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Abstract

We propose an adaptive ensemble method to
adapt coreference resolution across domains.
This method has three features: (1) it can op-
timize for any user-specified objective mea-
sure; (2) it can make document-specific pre-
diction rather than rely on a fixed base model
or a fixed set of base models; (3) it can auto-
matically adjust the active ensemble members
during prediction. With simplification, this
method can be used in the traditional within-
domain case, while still retaining the above
features. To the best of our knowledge, this
work is the first to both (i) develop a domain
adaptation algorithm for the coreference reso-
lution problem and (ii) have the above features
as an ensemble method. Empirically, we show
the benefits of (i) on the six domains of the
ACE 2005 data set in domain adaptation set-
ting, and of (ii) on both the MUC-6 and the
ACE 2005 data sets in within-domain setting.

1 Introduction

Coreference resolution is a fundamental component
of natural language processing (NLP) and has been
widely applied in other NLP tasks (Stoyanov et al.,
2010). It gathers together noun phrases (mentions)
that refer to the same real-world entity (Ng and
Cardie, 2002). In the past decade, several corefer-
ence resolution systems have been proposed, e.g.,
(Ng and Cardie, 2002), (Denis and Baldridge, 2007)
and (Stoyanov et al., 2010). All of these focus on
the within-domain case — to use the labeled doc-
uments from a domain to predict on the unlabeled
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documents in the same domain. However, in prac-
tice, there is usually limited labeled data in a specific
domain of interest, while there may be plenty of la-
beled data in other related domains. Effective use of
data from the other domains for predicting in the do-
main of interest is therefore an important strategy in
NLP. This is called domain adaptation, and, in this
context, the former domains is called the source do-
mains, while the latter domain is called the target
domain (Blitzer et al., 2006; Jiang and Zhai, 2007).

Based on the type of the knowledge to be trans-
ferred to the target domain, domain adaptation learn-
ing can be categorized as instance-based method,
feature-based method, parameter-based method or
relational-knowledge-based method (Pan and Yang,
2010). Previously, domain adaptation learning has
been successfully used in other NLP tasks such as
relation extraction (Jiang, 2009) and POS tagging
(Jiang and Zhai, 2007), semantic detection (Tan et
al., 2008), name entity recognition (Guo et al., 2009)
and entity type classification (Jiang and Zhai, 2007).
However, to the best of our knowledge, it has yet to
be explored for coreference resolution.

In this paper, we propose an adaptive ensemble
method to adapt coreference resolution across do-
mains. This proposed method can be categorized
as both feature-based and parameter-based domain
adaptation learning methods. It has three main steps:
ensemble creation, cross-domain knowledge learn-
ing and decision inference. The first step creates
the ensemble by collecting a set of base models,
which can be any individual methods with various
features/instances/parameters settings. The second
step analyzes the collected base models from vari-
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ous domains and learns the cross-domain knowledge
between each target domain and the source domain.
The third step infers the final decision in the target
domain based on all ensemble results.

In addition to domain adaptation, the proposed
adaptive ensemble method has the following fea-
tures that are absent in the other ensemble methods.
First, it can optimize any user-specified objective
measure without using a separate development set.
Second, it can provide document-specific prediction
instead of relying on a fixed base model or a fixed
set of base models for all documents. Third, it can
automatically adjust the active ensemble members
in decision inference so that underperforming base
models are filtered out. The proposed method can
also be used in the traditional within-domain prob-
lem with some simplifications.

We conduct experiments for coreference resolu-
tion under both the within-domain setting and the
domain-adaptation setting. In the within-domain
setting, we compare the proposed adaptive ensemble
method with the mention-pair methods and other en-
semble methods on the MUC-6 and ACE 2005 cor-
pora. The results show that the proposed adaptive
ensemble method consistently outperforms these
baselines. In the domain adaptation setting, we use
the ACE 2005 corpora to create six domain adap-
tation tasks to evaluate the effectiveness of our do-
main adaptation learning. The results show that our
method outperforms baselines that do not use do-
main adaptation.

