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Abstract

We present a new family of models for unsu-
pervised parsing,Dependency and Boundary
models, that use cues at constituent bound-
aries to inform head-outward dependency tree
generation. We build on three intuitions that
are explicit in phrase-structure grammars but
only implicit in standard dependency formu-
lations: (i) Distributions of words that oc-
cur at sentence boundaries — such as English
determiners — resemble constituent edges.
(ii) Punctuation at sentence boundaries fur-
ther helps distinguish full sentences from
fragments like headlines and titles, allow-
ing us to model grammatical differences be-
tween complete and incomplete sentences.
(iii) Sentence-internal punctuation boundaries
help with longer-distance dependencies, since
punctuation correlates with constituent edges.
Our models induce state-of-the-art depen-
dency grammars for many languages without
special knowledge of optimal input sentence
lengths or biased, manually-tuned initializers.

1 Introduction

Natural language is ripe with all manner of bound-
aries at the surface level that align with hierarchical
syntactic structure. From the significance of func-
tion words (Berant et al., 2006) and punctuation
marks (Seginer, 2007; Ponvert et al., 2010) as sepa-
rators between constituents in longer sentences — to
the importance of isolated words in children’s early
vocabulary acquisition (Brent and Siskind, 2001)
— word boundaries play a crucial role in language
learning. We will show that boundary information
can also be useful in dependency grammar induc-
tion models, which traditionally focus on head rather
than fringe words (Carroll and Charniak, 1992).

DT NN VBZ IN DT NN

[The check] is in [the mail].
︸ ︷︷ ︸

Subject
︸ ︷︷ ︸

Object

Figure 1: A partial analysis of our running example.

Consider the example in Figure 1. Because the
determiner (DT) appears at the left edge of the sen-
tence, it should be possible to learn that determiners
may generally be present at left edges of phrases.
This information could then be used to correctly
parse the sentence-internal determiner inthe mail.
Similarly, the fact that the noun head (NN) of the ob-
ject the mailappears at the right edge of the sentence
could help identify the nouncheckas the right edge
of the subjectNP. As with jigsaw puzzles, working
inwards from boundaries helps determine sentence-
internal structures of both noun phrases, neither of
which would be quite so clear if viewed separately.

Furthermore, properties of noun-phrase edges are
partially shared with prepositional- and verb-phrase
units that contain these nouns. Because typical head-
driven grammars model valence separately for each
class of head, however, they cannot see that the left
fringe boundary,The check, of the verb-phrase is
shared with its daughter’s,check. Neither of these
insights is available to traditional dependency for-
mulations, which could learn from the boundaries
of this sentence only that determiners might have no
left- and that nouns might have no right-dependents.

We propose a family of dependency parsing mod-
els that are capable of inducing longer-range im-
plications from sentence edges than just fertilities
of their fringe words. Our ideas conveniently lend
themselves to implementations that can reuse much
of the standard grammar induction machinery, in-
cluding efficient dynamic programming routines for
the relevant expectation-maximization algorithms.
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2 The Dependency and Boundary Models

Our models follow a standard generative story for
head-outward automata (Alshawi, 1996a), restricted
to the split-head case (see below),1 over lexical word
classes{cw}: first, a sentence rootcr is chosen, with
probability PATTACH(cr | ⋄; L); ⋄ is a special start
symbol that, by convention (Klein and Manning,
2004; Eisner, 1996), produces exactly one child, to
its left. Next, the process recurses. Each (head)
word ch generates a left-dependent with probability
1 − PSTOP( · | L; · · · ), where dots represent additional
parameterization on which it may be conditioned. If
the child is indeed generated, its identitycd is cho-
sen with probabilityPATTACH(cd | ch; · · · ), influenced
by the identity of the parentch and possibly other pa-
rameters (again represented by dots). The child then
generates its own subtree recursively and the whole
process continues, moving away from the head, un-
til ch fails to generate a left-dependent. At that point,
an analogous procedure is repeated toch’s right, this
time using stopping factorsPSTOP( · | R; · · · ). All parse
trees derived in this way are guaranteed to be projec-
tive and can be described by split-head grammars.

Instances of these split-head automata have been
heavily used in grammar induction (Paskin, 2001b;
Klein and Manning, 2004; Headden et al., 2009,
inter alia), in part because they allow for efficient
implementations (Eisner and Satta, 1999,§8) of
the inside-outside re-estimation algorithm (Baker,
1979). The basic tenet of split-head grammars is
that every head word generates its left-dependents
independently of its right-dependents. This as-
sumption implies, for instance, that words’ left-
and right-valences — their numbers of children
to each side — are also independent. But it does
not imply that descendants that are closer to the
head cannot influence the generation of farther
dependents on the same side. Nevertheless, many
popular grammars for unsupervised parsing behave
as if a word had to generate all of its children
(to one side) — or at least their count —before
allowing any of these children themselves to recurse.

