based speech translation
such as (Casacuberta et al., 2004; Zhou et al., 2005;
Zhou et al., 2006; Mathias and Byrne, 2006; Ma-
tusov et al., 2006; Saon and Picheny, 2007) only
train the reordering model using IBM constraints,
local constraints or ad hoc rules. We will use
ITG constraints, which have only been applied to
text translation tasks before, to model the syntactic
differences in cross-lingual language modeling for
speech recognition.

We will implement a cross-lingual language
modelusing WFSTs, and integrate it into a WFST-
based speech recognition search space to give both
resource-poor language and resource-rich language
transcriptions. This creates an integrated speech
transcription and translation framework.

This paper is organized as follows: Section 2
presents our proposed cross-lingual language mod-
eling with syntactic reordering. In Section 3, we dis-
cuss speech recognition with cross-lingual language
models. Section 4 and 5 give the experimental setup
and results. We conclude our work at the end of this
paper.

2 Cross-lingual Language Modeling with
Syntactic Reordering

In automatic speech recognition (ASR), given an ob-
served source speech vectorX, the decoding pro-
cess searches the best word sequencev̂I1 (consists
of wordsv1, v2, ..., vI ) by maximizing the posterior
probability P (vI1 |X), wherevI1 is the source tran-
script representing the transcription of the source
speech (see Eq. (1)). According to Bayes’ law,
we can decomposeP (vI1 |X) into an acoustic model
P (X|vI1) and a language modelP (vI1). If a source
languageLv is a resource-rich language, then the
language modelP (vI1) can be well estimated from
sufficient training texts. However, if the source lan-
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guageLv is a resource-poor language, then the lan-
guage modelP (vI1) cannot be reliably or robustly
estimated due to lack of training texts.

v̂I1 = arg max
vI
1

P (vI1 |X) (1)

= arg max
vI
1

P (X|vI1)P (vI1)

= arg max
vI
1

P (X|vI1)
∑

wJ
1

P (vI1 |w
J
1 )P (wJ

1 )

≈ arg max
vI
1

P (X|vI1)max
wJ

1

P (vI1 |w
J
1 )P (wJ

1 )

Since this paper tackles the language modeling
challenge for low-resource speech recognition, here
we just assume that the source languageLv is a
resource-poor language. We further assume that
there is a target languageLw, which is a resource-
rich language closely related to the languageLv.
In order to improve the language modelP (vI1)
of the resource-poor languageLv, we introduce
cross-lingual language modelingby decomposing
the language modelP (vI1) into a translation model
P (vI1 |w

J
1 ) and a language modelP (wJ

1 ) of the
resource-rich languageLw (see Eq. (1)). wJ

1 is
the target resource-rich language transcript that con-
sists of wordsw1, w2, ..., wJ . P (vI1 |w

J
1 )P (wJ

1 ) is
defined as across-lingual language model. It lever-
ages the abundant statistics from the language model
P (wJ

1 ) to improve the language modelP (vI1) of the
resource-poor language.

The translation modelP (vI1 |w
J
1 ) can be esti-

mated by addressing the discrepancies between the
resource-poor languageLv and the resource-rich
languageLw, which can be modeled from a paral-
lel corpus of theLv transcriptvI1 and theLw tran-
script wJ

1 . For the syntactic inversions, we reorder
the word or phrase positions of theLw language
model into those of theLv language model. We
have observed that most of the words are aligned
monotonically betweenLv andLw within a phrase.
This paper, therefore only considers phrase-level re-
ordering, which effectively preserves the monotonic
word sequences within phrases, and significantly re-
duces the number of reordering paths compared with
word-level reordering.

2.1 Preprocessing: Phrase Extraction and
Segmentation

Our discussion starts with phrase extraction from the
parallel corpus. We define a phrase sequenceṽK1
(consists of phrases̃v1, ṽ2, ..., ṽK ) segmented from
the word-levelLv transcriptvI1 andw̃K

1 (consists of
phrasesw̃1, w̃2, ..., w̃K ) segmented from the word-
level Lw transcriptwJ

1 . Furthermore, we define a
reordering sequencerK1 , of which the detail can be
found in Section 2.2.