The paper is organized as follows. Section 2 re-
views some existing ensemble methods for coref-
erence resolution. Section 3 presents the proposed
adaptive ensemble method for domain adaptation
problems. Section 4 presents a special case of
the proposed method for the within-domain setting.
Section 5 presents the experiments under both the
within-domain and the domain adaptation settings.
We conclude and discuss future work in Section 6.

2 Existing Ensemble Methods

Many ensemble methods have been proposed in the
machine learning literature, e.g., bagging (Breiman,
1996), boosting (Freund and Schapire, 1996), ran-
dom forest (Breiman, 2001) and mixture models
(Bishop, 2007). Some of them have been success-

fully used in coreference resolution (Pang and Fan,
2009; Munson et al., 2005; Rahman and Ng, 2011a).
However, these methods only focus on the within-
domain setting.

All these methods comprise of two steps: ensem-
ble creation and decision inference. Ng and Cardie
(2003) and Vemulapalli et al. (2009) applied the
bagging and boosting techniques on the documents
to create the ensemble. Recently, Rahman and Ng
(2011a) further enriched the ensemble by consider-
ing various feature sets and learning models. Specif-
ically, three types of feature sets (conventional, lex-
ical and combined) and three learning algorithms
(mention-pair model, mention-ranking model and
the clustering-ranking model) are employed. In de-
cision inference, these methods used voting or av-
eraging to get the final prediction. Rahman and Ng
(2011a) proposed four voting strategies for predic-
tion: applying best Per-NP-Type model, antecedent-
based voting, cluster-based voting and weighted
clustering-based voting. Although their approaches
achieved promising results in their end-to-end sys-
tems, these do not consider the user-specific perfor-
mance measure during the ensemble learning.

Another branch of ensemble methods uses model
selection (Munson et al., 2005; Ng, 2005), simi-
lar to the conventional model selection method for
generic parameter-tuning. The method of (Munson
et al., 2005) first collects a large family of base mod-
els. Then, a separate tuning set with ground truth
is used to evaluate each base model’s performance.
Finally, an iterative approach is used to select the
best performed base models to form the ensemble.
Like other methods, this method uses the average
strategy in decision inference. Similarly, the method
of (Ng, 2005) ranks base models according to their
performance on separate tuning set, and then uses
the highest-ranked base model for predicting on test
documents. These methods require a separate set of
labeled documents to assess the generalization per-
formance.

3 Adaptive Ensemble Method

In this section, we give our adaptive ensemble
method for domain adaptation for coreference res-
olution. We first introduce some notations.

For a corpus of N documents, document Di
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is the ith document, and it contains ni men-
tions mi = (m1

i , . . . ,m
ni
i ) with the ordering of

each mention as they appear in the document.
The index set of all mention pairs in Di is
Ei = {(a, b) | 1 ≤ a < b ≤ ni}. The transpose of
vector x is x′. The performance measure function
for document D is Λ(g(D); f(D)), where g(D) and
f(D) represent the coreference ground-truth and
prediction by model f on document D respectively.
In coreference resolution, typical performance mea-
sure functions include MUC (Vilain et al., 1995),
Rand index (Rand, 1971), B-CUBED (Bagga and
Baldwin, 1998) and CEAF (Luo, 2005). In this pa-
per, Λ can either be used as part of an objective func-
tion in learning or as an evaluation measure for as-
sessing the performance of a coreference system.

We consider the typical domain adaptation prob-
lem, which has one target domain t and p (p ≥ 1)
source domains s1, . . . , sp. The target domain
contains N (t) labeled documents and M unla-
beled documents, while source domains contain
N (s1), . . . , N (sp) labeled documents. Unlabeled
data in the source domains are not used. We use
D(v)

i for the ith document in domain v.

3.1 Ensemble Creation

Mention-pair methods have been widely-used for
coreference resolution due to their efficiency and
effectiveness, and they have often been taken as
base models in ensemble learning (Rahman and Ng,
2011a; Munson et al., 2005). We adopt a similar ap-
proach by using the standard mention-pair method
(Soon et al., 2001; Ng and Cardie, 2002) with var-
ious parameters to form the ensemble, though our
framework can incorporate other coreference meth-
ods in the ensemble. Mention-pair methods usu-
ally comprise of two steps. The first step classifies
every mention pair into either coreference or non-
coreference with a confidence between 0 and 1. The
second step partitions the set of mentions into clus-
ters based on the confidence values, where mentions
in each cluster are presumed to be the same under-
lying entity.