For example, Klein and Manning’s (2004) depen-
dency model with valence (DMV) could be imple-

1Unrestricted head-outward automata are strictly more pow-
erful (e.g., they recognize the languageanbn in finite state) than
the split-head variants, which process one side before the other.

mented as both head-outward and head-inward au-
tomata. (In fact, arbitrary permutations of siblings
to a given side of their parent would not affect the
likelihood of the modified tree, with the DMV.) We
propose to make fuller use of split-head automata’s
head-outward nature by drawing on information in
partially-generated parses, which contain useful pre-
dictors that, until now, had not been exploited even
in featurized systems for grammar induction (Cohen
and Smith, 2009; Berg-Kirkpatrick et al., 2010).

Some of these predictors, including the identity
— or even number (McClosky, 2008) — of already-
generated siblings, can be prohibitively expensive in
sentences above a short lengthk. For example, they
break certain modularity constraints imposed by the
charts used inO(k3)-optimized algorithms (Paskin,
2001a; Eisner, 2000). However, in bottom-up pars-
ing and training from text, everything about the yield
— i.e., the ordered sequence of all already-generated
descendants, on the side of the head that is in the
process of spawning off an additional child — is not
only known but also readily accessible. Taking ad-
vantage of this availability, we designed three new
models for dependency grammar induction.

2.1 Dependency and Boundary Model One

DBM-1 conditions all stopping decisions on adja-
cency and the identity of the fringe wordce — the
currently-farthest descendant (edge) derived by head
ch in the given head-outward direction (dir ∈ {L, R}):

PSTOP( · | dir; adj, ce).

In the adjacent case (adj = T), ch is deciding whether
to have any children on a given side: a first child’s
subtree would be right next to the head, so the head
and the fringe words coincide (ch = ce). In the non-
adjacent case (adj = F), these will be different words
and their classes will, in general, not be the same.2

Thus, non-adjacent stopping decisions will be made
independently of a head word’s identity. Therefore,
all word classes will be equally likely to continue to
grow or not, for a specific proposed fringe boundary.

For example, production ofThe check isinvolves
two non-adjacent stopping decisions on the left: one
by the nouncheckand one by the verbis, both of
which stop after generating a first child. In DBM-1,

2Fringe words differ also from other standard dependency
features (Eisner, 1996,§2.3): parse siblings and adjacent words.
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DT NN VBZ IN DT NN ♦

The check is in the mail .

P = (1−

0

︷ ︸︸ ︷

PSTOP(⋄ | L; T)) × PATTACH(VBZ | ⋄; L)
× (1− PSTOP( · | L; T, VBZ)) × PATTACH(NN | VBZ; L)
× (1− PSTOP( · | R; T, VBZ)) × PATTACH(IN | VBZ; R)
× PSTOP( · | L; F, DT) // VBZ × PSTOP( · | R; F, NN) // VBZ

× (1− PSTOP( · | L; T, NN))
2 × P

2
ATTACH(DT | NN; L)

× (1− PSTOP( · | R; T, IN)) × PATTACH(NN | IN; R)
× P

2
STOP( · | R; T, NN) × P

2
STOP( · | L; F, DT) // NN

× PSTOP( · | L; T, IN) × PSTOP( · | R; F, NN) // IN

× P
2
STOP( · | L; T, DT) × P

2
STOP( · | R; T, DT)

× PSTOP(⋄ | L; F)
︸ ︷︷ ︸

1

× PSTOP(⋄ | R; T)
︸ ︷︷ ︸

1

.

Figure 2: Our running example — a simple sentence and
its unlabeled dependency parse structure’s probability, as
factored by DBM-1; highlighted comments specify heads
associated to non-adjacent stopping probability factors.

this outcome is captured by squaring a shared pa-
rameter belonging to the left-fringe determinerThe:
PSTOP( · | L; F, DT)2 — instead of by a product of two
factors, such asPSTOP( · | L; F, NN) · PSTOP( · | L; F, VBZ).

In these grammars, dependents’ attachment prob-
abilities, given heads, are additionally conditioned
only on their relative positions — as in traditional
models (Klein and Manning, 2004; Paskin, 2001b):

PATTACH(cd | ch; dir).

Figure 2 shows a completely factored example.

2.2 Dependency and Boundary Model Two

DBM-2 allows different but related grammars to co-
exist in a single model. Specifically, we presuppose
that all sentences are assigned to one of two classes:
complete and incomplete (comp ∈ {T, F}, for now
taken as exogenous). This model assumes that word-
word (i.e., head-dependent) interactions in the two
domains are the same. However, sentence lengths
— for which stopping probabilities are responsible
— and distributions of root words may be different.

Consequently, an additionalcomp parameter is
added to the context of two relevant types of factors:

PSTOP( · | dir; adj, ce, comp);

andPATTACH(cr | ⋄; L, comp).