The phrase-level translation modelP (vI1 |w
J
1 ) is

decomposed into four components (see Eq. (2)):
segmentation modelP (w̃K

1 |w
J
1 ), phrasal reorder-

ing modelP (rK1 |w̃
K
1 , wJ

1 ), phrase-to-phrase trans-
duction modelP (ṽK1 |r

K
1 , w̃K

1 , wJ
1 ) and reconstruc-

tion modelP (vI1 |ṽ
K
1 , rK1 , w̃K

1 , wJ
1 ). Before present-

ing each component model, we need to extract two
phrase tables for theLv transcript and theLw tran-
script, respectively.

P (vI1 |w
J
1 ) ≈ max

ṽK
1
,rK

1
,w̃K

1

P (w̃K
1 |w

J
1 ) ·

P (rK1 |w̃
K
1 , wJ

1 ) ·

P (ṽK1 |r
K
1 , w̃K

1 , wJ
1 ) ·

P (vI1 |ṽ
K
1 , rK1 , w̃K

1 , wJ
1 ) (2)

The phrase extraction is based on word-to-word
alignments of the parallel corpus. We train word
alignments in both directions with GIZA++, and
then symmetrize the two alignments using there-
fined method(Och and Ney, 2003). Figure 1 shows
an example of word-to-word alignment results be-
tween anLv transcript (Cantonese) and anLw

transcript (Mandarin), from which phrase-to-phrase
alignments are derived by identifying deletion, sub-
stitution, insertion and inversion.

Prior to phrasal reordering, the segmentation
modelP (w̃K

1 |w
J
1 ) implemented by a segmentation

WFST Sw is applied to segment a word sequence
wJ
1 in theLw language model into a phrase sequence

{w̃1, w̃2, ..., w̃K}. The maximum number of words
that can be segmented into one phrase is controlled
by a segmentation orders. An example ofSw is
shown in Figure 3(a1). It segments a word sequence
{w1, w2, w3} into a phrase sequence{w1, w2 w3}
after performingcomposition(Mohri, 2009) with the
targetLw language model (see Figure 3(b1 & b2))3.

3The “ ” symbol is used to indicate the concatenation of con-
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Figure 1: An example (in English: Please give me an ad-
dress first) of phrase extraction from word-to-word align-
ments. i and j are word indexes.k′ andk are phrase
indexes. i↔j represents the word-to-word alignment.
k↔k′ represents the indentified phrase-to-phrase align-
ment.

2.2 Phrasal Reordering Model

Given a phrase sequence{w̃1, w̃2, ..., w̃K} of the
Lw transcript, the role of the reordering model
P (rK1 |w̃

K
1 , wJ

1 ) is to reorder phrase positions of the
Lw transcript into those of theLv transcript by per-
mutation ofw̃K

1 according to a reordering sequence
{rK1 : rk ∈ {1, 2, ...,K}, rk 6= rk′ 6=k}. The
phrase sequence{w̃1, w̃2, ..., w̃K} is therefore re-
ordered into{w̃r1 , w̃r2 , ..., w̃rK } consequently (see
Figure 2 whereK = 3). Since arbitrary permuta-
tions ofK phrases are NP-hard (Knight, 1999), re-
ordering constraints have to be set overrK1 to reduce
the number of permutations.

There are three reordering constraints widely used
in statistical machine translation, namely local con-
straints, IBM constraints and ITG constraints. Here
we would like to point out that this is the first
time that reordering constraints have been incorpo-
rated into a cross-lingual language model for speech
recognition.