Classification We use Soon’s approach (Soon et
al., 2001) to select a portion of mention pairs to train
a binary classifier because this has better generaliza-
tion (Soon et al., 2001). The positive mention pairs

are the anaphoric mentionmb
i (b = 2, . . . , ni) paired

with its closest antecedent mention ma
i (a < b),

while the negative mention pairs are the mention
mb

i paired with each of the intervening mentions
ma+1

i ,ma+2
i , . . . ,mb−1

i . Following (Rahman and
Ng, 2011a), our binary classifier is SVM with the
regularization parameter C. The classifier is trained
with the software Liblinear (Fan et al., 2008), which
is also used to give probabilistic binary predictions.

Clustering We adopt closest-first clustering (Soon
et al., 2001) and best-first clustering (Ng and Cardie,
2002) to determine whether a mention pair is coref-
erent. For each mention, the closest-first method
(or best-first method) links it to the the closest (or
the best) preceding mention if the confidence value
(obtained from the first step) of this mention pair is
above a specified threshold t.

Features For each mention pair, we use the
d = 39 features proposed by Rahman and Ng
(2011b) to represent it. These features can be ex-
tracted using the Reconcile software (Stoyanov et
al., 2010). We use ϕ̂a,b ∈ Rd to represent the fea-
tures of a mention pair (ma,mb). With this feature
set, we found that the linear kernel is insufficient to
fit the training data. However, using an rbf kernel
would be too computationally expensive. Hence, we
augment ϕ̂a,b with a d̂-dimensional feature vector
[ψ1 · · · ψd̂] to give a new feature vector

ϕa,b = [ϕ̂a,b ψ1 · · · ψd̂], (1)

where the d̂ augmented features [ψ1 · · · ψd̂] are de-
termined by

ψj = exp(−
∥ϕ̂a,b − cj∥2

d
),∀j = 1, . . . , d̂. (2)

Herein, c1, . . . , cd̂ are the d̂ centroids of the
randomly-selected subset C from all labeled men-
tion pairs {ϕ̂a,b | (a, b) ∈ E1, . . . , EN}. In our ex-
periments, we use the k-means algorithm to obtain
the centroids of C.

Ensemble For domain v, we create a domain-
specified ensemble F (v) = {f1, . . . , f ℓ} of ℓ base
models by including the closest-first and best-first
mention-pair methods with the differentC and t val-
ues. If multiple domains are provided, we gather all
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the domain-specific ensembles into a grand ensem-
ble F = F (s1) ∪ · · · F (sp) ∪ F (t).

3.2 Cross-domain Knowledge Learning
Generally, the feature distributions are different in
different domains. Therefore, effective domain
adaptation requires using some knowledge of cross-
domain similarity. We now propose an approach
to learn the parametric-distances between the doc-
uments in source and target domains to characterize
this cross-domain knowledge.

Distances between documents A document Di is
represented by the sum of its new mention-pair fea-
tures (Yu and Joachims, 2009; Finley and Joachims,
2005):

Φ(Di) =
∑

(a,b)∈Ei

ϕa,b. (3)

The distance between a source labeled document
D(su)

i in domain su and a target labeled document
D(t)

j is parameterized as

Dist(D(su)
i ,D(t)

j ; µ) = µ′∆(D(su)
i ,D(t)

j ), (4)

where vector µ ∈ Rd+d̂ is to be learned, and vec-
tor function ∆(D(su)

i ,D(t)
j ) ∈ Rd+d̂ is the Euclidean

distance vector between two documents given by

∆(D(su)
i ,D(t)

j ) = (Φ(D(su)
i )− Φ(D(t)

j ))

⊙ (Φ(D(su)
i )− Φ(D(t)

j )). (5)

The operator ⊙ is the element-wise product. Dis-
tance (4) is actually the Mahanalobis distance (Yang
and Jin, 2006) with the scaling of features:

(Φ(D(su)
i )− Φ(D(t)

j ))′W (Φ(D(su)
i )− Φ(D(t)

j )),

where W is a diagonal matrix with diagonal entries
µ. MatrixW is diagonal to reduce computation cost
and to increase statistical confidence in estimation
when there is limited target labeled data (as is typi-
cally the case in domain adaptation).