For example, the new stopping factors could capture
the fact that incomplete fragments — such as the
noun-phrasesGeorge Morton, headlinesEnergyand
Odds and Ends, a line itemc - Domestic car, dollar

quantity Revenue:$3.57 billion, the time1:11am,
and the like — tend to be much shorter than com-
plete sentences. The new root-attachment factors
could further track that incomplete sentences gener-
ally lack verbs, in contrast to other short sentences,
e.g., Excerpts follow:, Are you kidding?, Yes, he
did., It’s huge., Indeed it is., I said, ‘NOW?’, “Ab-
solutely,” he said., I am waiting., Mrs. Yeargin de-
clined., McGraw-Hill was outraged., “It happens.”,
I’m OK, Jack., Who cares?, Never mind.and so on.

All other attachment probabilitiesPATTACH(cd | ch; dir)

remain unchanged, as in DBM-1. In practice,comp

can indicate presence of sentence-final punctuation.

2.3 Dependency and Boundary Model Three

DBM-3 adds further conditioning on punctuation
context. We introduce another boolean parameter,
cross, which indicates the presence of intervening
punctuation between a proposed head wordch and
its dependentcd. Using this information, longer-
distance punctuation-crossing arcs can be modeled
separately from other, lower-level dependencies, via

PATTACH(cd | ch; dir, cross).

For instance, inContinentals believe thatthe
strongest growth area willbe southern Europe., four
words appear betweenthat andwill . Conditioning
on (the absence of) intervening punctuation could
help tell true long-distance relations from impostors.

All other probabilities,PSTOP( · | dir; adj, ce, comp) and
PATTACH(cr | ⋄; L, comp), remain the same as in DBM-2.

2.4 Summary of DBMs and Related Models

Head-outward automata (Alshawi, 1996a; Alshawi,
1996b; Alshawi et al., 2000) played a central part as
generative models for probabilistic grammars, start-
ing with their early adoption in supervised split-head
constituent parsers (Collins, 1997; Collins, 2003).
Table 1 lists some parameterizations that have since
been used by unsupervised dependency grammar in-
ducers sharing their backbone split-head process.

3 Experimental Set-Up and Methodology

We first motivate each model by analyzing the Wall
Street Journal (WSJ) portion of the Penn English
Treebank (Marcus et al., 1993),3 before delving into

3We converted labeled constituents into unlabeled depen-
dencies using deterministic “head-percolation” rules (Collins,
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Split-Head Dependency Grammar PATTACH (head-root) PATTACH (dependent-head) PSTOP (adjacent and not)
GB (Paskin, 2001b) 1 / |{w}| d | h; dir 1 / 2
DMV (Klein and Manning, 2004) cr | ⋄; L cd | ch; dir · | dir; adj, ch

EVG (Headden et al., 2009) cr | ⋄; L cd | ch; dir, adj · | dir; adj, ch

DBM-1 (§2.1) cr | ⋄; L cd | ch; dir · | dir; adj, ce

DBM-2 (§2.2) cr | ⋄; L, comp cd | ch; dir · | dir; adj, ce, comp
DBM-3 (§2.3) cr | ⋄; L, comp cd | ch; dir, cross · | dir; adj, ce, comp

Table 1: Parameterizations of the split-head-outward generative process used by DBMs and in previous models.

grammar induction experiments. Although motivat-
ing solely from this treebank biases our discussion
towards a very specific genre of just one language,
it has the advantage of allowing us to make concrete
claims that are backed up by significant statistics.

In the grammar induction experiments that follow,
we will test each model’s incremental contribution
to accuracies empirically, across many disparate lan-
guages. We worked with all 23 (disjoint) train/test
splits from the 2006/7 CoNLL shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007), span-
ning 19 languages.4 For each data set, we induced
a baseline grammar using the DMV. We excluded
all training sentences with more than 15 tokens to
create a conservative bias, because in this set-up the
baseline is known to excel (Spitkovsky et al., 2009).
Grammar inducers were initialized using (the same)
uniformly-at-random chosen parse trees of training
sentences (Cohen and Smith, 2010); thereafter, we
applied “add one” smoothing at every training step.

To fairly compare the models under considera-
tion — which could have quite different starting
perplexities and ensuing consecutive relative like-
lihoods — we experimented with two termination
strategies. In one case, we blindly ran each learner
through 40 steps of inside-outside re-estimation, ig-
noring any convergence criteria; in the other case,
we ran until numerical convergence of soft EM’s ob-
jective function or until the likelihood of resulting
Viterbi parse trees suffered — an “early-stopping la-
teen EM” strategy (Spitkovsky et al., 2011a,§2.3).
We evaluated against all sentences of the blind test
sets (except one 145-token item in Arabic ’07 data).

Table 2 shows experimental results, averaged over

1999), discarding any empty nodes, etc., as is standard practice.
4We did not test on WSJ data because such evaluation would

not be blind, as parse trees from the PTB are our motivating ex-
amples; instead, performance on WSJ serves as a strong base-
line in a separate study (Spitkovsky et al., 2012a): bootstrapping
of DBMs from mostly incomplete inter-punctuation fragments.

all 19 languages, for the DMV baselines and DBM-1
and 2. We did not test DBM-3 in this set-up because
most sentence-internal punctuation occurs in longer
sentences; instead, DBM-3 will be tested later (see
§7), using most sentences,5 in the final training step
of a curriculum strategy (Bengio et al., 2009) that we
will propose for DBMs. For the three models tested
on shorter inputs (up to 15 tokens) both terminating
criteria exhibited the same trend; lateen EM consis-
tently scored slightly higher than 40 EM iterations.