Reordering Constraints

Local constraints make the restriction that one
phrase can jump at mostL−1 phrases either forward
or backward, whereL is the reordering distance (or
window size of permutation)4. The generation ofrK1
under local constraints can be viewed as solving of
the following problem (Kløve, 2009):

secutive words forming a phrase.
4The concept of reordering distance also applies to other

constraints.

How many permutations of
{1, 2, . . . k . . . ,K} satisfy |rk − k| < L

for all k?

IBM constraints, a superset of local constraints
(Dreyer et al., 2007), generate permutationsrK1 de-
viate from the monotonic phrase order{rK1 : rk =
k}. More specifically, any phrase positionrk can be
selected from the positions of the firstm yet uncov-
ered phrases (see Eq. (3)). A typical value ofm is 4
(Zens and Ney, 2003), and we write IBM constraints
with m = 4 as IBM(4).

rk ∈























{1, 2, ..., k − 1 + m; rk 6= rk′ 6=k}

if k ≤ K + 1−m,

{1, 2, ...,K; rk 6= rk′ 6=k}

if K + 1−m < k ≤ K.

(3)

ITG constraints provide a more faithful coverage
of syntactic reordering in the parallel data than lo-
cal constraints and IBM constraints. Our presenta-
tion of ITG constraints starts with defining of some
permutation sets. LetSK be the set of permuta-
tions on {1,2,. . . ,K}. A permutationrK1 ∈ SK ,
whererK1 = r1r2 . . . rK , contains a subsequence
of type τ ∈ SM if and only if a sequence of in-
dices1 ≤ i1 < i2 < . . . < iM ≤ K exists such
thatri1ri2 . . . riM has all the same pairwise compar-
isons asτ . We denote the set of permutations ofSK

not containing subsequences of typeτ by SK(τ). If
we have setsSK(τ1), . . . , SK(τp), we denote the set
SK(τ1)∩ . . .∩SK(τp) by SK(τ1, . . . , τp) (Barcucci
et al., 2000). ITG constraints allow the permutation
setSK(3142, 2413), which forbids subsequence of
type (3, 1, 4, 2) and its dual(2, 4, 1, 3). Explicitly,
ITG constraints avoid any permutationrK1 satisfy-
ing eitherri2 < ri4 < ri1 < ri3 or ri3 < ri1 <

ri4 < ri2 , where1 ≤ i1 < i2 < i3 < i4 ≤ K. In
(Wu, 1997), these forbidden subsequences are called
“inside-out” transpositions. They are fairly distorted
matchings, and hardly observed in real parallel data.

In order to get an intuitive sense of the reordering
capability of those three constraints, we list the num-
ber of permutations under local constraints, IBM
constraints as well as ITG constraints5 in Table 1.

5Interestingly, whenK = L, the number of permuta-
tions under ITG constraintsNITG = |SK(3142, 2413)|, and
|SK(3142, 2413)| equals theK−1-th Schröder numberssK−1

(Ehrenfeucht et al., 1998)
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Table 1: Comparison of permutation number under local constraints (NLocal), IBM constraints (NIBM(4)) and ITG
constraints (NITG). The comparison is constrained by the phrase numberK and the reordering distanceL.

K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

NLocal 2 3 5 8 13 21 34 55 89

L=2 NIBM(4) 2 3 5 8 13 21 34 55 89

NITG 2 3 5 8 13 21 34 55 89

NLocal 2 6 14 31 73 172 400 932 2177

L=3 NIBM(4) 2 6 14 31 73 172 400 932 2177

NITG 2 6 12 25 57 124 268 588 1285

NLocal 2 6 24 78 230 675 2069 6404 19708

L=4 NIBM(4) 2 6 24 78 230 675 2069 6404 19708

NITG 2 6 22 52 122 321 885 2304 5880

NLocal 2 6 24 120 504 1902 6902 25231 95401

L=5 NIBM(4) 2 6 24 96 330 1066 3451 11581 39264

NITG 2 6 22 90 236 602 1714 5269 16385

NLocal 2 6 24 120 720 3720 17304 76110 329462

L=6 NIBM(4) 2 6 24 96 384 1374 4718 16275 57749

NITG 2 6 22 90 394 1108 3014 9038 29618

We can see that given the sameK (K ≤ 10) and
L (L ≤ 6), IBM constraints have less permutations
than local constraints, and ITG constraints have less
permutations than IBM constraints in general (only
one exception whenK = L = 6). These obser-
vations indicate that ITG constraints can filter out
more unlikely permutations for a fixed reordering
distance, resulting in longer distance reordering ca-
pability.