That µ is the vector of diagonal entries in W re-
quires that each entry in µ is non-negative. If the lth

entry of µ is non-zero, then the lth feature in ϕa,b

contribute towards (4). To ensure that at least B fea-
tures are used, we also constrain that each entry in µ
is not more than unity and that 1′µ ≥ B.

Matching best base models For each labeled doc-
ument D(v)

j in domain v, we identify the best per-

forming base model f (v)∗

j in F (v) with

f
(v)∗

j = arg max
f∈F(v)

Λ(g(D(v)
j ); f(D(v)

j )), (6)

where Λ(· ; ·) is the the performance objective func-
tion to be instantiated in Section 3.3.

Then, for each source domain su and document
D(t)

j in the target domain, we find the set I(D(t)
j ; su)

of the documents in domain su that have the same
best performing base model as that for D(t)

j :

I(D(t)
j ; su) = {D(su)

i | f (su)∗

i = f
(t)∗

j ,

i = 1, . . . , N (su)}. (7)

The key idea in I(D(t)
j ; su) is to select documents

in a source domain su that are similar to document
D

(t)
j in the sense that they have the same best per-

forming base model under a specific Λ. This ensures
that optimization step (to be described next) is tar-
geted towards Λ and not confounded by document
pairs that should be disimilar anyway.

Optimization We determine the vector µ by mini-
mizing the parametric distance (4) between all target
labeled documents and their corresponding source
labeled document identified in the previous step.
That is,

min
µ

µ′
N(t)∑
j=1

∑
D(su)

i ∈I(D(t)
j ;su)

∆(D(su)
i ,D(t)

j ). (8)

The solution µ to this linear programming problem
can be regarded as the cross-domain knowledge be-
tween source domain su and the target domain t. Re-
peating for every source domain su, u = 1, . . . , p,
gives the cross-domain knowledge between every
source domain and the target domain.

The above three-steps procedure selects the effec-
tive features for each pair of source and target do-
mains. Generally, the results of feature selection
vary for different pairs of source and target domains,
due to the diversities of the feature distributions in
different domains.
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3.3 Decision Inference
After ensemble creation and cross-domain knowl-
edge learning, we need to provide the coreference
result on an unseen document in the target domain
based on the results of all the members in F . Un-
like the previous methods using the voting/average
or their variants (Pang and Fan, 2009; Munson et
al., 2005; Rahman and Ng, 2011a), we propose the
following nearest neighbor based approach.

Given the grand ensemble F and all labeled doc-
uments, the task is to predict on the target unlabeled
document D(t)

j , j = 1, . . . ,M . The idea of the pro-
posed method is to first find the k most similar docu-
ments N (D(t)

j ) from all labeled documents for doc-

ument D(t)
j . Then, we choose the base model that

performs best on the documents in N (D(t)
j ) as the

method f (t)∗

j for document D(t)
j .

Firstly, we employ the parametric-distance (4) to
measure the similarity between any labeled docu-
mentD(v)

i ,∀v, i, from all source and target domains,
and the target unlabeled document D(t)

j . Here, the
cross-domain knowledge µ in (4) has already been
determined by the optimization (8) in Section 3.2.

Secondly, based on the computed distance values,
we select k nearest neighbor documents for the tar-
get unlabeled document D(t)

j from all labeled doc-

uments D(v)
i ,∀v, i. These k nearest neighbor docu-

ments for document D(t)
j make up the set N (D(t)

j ).
Thirdly, the optimal base model for the unlabeled

document D(t)
j prediction is chosen by

f
(t)∗

j = arg max
Dp∈N (D(t)

j ), f∈F
Λ(g(Dp); f(Dp)). (9)

We can instantiate the performance objective func-
tion Λ(g(·); f(·)) in expressions (6) and (9) to be
any coreference resolution measures, such as MUC,
Rand index, B-CUBED and CEAF. We have not
known of other (ensemble) coreference resolution
methods that optimize for these measures. This ab-
sence is possibly due to their complex discrete and
non-convex properties.