Termination Criterion DMV DBM-1 DBM-2
40 steps of EM 33.5 38.8 40.7

early-stopping lateen EM 34.0 39.0 40.9

Table 2: Directed dependency accuracies, averaged over
all 2006/7 CoNLL evaluation sets (all sentences), for the
DMV and two new dependency-and-boundary grammar
inducers (DBM-1,2) — using two termination strategies.6

4 Dependency and Boundary Model One

The primary difference between DBM-1 and tradi-
tional models, such as the DMV, is that DBM-1 con-
ditions non-adjacent stopping decisions on the iden-
tities of fringe words in partial yields (see§2.1).

4.1 Analytical Motivation

Treebank data suggests that the class of the fringe
word — its part-of-speech,ce — is a better predic-
tor of (non-adjacent) stopping decisions, in a given
directiondir, than the head’s own classch. A statis-
tical analysis of logistic regressions fitted to the data
shows that the(ch, dir) predictor explains only about
7% of the total variation (see Table 3). This seems
low, although it is much better compared to direction
alone (which explains less than 2%) and slightly bet-
ter than using the (current) number of the head’s de-

5Results for DBM-3 — given only standard input sentences,
up to length fifteen — would be nearly identical to DBM-2’s.

6We down-weighed the four languages appearing in both
CoNLL years (see Table 8) by 50% in all reported averages.
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Non-Adjacent Stop Predictor R2

adj AICc

(dir) 0.0149 1,120,200
(n, dir) 0.0726 1,049,175
(ch, dir) 0.0728 1,047,157
(ce, dir) 0.2361 904,102.4

(ch, ce, dir) 0.3320 789,594.3

Table 3: Coefficients of determination (R2) and Akaike
information criteria (AIC), both adjusted for the number
of parameters, for several single-predictor logistic models
of non-adjacent stops, given directiondir; ch is the class
of the head,n is its number of descendants (so far) to that
side, andce represents the farthest descendant (the edge).

scendants on that side,n, instead of the head’s class.
In contrast, usingce in place ofch boosts explanatory
power to 24%, keeping the number of parameters the
same. If one were willing to roughly square the size
of the model, explanatory power could be improved
further, to 33% (see Table 3), using bothce andch.

Fringe boundaries thus appear to be informative
even in the supervised case, which is not surprising,
since using just one probability factor (and its com-
plement) to generate very short (geometric coin-flip)
sequences is a recipe for high entropy. But as sug-
gested earlier, fringes should be extra attractive in
unsupervised settings because yields are observable,
whereas heads almost always remain hidden. More-
over, every sentence exposes two true edges (Hänig,
2010): integrated over many sample sentence begin-
nings and ends, cumulative knowledge about such
markers can guide a grammar inducer inside long in-
puts, where structure is murky. Table 4 shows distri-
butions of all part-of-speech (POS) tags in the tree-
bank versus in sentence-initial, sentence-final and
sentence-root positions. WSJ often leads with deter-
miners, proper nouns, prepositions and pronouns —
all good candidates for starting English phrases; and
its sentences usually end with various noun types,
again consistent with our running example.

4.2 Experimental Results

Table 2 shows DBM-1 to be substantially more ac-
curate than the DMV, on average: 38.8 versus 33.5%
after 40 steps of EM.7 Lateen termination improved
both models’ accuracies slightly, to 39.0 and 34.0%,
respectively, with DBM-1 scoring five points higher.

7DBM-1’s 39% average accuracy with uniform-at-random
initialization is two points above DMV’s scores with the “ad-
hoc harmonic” strategy, 37% (Spitkovsky et al., 2011a, Table 5).