Table 1 also tells us that the phrase numberK

and the reordering distanceL for any of the con-
straints cannot be too large for practical implemen-
tation. For instance, ifL = 6 andK goes from6 to
7, the order of magnitude ofNLocal, NIBM(4) and
NITG increases from2 to 3. Hence, phrases for per-
mutation should be selective to cover the most pos-
sible re-orderings. If long reordering distances are
allowed, unlikely permutations should be pruned so
that the memory consumption becomes manageable.

Reordering Sequence Distribution

So far we have discussed the issue that how to
generate permutations for the reordering model us-
ing reordering constraints. Another issue is how to
parameterize the reordering sequence distribution.
Both ITG constraints and other constraints assume

that all permutations are equally probable. However,
it makes sense to restrict those non-monotonic re-
orderings when performing the translation. This not
only helps the search of the most likely permutation,
but also guides the pruning of unlikely permutations.

P (rK1 |w̃
K
1 , wJ

1 ) = P (r1)

K
∏

k=2

P (rk|rk−1, w̃
K
1 )

= P (r1)
K
∏

k=2

P (rk|rk−1) (4)

We make a first order Markov assumption over the
phrasal reordering modelP (rK1 |w̃

K
1 , wJ

1 ) (see Eq.
(4)). The reordering sequence distribution is param-
eterized to assign decreasing likelihood to phrase re-
orderings{w̃r1 , w̃r2 , . . . , w̃rK} that diverge from the
original word order (Och et al., 1999; Kumar et al.,
2005). Supposẽwrk = wl′

l and w̃rk−1
= w

q′

q , the
reordering sequence distribution is set as Eq. (5),
wherep0 is a tuning factor. We normalize the proba-
bilities P (rk|rk−1) such that

∑K
k′=1,k′ 6=rk−1

P (rk =

k′|rk−1) = 1.

P (rk|rk−1) = p
|l−q′−1|
0

P (r1 = k) =
1

K
; k ∈ {1, 2, ...,K}

(5)
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Assume that we have a phrase sequence
{w̃1, w̃2, w̃3}, Figure 2 shows the phrasal reordering
model implemented by a reordering WFSTΩr under
the first order Markov assumption for this phrase se-
quence.

Figure 3(a2) gives one more example ofΩr,
which reorders the phrase sequence{w1, w2 w3}
into {w2 w3, w1}

6. Within the WFST paradigm, re-
ordering models under any of those constraints can
be integrated into the cross-lingual language model.

)(/~:~
111
rPwwr )|(/~:~

1222
rrPwwr )|(/~:~

2333
rrPwwr

Figure 2: An example of reordering WFSTΩr imple-
menting the phrasal reordering model under the first or-
der Markov assumption.

2.3 Phrase-to-Phrase Transduction Model

Once the phrase sequence of theLw transcript
is reordered into theLv transcript order, we use
the phrase-to-phrase transduction model specified in
Eq. (6) to perform the cross-language transduction.
Given sufficient parallel training data, the context-
dependent phrase-to-phrase transduction model can
be estimated using the GIATI method (Casacu-
berta and Vidal, 2004). However, for the trans-
lation task with scarce training data, the context-
dependent transduction probabilities may not be re-
liably estimated. Therefore, we assume that a phrase
ṽk is generated independently by each phrasew̃rk .
C(ṽk, w̃rk) is the number of times that phraseṽk is
aligned tow̃rk in the parallel corpus. This model can
be implemented by a WFSTTvw which transduces
ṽk to w̃rk . Figure 3(a3) shows an example ofTvw

transducingv2 v3 to w2 w3.