3.4 Discussion
The above proposed adaptive ensemble approach in-
corporates the domain adaptation knowledge during

(a) the identification of similar documents between
different domains and (b) the determination of ac-
tive ensemble members. Beside these, it has the fol-
lowing features over other (ensemble) coreference
methods: (i) It can optimize any user-specified ob-
jective measure via (6) and (9). An intuitive rec-
ommendation is to directly optimize for an objective
function that matches the evaluation measure. (ii)
It can make document-specific decisions, as expres-
sions (4) and (9) deal with each testing document
separately. (iii) The prediction on the testing docu-
ment D(t)

j is not based on all members in F but only

on the active ensemble members N (D(t)
j ). This can

filter out some potentially unsuitable base models
for document D(t)

j . Moreover, the active ensemble

members N (D(t)
j ) is dynamically adjusted for each

test document.
For computational cost, the majority is by ensem-

ble creation, since a large number of base models
are usually used. This is common among all ensem-
ble methods. In contrast, the costs in (4) and (9)
are trivial as both are at the document level. The
cost of generating centroids in (2) can also be high
if the size of C is more than ten thousand, but this
is still negligible compared to the cost of ensemble
creation.

4 Special Case: Within-domain Setting

The adaptive ensemble method presented in Sec-
tion 3 is for the domain adaptation setting. How-
ever, it is possible to simplify it for the special case
of within-domain setting. In the within-domain set-
ting, the adaptive ensemble method only has ensem-
ble creation and decision inference steps.

In the ensemble creation step, we still use the
closest-first and best-first mention-pair methods
with various parameters to create the ensemble. Un-
like the domain adaptation setting, here we can only
use the labeled documents in the target domain to
create the ensemble F (t). Therefore, the size of en-
semble here is reduced by p times compared to the
domain adaptation setting.

In the decision inference step, we directly use the
Euclidean distance ∆(D(t)

i ,D(t)
j ) in (5) for the la-

beled document D(t)
i , i = 1, . . . , N (t) and unlabeled

document D(t)
j , j = 1, . . . ,M . Based on these dis-
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tance values, we similarly select k nearest neighbor
documentsN (D(t)

j ) for documentD(t)
j , and then de-

termine the final method f (t)∗

j for document D(t)
j by

(9) but with F replaced by F (t).

5 Experiments

We test the proposed adaptive method and sev-
eral baselines under both the within-domain and
the domain adaptation settings on the MUC-6 and
ACE 2005 corpora. MUC-6 contains 60 docu-
ments. ACE 2005 contains 599 documents from
six different domains: Newswire (NW), Broadcast
News (BN), Broadcast Conversations (BC), Web-
blog (WL), Usenet (UN), and Conversational Tele-
phone Speech (CTS). In all our experiments, we use
two popular performance measures, B-CUBED F-
measure (Bagga and Baldwin, 1998) and CEAF F-
measure (Luo, 2005) 1, to evaluate the coreference
resolution result. Since the focus of the paper is to
investigate the effectiveness of coreference resolu-
tion methods, we use the gold standard mentions in
all experiments.

For the proposed method, the ensemble F (v) in
every domain v has 208 members totally. They
are created by the closest-first and the best-first
mention-pair methods using SVM trained with pa-
rameter C taking values

C ∈ [0.001, 0.01, 0.1, 1, 10, 100, 1000, 1000] (10)

and using clustering with the threshold parameters t
taking values

t ∈ [0.2, 0.25, 0.3, 0.34, 0.38, 0.4, 0.42, 0.44,

0.46, 0.48, 0.5, 0.6, 0.7].
(11)

The size of the selected subset C is fixed to 2000,
and the number of centroids is determined by
the validation procedure from four possible values
[10, 20, 30, 40]. We use k-means algorithm to com-
pute the centroids. Due to the randomness of sub-
set C and k-means algorithm, we run the proposed
method 5 times and report the average results. For
the number of nearest neighbor k, we report three
results, each for k ∈ {1, 3, 5}.

1More exactly, we use the widely used ϕ3-CEAF F-measure.