% of All First Last Sent. Frag.
POS Tokens Tokens Tokens Roots Roots
NN 15.94 4.31 36.67 0.10 23.40
IN 11.85 13.54 0.57 0.24 4.33
NNP 11.09 20.49 12.85 0.02 32.02
DT 9.84 23.34 0.34 0.00 0.04
JJ 7.32 4.33 3.74 0.01 1.15
NNS 7.19 4.49 20.64 0.15 17.12
CD 4.37 1.29 6.92 0.00 3.27
RB 3.71 5.96 3.88 0.00 1.50
VBD 3.65 0.09 3.52 46.65 0.93
VB 3.17 0.44 1.67 0.48 6.81
CC 2.86 5.93 0.00 0.00 0.00
TO 2.67 0.37 0.05 0.02 0.44
VBZ 2.57 0.17 1.65 28.31 0.93
VBN 2.42 0.61 2.57 0.65 1.28
PRP 2.08 9.04 1.34 0.00 0.00
VBG 1.77 1.26 0.64 0.10 0.97
VBP 1.50 0.05 0.61 14.33 0.71
MD 1.17 0.07 0.05 8.88 0.57
POS 1.05 0.00 0.11 0.01 0.04
PRP$ 1.00 0.90 0.00 0.00 0.00
WDT 0.52 0.08 0.00 0.01 0.13
JJR 0.39 0.18 0.43 0.00 0.09
RP 0.32 0.00 0.42 0.00 0.00
NNPS 0.30 0.20 0.56 0.00 2.96
WP 0.28 0.42 0.01 0.01 0.04
WRB 0.26 0.78 0.02 0.01 0.31
JJS 0.23 0.27 0.06 0.00 0.00
RBR 0.21 0.20 0.54 0.00 0.04
EX 0.10 0.75 0.00 0.00 0.00
RBS 0.05 0.06 0.01 0.00 0.00
PDT 0.04 0.08 0.00 0.00 0.00
FW 0.03 0.01 0.05 0.00 0.09
WP$ 0.02 0.00 0.00 0.00 0.00
UH 0.01 0.08 0.05 0.00 0.62
SYM 0.01 0.11 0.01 0.00 0.18
LS 0.01 0.09 0.00 0.00 0.00

Table 4: Empirical distributions for non-punctuationpart-
of-speech tags in WSJ, ordered by overall frequency, as
well as distributions for sentence boundaries and for the
roots of complete and incomplete sentences. (A uniform
distribution would have1/36 = 2.7% for all POS-tags.)

√

1−
∑

x

√
pxqx All First Last Sent. Frag.

Uniform 0.48 0.58 0.64 0.79 0.65
All 0.35 0.40 0.79 0.42

First 0.59 0.94 0.57
Last 0.83 0.29
Sent. 0.86

Table 5: A distance matrix for all pairs of probability dis-
tributions over POS-tags shown in Table 4 and the uni-
form distribution; the BC- (or Hellinger) distance (Bhat-
tacharyya, 1943; Nikulin, 2002) between discrete distri-
butionsp andq (overx ∈ X ) ranges from zero (iffp = q)
to one (iffp · q = 0, i.e., when they do not overlap at all).
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Figure 3: Histograms of lengths (in tokens) for 2,261 non-clausal fragments (red) and other sentences (blue) in WSJ.

5 Dependency and Boundary Model Two

DBM-2 adapts DBM-1 grammars to two classes
of inputs (complete sentences and incomplete frag-
ments) by forking off new, separate multinomials for
stopping decisions and root-distributions (see§2.2).

5.1 Analytical Motivation

Unrepresentative short sentences — such as head-
lines and titles — are common in news-style data
and pose a known nuisance to grammar inducers.
Previous research sometimes took radical measures
to combat the problem: for example, Gillenwater
et al. (2009) excluded all sentences with three or
fewer tokens from their experiments; and Mareček
and Zabokrtský (2011) enforced an “anti-noun-root”
policy to steer their Gibbs sampler away from the
undercurrents caused by the many short noun-phrase
fragments (among sentences up to length 15, in
Czech data). We refer to such snippets of text as
“incomplete sentences” and focus our study of WSJ
on non-clausal data (as signaled by top-level con-
stituent annotations whose first character is notS).8

Table 4 shows that roots of incomplete sentences,
which are dominated by nouns, barely resemble the
other roots, drawn from more traditional verb and
modal types. In fact, these two empirical root dis-
tributions are more distant from one another than ei-
ther is from the uniform distribution, in the space of
discrete probability distributions over POS-tags (see
Table 5). Of the distributions we considered, only
sentence boundaries are as or more different from

8I.e., separating top-level types{S, SINV, SBARQ, SQ, SBAR}
from the rest (ordered by frequency):{NP, FRAG, X, PP, . . .}.

(complete) roots, suggesting that heads of fragments
too may warrant their own multinomial in the model.

Further, incomplete sentences are uncharacteris-
tically short (see Figure 3). It is this property that
makes them particularly treacherous to grammar in-
ducers, since by offering few options of root posi-
tions they increase the chances that a learner will
incorrectly induce nouns to be heads. Given that ex-
pected lengths are directly related to stopping deci-
sions, it could make sense to also model the stopping
probabilities of incomplete sentences separately.

5.2 Experimental Results

Since it is not possible to consult parse trees during
grammar induction (to check whether an input sen-
tence is clausal), we opted for a proxy: presence of
sentence-final punctuation. Using punctuation to di-
vide input sentences into two groups, DBM-2 scored
higher: 40.9, up from 39.0% accuracy (see Table 2).