P (ṽK1 |r
K
1 , w̃K

1 , wJ
1 ) = P (ṽK1 |r

K
1 , w̃K

1 )

=

K
∏

k=1

Pk(ṽk|w̃rk)

=
K
∏

k=1

C(ṽk, w̃rk)
∑

ṽk
C(ṽk, w̃rk)

(6)

2.4 Reconstruction Model

Reconstruction modelP (vI1 |ṽ
K
1 , rK1 , w̃K

1 , wJ
1 ) oper-

ates in the opposite direction as the segmentation
6For simplicity, reordering sequence distributions are not

shown there.

model. It generates a word sequencevI1 from a
phrase sequencẽvK1 . The reconstruction model can
be implemented by a WFSTRv. An example of
Rv is shown in Figure 3(a4), which reconstructs a
phrasev2 v3 into a word sequence{v2, v3}.

3 Speech Recognition with Cross-Lingual
Language Models

The translation modelP (vI1 |w
J
1 ) can be constructed

via WFST composition (denoted by◦) (Mohri,
2009) of all the component models as shown in Eq.
(7) and Figure 3, whereT is the final composed
WFST that transducesvI1 to wJ

1 .

T = Rv ◦ Tvw ◦ Ωr ◦ Sw (7)

The cross-lingual language modelGcl is con-
structed through composition (see Eq. (8)) of
the translation model and a resource-rich language
modelG.

Gcl = T ◦G = Rv ◦ Tvw ◦ Ωr ◦ Sw ◦G (8)

As the way of integrating a resource-rich lan-
guage modelG into ASR search space (Mohri et al.,
2008), we can integrate the cross-lingual language
modelGcl into ASR search space in a globally op-
timized way as well. The search space can be im-
plemented using a transducerASR, which is for-
mulated with a unified WFST approach as shown
in Eq. (9). HereH transduces HMM states to
context-dependent phones.C represents a trans-
duction from context-dependent phones to context-
independent phones.L is a lexicon transducer which
maps context-independent phone sequences to word
strings restricted to the input symbols of the cross-
lingual language model transducerGcl.

ASR = H ◦ C ◦ L ◦Gcl (9)

Eq. (9) outputs the recognition result in a resource-
rich language. If recognition system requires recog-
nition outputs in a resource-poor language, then the
search space should be constructed as Eq. (10),
where π is a projection (Mohri, 2009) operator
which projects the input label to the output label.
Before decoding, the recognition transducerASR

can be optimized by a determinization operation
right after each composition.

ASR = H ◦ C ◦ L ◦ π(Gcl) (10)
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Figure 3: Illustration of constructing a cross-lingual language model via WFSTs: a word sequence{w1, w2, w3}
represented by theLw language modelG (b1) is segmented into a phrase sequence{w1, w2 w3} (b2);{w1, w2 w3} is
reordered into{w2 w3, w1} (b3); phrasew2 w3 is transduced tov2 v3 (b4); phrasev2 v3 is reconstructed into a word
sequence{v2, v3} (b5).wk andvk representwk andvk, respectively. ”-” refers toǫ or null symbol. Auxiliary symbols
#1, #2, · · · are used to make the WFSTdeterminizable(Mohri, 2009) such that the transducer can be optimized by a
determinization(Mohri, 2009) operation which significantly reduces the search network size.
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4 Experimental Setup