Table 1: The settings in the experiments under within-
domain setting on MUC-6 and ACE 2005 corpora. N (t)

and M (t) and Total are the numbers of training, testing
and all documents respectively.

Domain N (t) M (t) Total

MUC-6 30 30 60
BC 48 12 60
BN 181 45 226
CTS 31 8 39
NW 85 21 106
UN 39 10 49
WL 95 24 119

5.1 Within-domain Setting
We conduct the experiment under the within-domain
setting on seven tasks, with the per-domain setting
shown in Table 1. The validation set is created by
further splitting training data into validation train-
ing and validation testing sets with the ratio of N(t)

M(t) ,
where N (t) and M (t) are given in Table 1. In this
experiment, we attempt to study the following three
things. First, we investigate whether the proposed
ensemble method is better than the tuned mention-
pair methods and other ensemble methods. Second,
we investigate the optimal number of active ensem-
ble members. Third, we investigate the impact to the
performance of the coreference system, when differ-
ent objective measures are used with different eval-
uation measures.

For the proposed ensemble method, we experi-
mented with nearest neighbor set of sizes k = 1, 3, 5
paired with objective function Λ in (9) set to Rand
Index, CEAF or B-CUBED. For baselines, the fol-
lowing four are used:

• Two mention-pair baselines. Two baselines are
the closest-first and the best-first mention-pair
methods with the tuned parameters C and t. In
the tuning process, the ranges of C and t are
specified in (10) and (11) respectively. These
two mention-pair methods are named as Sc and
Sb for short.

• Two existing ensemble baselines. The other
two baselines are the ensemble methods us-
ing the voting procedure in decision inference.
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Table 2: B-CUBED F-measure results by all methods under within-domain setting on MUC-6 and ACE 2005 corpora.

Baselines Λ = Rand Λ = CEAF Λ = B-CUBED

Sc Sb Em Ec k=1 3 5 k=1 3 5 k=1 3 5

MUC-6 66.1 66.1 61.9 57.1 67.6 67.3 68.5 65.2 64.1 65.5 68.7 66.7 67.5
BC 64.1 65.1 34.2 24.8 65.5 65.4 65.7 65.9 65.5 62.9 66.5 66.1 66.0
BN 75.9 74.8 57.7 48.0 75.7 75.1 74.9 76.3 75.9 75.3 76.4 76.3 76.7
CTS 71.0 65.1 39.6 31.5 70.6 69.3 68.3 71.3 69.9 70.4 71.7 70.6 69.1
NW 74.6 74.4 45.6 34.1 74.3 74.8 72.9 73.2 71.4 70.1 75.0 74.6 73.7
UN 69.5 70.2 44.1 27.4 70.4 69.9 69.3 69.6 67.6 66.0 70.3 71.4 70.3
WL 73.8 75.4 69.8 58.5 75.5 74.6 73.9 75.5 73.0 73.4 76.2 75.5 75.6

Average 70.7 70.2 50.4 40.2 71.4 70.9 70.5 71.0 69.6 69.1 72.1 71.6 71.3

These two baselines use the same ensemble as
the proposed method for fair comparison. In
decision inference, these two baselines use the
mention-based voting and cluster-based voting
respectively, as proposed in (Rahman and Ng,
2011a). In these two baselines, all members
in the ensemble participate the voting process.
These two ensemble baselines are named as Em

and Ec for short.

Tables 2 and 3 show the experiment results using
B-CUBED and CEAF as the evaluation measures
respectively. The best result for each of the seven
tasks is highlighted in bold. The last rows of the ta-
bles show the average performance value among all
seven tasks.