After evaluating these multi-lingual experiments,
we checked how well our proxy corresponds to ac-
tual clausal sentences in WSJ. Table 6 shows the bi-
nary confusion matrix having a fairly low (but posi-
tive) Pearson correlation coefficient. False positives

rφ ≈ 0.31 Clausal non-Clausal Total
Punctuation 46,829 1,936 48,765

no Punctuation 118 325 443
Total 46,947 2,261 49,208

Table 6: A contingency table for clausal sentences and
trailing punctuation in WSJ; the mean square contingency
coefficientrφ signifies a low degree of correlation. (For
two binary variables,rφ is equivalent to Karl Pearson’s
better-known product-moment correlation coefficient,ρ.)
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include parenthesized expressions that are marked
as noun-phrases, such as(See related story: “Fed
Ready to Inject Big Funds”: WSJ Oct. 16, 1989);
false negatives can be headlines having a main verb,
e.g.,Population Drain Ends For Midwestern States.
Thus, our proxy is not perfect but seems to be toler-
able in practice. We suspect that identities of punc-
tuation marks (Collins, 2003, Footnote 13) — both
sentence-final and sentence-initial — could be of ex-
tra assistance in grammar induction, specifically for
grouping imperatives, questions, and so forth.

6 Dependency and Boundary Model Three

DBM-3 exploits sentence-internal punctuation con-
texts by modeling punctuation-crossing dependency
arcs separately from other attachments (see§2.3).

6.1 Analytical Motivation

Many common syntactic relations, such as between
a determiner and a noun, are unlikely to hold over
long distances. (In fact, 45% of all head-percolated
dependencies in WSJ are between adjacent words.)
However, some common constructions are more re-
mote: e.g., subordinating conjunctions are, on av-
erage, 4.8 tokens away from their dependent modal
verbs. Sometimes longer-distance dependencies can
be vetted using sentence-internal punctuation marks.

It happens that the presence of punctuation be-
tween such conjunction (IN) and verb (MD) types
serves as a clue that they are not connected (see Ta-
ble 7a); by contrast, a simpler cue — whether these
words are adjacent — is, in this case, hardly of any
use (see Table 7b). Conditioning on crossing punc-
tuation could be of help then, playing a role simi-
lar to that of comma-counting (Collins, 1997,§2.1)
— and “verb intervening” (Bikel, 2004,§5.1) — in
early head-outward models for supervised parsing.

a) rφ ≈ −0.40 Attached not Attached Total
Punctuation 337 7,645 7,982

no Punctuation 2,144 4,040 6,184
Total 2,481 11,685 14,166

non-Adjacent 2,478 11,673 14,151
Adjacent 3 12 15

b) rφ ≈ +0.00 Attached not Attached Total

Table 7: Contingency tables forIN right-attachingMD,
among closest ordered pairs of these tokens in WSJ sen-
tences with punctuation, versus: (a) presence of interven-
ing punctuation; and (b) presence of intermediate words.

6.2 Experimental Results Postponed

As we mentioned earlier (see§3), there is little point
in testing DBM-3 with shorter sentences, since most
sentence-internal punctuation occurs in longer in-
puts. Instead, we will test this model in a final step of
a staged training strategy, with more data (see§7.3).

7 A Curriculum Strategy for DBMs

We propose to train up to DBM-3 iteratively —
by beginning with DBM-1 and gradually increasing
model complexity through DBM-2, drawing on the
intuitions of IBM translation models 1–4 (Brown et
al., 1993). Instead of using sentences of up to 15 to-
kens, as in all previous experiments (§4–5), we will
now make use of nearly all available training data:
up to length 45 (out of concern for efficiency), dur-
ing later stages. In the first stage, however, we will
use only a subset of the data with DBM-1, in a pro-
cess sometimes calledcurriculum learning(Bengio
et al., 2009; Krueger and Dayan, 2009,inter alia).
Our grammar inducers will thus be “starting small”
in both senses suggested by Elman (1993): simulta-
neously scaffolding on model-anddata-complexity.

7.1 Scaffolding Stage #1: DBM-1

We begin by training DBM-1 on sentences with-
out sentence-internal punctuation but with at least
one trailing punctuation mark. Our goal is to avoid,
when possible, overly specific arbitrary parameters
like the “15 tokens or less” threshold used to select
training sentences. Unlike DBM-2 and 3, DBM-1
does not model punctuation or sentence fragments,
so we instead explicitly restrict its attention to this
cleaner subset of the training data, which takes ad-
vantage of the fact that punctuation may generally
correlate with sentence complexity (Frank, 2000).9

Aside from input sentence selection, our exper-
imental set-up here remained identical to previous
training of DBMs (§4–5). Using this new input data,
DBM-1 averaged 40.7% accuracy (see Table 8).
This is slightly higher than the 39.0% when using
sentences up to length 15, suggesting that our heuris-
tic for clean, simple sentences may be a useful one.

9More incremental training strategies are the subject of an
unpublished companion manuscript (Spitkovsky et al., 2012a).