4.1 Corpus and Model Training

To investigate the performance of our proposed
cross-lingual language models, we have chosen
Cantonese as a resource-poor language and Man-
darin as a resource-rich language. We have col-
lected Cantonese parliamentary speech from the
Hong Kong Legislative Council. Currently we only
have 4152 parallel transcribed sentences containing
19.4 hours of speech. It is separated into three sets,
a training set (11.9 hours, 2700 sentences), a de-
velopment set (3.7 hours, 788 sentences), and an
evaluation set (3.8 hours, 664 sentences). The sen-
tences in the evaluation set are a bit longer than
those in the development set. The parallel transcrip-
tions of the training set constitute a parallel cor-
pus, which includes Cantonese transcription (man-
ual transcription) of 106k words and Mandarin tran-
scription (Hansard7 transcription) of 80k words. The
statistics of substitutions, insertions, deletions and
inversions identified in the parallel corpus are shown
in Table 2. Besides the parallel corpus, we have a
set of additional Mandarin transcriptions, which has
31M words.

Table 2: No. of substitutions, insertions, deletions and
inversions identified in the parallel corpus with different
segmentation orders.

Segmentation Order s = 2 s = 3 s = 4 s = 5

Substitutions 30921 22723 19011 17106

Insertions 4657 3820 3641 3295

Deletions 1365 1158 1066 1030

Inversions 3000 2876 2814 2779

Total 39943 30577 26532 24210

The training set is used for training an acous-
tic model (includingH andC) using a Maximum
Likelihood criterion. It adopts 13 MFCC coeffi-
cients, together with 13 delta coefficients and 13 ac-
celeration coefficients as the acoustic features. The
acoustic model comprises 73 Hidden Markov Mod-
els (HMMs) to represent 70 Cantonese phonemes as
well as silence, short pause, and noise. During the
acoustic model training, tied-state cross-word tri-
phones are constructed by decision tree clustering.

7Hansard is a name of the printed transcripts of parliamen-
tary debates.

The parallel corpus is used for training the trans-
lation modelT . Together with the parallel corpus,
the additional Mandarin transcriptions are used for
training an interpolated word-level trigram language
model G, where the lexicon size is about 28K. A
modified scheme of Kneser-Ney discounting is ap-
plied for the language modelG with a back-off
threshold of 1 for unigram and 2 for bigram. The
cross-lingual language modelGcl can be obtained
by composition ofT andG.

4.2 Decoding and Evaluation Method

Decoding of the speech recognition search space
ASR is performed by T 3 Decoder (Dixon et
al., 2009), which is a state-of-the-art WFST-based
LVCSR speech decoder. Decoding ofASR in Eq.
(9) gives Mandarin outputs. Decoding ofASR in
Eq. (10) gives Cantonese outputs.

In our experiments, we use the following evalua-
tion criteria:

WER (word error rate). The WER is computed
as the minimum number of substitution, insertion
and deletion operations that have to be performed
to convert the generated sentence into the reference
sentence (Zens et al., 2004). The WER relates the
speech recognition accuracy. The lower WER, the
better.

BLEU (bilingual evaluation understudy) score.
The BLEU score measures the precision ofn-grams
(unigrams, bigrams, trigrams and fourgrams) with
respect to a reference translation with a penalty for
too short sentences (Papineni et al., 2002). The
BLEU score reflects the translation accuracy. The
larger BLEU score, the better.

We perform WER evaluation of decoding out-
puts of Eq. (10) and BLEU score evaluation of
decoding outputs of Eq. (9) using the evaluation
set. The WER evaluation is on the Cantonese output
against the Cantonese reference transcription (man-
ual transcription). The BLEU score evaluation is on
the Mandarin output against the Mandarin reference
transcription (Hansard transcription).

4.3 Parameter Settings

The performance of our proposed cross-lingual lan-
guage models is sensitive to many parameters.
Firstly, segmentation orders affects phrase extrac-
tion. The optimal value depends on the language
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Table 3: WER and BLEU score for decoding results ofH ◦ C ◦ L ◦ G, H ◦ C ◦ L ◦ π(Gcl) without reordering, and
H ◦ C ◦ L ◦ π(Gcl) with reordering under various constraints.