From the results, we observe that the proposed en-
semble method with objective function matching the
evaluation measure and with k = 1 generally per-
forms best among all methods and all tasks. Surpris-
ingly, the common ensemble method with mention-
based voting Em and cluster-based voting Ec strate-
gies do not perform well. The plausible reason is
the current ensemble may incorporate some bad base
models due to inappropriate C and t values, which
would undermine the voting result. Nevertheless, it
is difficult to judge the quality of the ensemble mem-
bers in advance. Therefore, this validates the impor-
tance of choosing an active set of ensemble members
in decision inference. The better performance of the
proposed method over the mention-pair baselines Sc

and Sb is probably because of the document-specific
decision. This is reasonable, as different base mod-

els in the ensemble would be good at predicting
the different documents. For the proposed ensem-
ble method with various configurations, we observe
using an objective function that matches the evalu-
ation measures is generally better. An exception is
the MUC-6 and BN tasks in CEAF F-measure. We
also observe that the ensemble method with k = 1
is generally better than that with the larger k, except
the BN and UN tasks in B-CUBED F-measure. This
suggests that the fewer the active ensemble members
the better the generalization performance. Follow-
ing (Rahman and Ng, 2011a), we also conduct the
Student’s t-test, and the results show that the pro-
posed method with the objective function matching
the evaluation measure and with k = 1 is signifi-
cantly better than the best baseline. In contrast, the
two baseline ensemble methods that use voting are
significantly worse than the best baseline. The sig-
nificance level 0.05.

5.2 Domain-adaptation Setting

We employ ACE 2005 corpora to simulate the do-
main adaptation settings in experiments. Specifi-
cally, we create six domain adaptation tasks, BC,
BN, CTS, NW, UN, WL in total. Each task has one
target domain and five source domains. For exam-
ple, in the task UN, the target domain is UN while
the other five source domains are BC, BN, CTS, NW
and WL. The number of labeled documents in each
domain is as the same as in Table 1, except when
that domain is the target domain, in which case we
use only five labeled documents. The number of test
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Table 3: CEAF F-measure results by all methods under within-domain setting on MUC-6 and ACE 2005 corpora.

Baselines Λ = Rand Λ = B-CUBED Λ = CEAF

Sc Sb Em Ec k=1 3 5 k=1 3 5 k=1 3 5

MUC-6 62.6 62.5 62.7 57.5 62.0 60.6 61.0 64.5 62.7 63.8 63.1 58.7 59.2
BC 58.8 56.5 36.6 26.6 56.7 57.1 57.0 58.3 58.8 57.2 59.3 59.2 58.4
BN 67.9 66.5 55.1 44.7 69.4 69.4 69.9 69.8 70.2 69.6 69.5 69.0 68.7
CTS 61.0 60.7 38.6 31.5 67.1 66.9 63.6 68.1 68.4 68.2 68.5 67.6 67.7
NW 66.9 66.4 41.1 31.2 68.4 68.0 64.6 69.2 68.4 66.4 69.3 66.1 66.7
UN 62.5 63.5 46.2 28.9 62.9 61.8 60.9 62.2 63.7 62.9 63.9 61.5 60.4
WL 69.7 70.3 63.5 54.3 70.7 70.2 72.5 71.5 71.4 72.3 72.4 69.4 70.0

Average 64.2 63.8 49.1 39.2 65.3 64.9 64.2 66.2 66.2 65.8 66.6 64.5 64.5

(or unlabeled) documents in the target document is
also the same as in Table 1. The validation set is
created similarly as in the experiment under within-
domain setting.

For the proposed ensemble method, we heuristi-
cally determine the parameter B in µ to be the num-
ber of non-zero elements in Γ, where

Γ =

N(t)∑
j=1

∑
D(su)

i ∈I(D(t)
j ;su)

∆(D(su)
i ,D(t)

j ).

Making use of the conclusion in the experiments
for the within-domain setting, we fix the optimized
measure to be the final performance measure in (9).
We compare with the following five baselines.

• Two mention-pair baselines in within-domain
setting. Two baselines are same as Sc and Sb in
the experiments under within-domain settings,
except that the labeled training documents are
reduced to 5.

• Three proposed adaptive ensemble methods
without cross-domain knowledge learning.
These three baselines uses neighborhood sizes
k = 1, 3, 5 with the grand ensemble F rather
than the target domain ensemble F (t). In an-
other words, these three baselines are the same
as the proposed method, but with µ = 1.