694



Directed Dependency Accuracies for: Best of State-of-the-Art Systems
CoNLL Year this Work (@10) Monolingual; POS- Cross-Lingual
& Language DMV DBM-1 DBM-2 DBM-3 +inference (i) Agnostic (ii) Identified (iii) Transfer

Arabic 2006 12.9 10.6 11.0 11.1 10.9(34.5) 33.4 SCAJ6 — 50.2 Sbg
’7 36.6 43.9 44.0 44.4 44.9(48.8) 55.6 RF 54.6 RFH1

—
Basque ’7 32.7 34.1 33.0 32.7 33.3(36.5) 43.6 SCAJ5 34.7 MZNR —
Bulgarian ’7 24.7 59.4 63.6 64.6 65.2 (70.4) 44.3 SCAJ5 53.9 RFH1&2

70.3 Spt
Catalan ’7 41.1 61.3 61.1 61.1 62.1(78.1) 63.8 SCAJ5 56.3 MZNR —
Chinese ’6 50.4 63.1 63.0 63.2 63.2(65.7) 63.6 SCAJ6 — —

’7 55.3 56.8 57.0 57.1 57.0(59.8) 58.5 SCAJ6 34.6 MZNR —
Czech ’6 31.5 51.3 52.8 53.0 55.1 (61.8) 50.5 SCAJ5 — —

’7 34.5 50.5 51.2 53.3 54.2 (67.3) 49.8 SCAJ5 42.4 RFH1&2 —
Danish ’6 22.4 21.3 19.9 21.8 22.2(27.4) 46.0 RF 53.1 RFH1&2

56.5 Sar
Dutch ’6 44.9 45.9 46.5 46.0 46.6 (48.6) 32.5 SCAJ5 48.8 RFH1&2

65.7 MPHm:p
English ’7 32.3 29.2 28.6 29.0 29.6(51.4) 50.3 SAJ 23.8 MZNR 45.7 MPHel
German ’6 27.7 36.3 37.9 38.4 39.1 (52.1) 33.5 SCAJ5 21.8 MZNR 56.7 MPHm:d
Greek ’6 36.3 28.1 26.1 26.1 26.9(36.8) 39.0 MZ 33.4 MZNR 65.1 MPHm:p
Hungarian ’7 23.6 43.2 52.1 57.4 58.2 (68.4) 48.0 MZ 48.1 MZNR —
Italian ’7 25.5 41.7 39.8 39.9 40.7(41.8) 57.5 MZ 60.6 MZNR 69.1 MPHpt
Japanese ’6 42.2 22.8 22.7 22.7 22.7(32.5) 56.6 SCAJ5 53.5 MZNR —
Portuguese ’6 37.1 68.9 72.3 71.1 72.4 (80.6) 43.2 MZ 55.8 RFH1&2 76.9 Sbg
Slovenian ’6 33.4 30.4 33.0 34.1 35.2 (36.8) 33.6 SCAJ5 34.6 MZNR —
Spanish ’6 22.0 25.0 26.7 27.1 28.2(51.8) 53.0 MZ 54.6 MZNR 68.4 MPHit
Swedish ’6 30.7 48.6 50.3 50.0 50.7 (63.2) 50.0 SCAJ6 34.3 RFH1&2

68.0 MPHm:p
Turkish ’6 43.4 32.9 33.7 33.4 34.4(38.1) 40.9 SAJ 61.3 RFH1

—
’7 58.5 44.6 44.2 43.7 44.8(44.4) 48.8 SCAJ6 — —

Average: 33.6 40.7 41.7 42.2 42.9 (51.9) 38.2 SCAJ6 (best average, not an average of bests)

Table 8: Average accuracies over CoNLL evaluation sets (allsentences), for the DMV baseline and DBM1–3 trained
with a curriculum strategy, and state-of-the-art results for systems that: (i) are also POS-agnostic and monolingual,
including SCAJ (Spitkovsky et al., 2011a, Tables 5–6) and SAJ (Spitkovsky et al., 2011b); (ii) rely on gold POS-tag
identities to discourage noun roots (Mareček and Zabokrtský, 2011, MZ) or to encourage verbs (Rasooli and Faili,
2012, RF); and (iii) transfer delexicalized parsers (Søgaard, 2011a, S) from resource-rich languages with transla-
tions (McDonald et al., 2011, MPH). DMV and DBM-1 trained on simple sentences, from uniform; DBM-2 and 3
trained on most sentences, from DBM-1 and 2, respectively;+inferenceis DBM-3 with punctuation constraints.

7.2 Scaffolding Stage #2: DBM-2← DBM-1

Next, we trained on all sentences up to length 45.
Since these inputs are punctuation-rich, in both re-
maining stages we used the constrained Viterbi EM
set-up suggested by Spitkovsky et al. (2011b) in-
stead of plain soft EM; we employ an early termina-
tion strategy, quitting hard EM as soon as soft EM’s
objective suffers (Spitkovsky et al., 2011a). Punc-
tuation was converted into Viterbi-decoding con-
straints during training using the so-calledloose
method, which stipulates that all words in an inter-
punctuation fragment must be dominated by a single
(head) word, also from that fragment — with only
these head words allowed to attach the head words
of other fragments, across punctuation boundaries.

To adapt to full data, we initialized DBM-2 using
Viterbi parses from the previous stage (§7.1), plus

uniformly-at-random chosen dependency trees for
the new complex and incomplete sentences, subject
to punctuation-induced constraints. This approach
improved parsing accuracies to 41.7% (see Table 8).