Models H ◦ C ◦ L ◦G

H ◦ C ◦ L ◦ π(Gcl) H ◦ C ◦ L ◦ π(Gcl)

Gcl = T3 ◦G Gcl = T3 ◦G,T3 = Rv ◦ Tvw ◦Ωr ◦ Sw

T3 = Rv ◦ Tvw ◦ Sw Local Constraints IBM Constraints ITG Constraints

WER(%) 29.85 27.05 26.35 26.20 26.13

BLEU N/A 29.23 32.29 32.81 33.12

pair and the size of corpus. Secondly,p0 in the
first order Markov assumption affects the decoding
results. Thirdly, the number of reordering permu-
tations or paths are formidable when the reorder-
ing distanceL is long as suggested by Table 1.
Therefore, we apply histogram pruning to reorder-
ing paths, which only maintains top N most likely
ones. The development set is used for tuning param-
etersp0 andN .

5 Experimental Results

The evaluation results of the proposed cross-lingual
language modelsGcl with reordering under various
constraints are presented in Table 3, whereGcl =
Ts◦G = T3◦G.8 In general, reordering has a signif-
icant effect on enhancing the performance of recog-
nition and translation in the sense of WER reduc-
tion and BLEU improvement. Compared with the
cross-lingual language model without reordering,
the cross-lingual language model with reordering
under local constraints gives 0.70% absolute WER
reduction and 3.06 absolute BLEU improvement.
The cross-lingual language model with reordering
under IBM constraints gives 0.85% absolute WER
reduction and 3.58 absolute BLEU improvement.
The cross-lingual language model with reordering
under ITG constraints yields the best performance,
with 0.92% absolute WER reduction and 3.89 abso-
lute BLEU improvement. All WER improvements
pointed out here are statistically significant at 99%
confidence according to a two-proportional z-test,
and all BLEU improvements are statistically signifi-
cant at 95% confidence according to a paired student
t-test using bootstrap resampling.

8We have chosen segmentation orders = 3 because it works
the best in our system.

6 Conclusions

We have proposed cross-lingual language model-
ing with phrase-level syntactic reordering for low-
resource speech recognition. The cross-lingual lan-
guage modeling enriches a resource-poor language
model by leveraging the language model from a
closely related resource-rich language. It provides
an effective method to solve the low-resource lan-
guage modeling challenge by using a large amount
of resource-rich language (e.g. Mandarin) data
and a small amount of resource-poor language (e.g.
Cantonese) data, as well as some parallel data of
resource-poor and resource-rich languages. With
a cross-lingual language model, our ASR system
can decode speech into transcriptions, either in a
resource-poor language or a resource-rich language,
using a single WFST-based speech decoder.

We have presented a first end-to-end WFST
source to target language transcription and transla-
tion system with syntactic reordering and global op-
timization. Our work is the first to use ITG con-
straints for the syntactic reordering in such an in-
tegrated system. We also did comparative study
of ITG constraints, IBM constraints and local con-
straints in the reordering model, for completeness.
We have also presented the determinizable design of
each transducer for composing a cross-lingual lan-
guage model such that we can optimize the search
network by determinization. This is crucially im-
portant to successfully build a practical integrated
system, and, of course, the work is extremely chal-
lenging.

Experiments on Cantonese recognition and Can-
tonese to Mandarin translation tasks have shown that
our proposed cross-lingual language model substan-
tially improves the performance of the recognition
and translation. The best system gives 12.5% rel-
ative WER reduction in Cantonese (resource-poor
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language) transcriptions over the system using inter-
polation. The best reordering model gives 3.4% rela-
tive WER reduction and 13.3% relative BLEU score
improvement in Mandarin (resource-rich language)
transcriptions over the system without reordering.
The improvements have been found to be statisti-
cally significant.

Even though the objective of our work is for
speech recognition, our proposed cross-lingual lan-
guage modeling can be easily applied to speech
translation of other language pairs for efficient di-
rect decoding from source speech to target text.
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