Tables 4 and 5 show the experimental results in
the domain adaptation settings using B-CUBED and

CEAF as the final performance measures respec-
tively. From the results, we can see that the pro-
posed method with cross-domain knowledge gener-
ally outperforms all the five baselines. Among them,
the best proposed domain adaptation method on av-
erage outperforms the best of Sc, Sb by 7.2% for B-
CUBED F-measure and 3% for CEAF F-measure.
The grand-ensemble baselines are also significantly
better than the within-domain baselines. These re-
sults clearly illustrate the usefulness of making use
of the labeled documents in the source domains. For
the comparison between the proposed method with
and without cross-domain knowledge learning, all
tasks, except UN task in CEAF F-measure, show
the superiority of the proposed method with cross-
domain knowledge learning. Among them, except
tasks BN and CTS in B-CUBED F-measure, the per-
formance gains are among 1%—3% for all tasks in
both measures. These results verify the necessity
of cross-domain knowledge learning. For the com-
parison of the proposed method with different k,
unlike the results in the within-domain setting, the
results here show that choosing optimal k is task-
dependent. The reason of this observation is not
clear yet. It is plausible due to the increased uncer-
tainties from multiple domains.

6 Conclusions and Future Work

In this paper, we proposed an adaptive ensem-
ble method for coreference resolution under both
within-domain and domain adaptation settings. The
key advantage of the proposed method is incor-
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Table 4: B-CUBED F-measure results by all methods under domain adaptation setting on ACE 2005 corpora, with Λ
set to B-CUBED. The within-domain and grand ensemble methods are the baselines.

Within-domain Grand ensemble Domain-adaptation

Sc Sb k=1 3 5 k=1 3 5

BC 58.0 65.1 65.0 67.1 67.0 67.5 68.2 67.7
BN 72.7 73.8 75.0 75.3 75.0 75.3 75.4 74.3
CTS 63.2 62.1 65.7 64.8 64.0 64.1 65.8 65.8
NW 54.9 54.6 73.6 73.1 74.2 73.0 74.4 74.7
UN 66.5 42.7 67.2 68.2 68.9 69.7 68.7 68.2
WL 68.6 73.2 73.0 72.6 73.4 74.8 74.5 73.6

Average 64.0 61.9 69.9 70.2 70.4 70.7 71.2 70.7

Table 5: CEAF F-measure results by all methods under domain adaptation setting on ACE 2005 corpora, with Λ set
to CEAF. The within-domain and grand ensemble methods are the baselines.

Within-domain Grand ensemble Domain-adaptation

Sc Sb k=1 3 5 k=1 3 5

BC 55.7 43.7 56.9 57.6 57.3 58.5 58.8 57.2
BN 65.8 67.2 65.9 64.1 65.8 63.9 62.7 67.2
CTS 56.0 51.0 56.6 54.6 53.7 58.6 57.4 55.3
NW 52.7 55.0 66.4 64.1 63.8 69.4 66.7 66.8
UN 64.0 39.1 63.6 63.7 64.4 64.3 62.9 62.7
WL 70.3 64.2 68.1 67.8 70.2 67.3 69.6 72.0

Average 60.7 53.4 62.9 62.0 62.5 63.7 63.0 63.5

porating the cross-domain knowledge to aid coref-
erence resolution learning. This is useful when
the labeled coreference labels are scarce. We also
demonstrate that the proposed adaptive ensemble
method can be readily applied to conventional coref-
erence tasks without cross-domain knowledge learn-
ing. Compared with existing ensemble methods, the
proposed method is simultaneously endowed with
the following three distinctive features: optimizing
any user-specified performance measure, making the
document-specific prediction and automatically ad-
justing the active ensemble members. In the exper-
iments under both within-domain settings and do-
main adaptation settings, the results evidence the
effectiveness of the proposed cross-domain knowl-
edge learning method, and also demonstrate the su-
periority of the proposed adaptive ensemble method
over other baselines.

Currently, the proposed method relies on some

limited target annotations. It would be interesting
to consider the pure unsupervised tasks that have no
any target annotations. Besides, to develop some
better ways for document-level representation, e.g.,
incorporating the domain knowledge, also deserves
our attentions. Similarly, to extend the diagonal Ma-
halanobis matrix to the general covariance matrix is
also desirable. Last but not least, to find a more sys-
tematical way to determine the optimal k in the pro-
posed method is also our possible future work.
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