7.3 Scaffolding Stage #3: DBM-3← DBM-2

Next, we repeated the training process of the pre-
vious stage (§7.2) using DBM-3. To initialize this
model, we combined the final instance of DBM-2
with uniform multinomials for punctuation-crossing
attachment probabilities (see§2.3). As a result, av-
erage performance improved to 42.2% (see Table 8).

Lastly, we applied punctuation constraints also in
inference. Here we used thesprawl method — a
more relaxed approach than in training, allowing ar-
bitrary words to attach inter-punctuation fragments
(provided that each entire fragment still be derived
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by one of its words) — as suggested by Spitkovsky
et al. (2011b). This technique increased DBM-3’s
average accuracy to 42.9% (see Table 8). Our fi-
nal result substantially improves over the baseline’s
33.6% and compares favorably to previous work.10

8 Discussion and the State-of-the-Art

DBMs come from a long line of head-outward mod-
els for dependency grammar induction yet their gen-
erative processes feature important novelties. One
is conditioning on more observable state — specifi-
cally, the left and right end words of a phrase being
constructed — than in previous work. Another is al-
lowing multiple grammars — e.g., of complete and
incomplete sentences — to coexist in a single model.
These improvements could make DBMs quick-and-
easy to bootstrap directly from any available partial
bracketings (Pereira and Schabes, 1992), for exam-
ple capitalized phrases (Spitkovsky et al., 2012b).

The second part of our work — the use of a cur-
riculum strategy to train DBM-1 through 3 — elim-
inates having to know tuned cut-offs, such as sen-
tences with up to a predetermined number of tokens.
Although this approach adds some complexity, we
chose conservatively, to avoid overfitting settings
of sentence length, convergence criteria, etc.: stage
one’s data is dictated by DBM-1 (which ignores
punctuation); subsequent stages initialize additional
pieces uniformly: uniform-at-random parses for new
data and uniform multinomials for new parameters.

Even without curriculum learning — trained with
vanilla EM — DBM-2 and 1 are already strong.
Further boosts to accuracy could come from em-
ploying more sophisticated optimization algorithms,
e.g., better EM (Samdani et al., 2012), constrained
Gibbs sampling (Mareček and Zabokrtský, 2011) or
locally-normalized features (Berg-Kirkpatrick et al.,
2010). Other orthogonal dependency grammar in-
duction techniques — including ones based on uni-
versal rules (Naseem et al., 2010) — may also ben-
efit in combination with DBMs. Direct comparisons
to previous work require some care, however, as
there are several classes of systems that make dif-
ferent assumptions about training data (see Table 8).

10Note that DBM-1’s 39% average accuracy with standard
training (see Table 2) was already nearly a full point higherthan
that of any single previous best system (SCAJ6 — see Table 8).

8.1 Monolingual POS-Agnostic Inducers

The first type of grammar inducers, including our
own approach, uses standard training and test data
sets for each language, with gold part-of-speech tags
as anonymized word classes. For the purposes of
this discussion, we also include in this group trans-
ductive learners that may train on data from the test
sets. Our DBM-3 (decoded with punctuation con-
straints) does well among such systems — for which
accuracies onall sentence lengths of the evaluation
sets are reported — attaining highest scores for 8 of
19 languages; the DMV baseline is still state-of-the-
art for one language; and the remaining 10 bests are
split among five other recent systems (see Table 8).11

Half of the five came from various lateen EM strate-
gies (Spitkovsky et al., 2011a) for escaping and/or
avoiding local optima. These heuristics are compat-
ible with how we trained our DBMs and could po-
tentially provide further improvement to accuracies.

Overall, the final scores of DBM-3 were better, on
average, than those of any other single system: 42.9
versus 38.2% (Spitkovsky et al., 2011a, Table 6).
The progression of scores for DBM-1 through 3
without using punctuation constraints in inference
— 40.7, 41.7 and 42.2% — fell entirely above this
previous state-of-the-art result as well; the DMV
baseline — also trained on sentences without inter-
nal but with final punctuation — averaged 33.6%.

8.2 Monolingual POS-Identified Inducers

The second class of techniques assumes knowledge
about identities of part-of-speech tags (Naseem et
al., 2010), i.e., which word tokens are verbs, which
ones are nouns, etc. Such grammar inducers gener-
ally do better than the first kind — e.g., by encour-
aging verbocentricity (Gimpel and Smith, 2011) —
though even here our results appear to be compet-
itive. In fact, to our surprise, only in 5 of 19 lan-
guages a “POS-identified” system performed better
than all of the “POS-agnostic” ones (see Table 8).

8.3 Multi-Lingual Semi-Supervised Parsers

The final broad class of related algorithms we con-
sidered extends beyond monolingual data and uses

11For Turkish ’06, the “right-attach” baseline outperforms
even the DMV, at 65.4% (Rasooli and Faili, 2012, Table 1); an
important difference between 2006 and 2007 CoNLL data sets
has to do with segmentation of morphologically-rich languages.
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both identities of POS-tags and/or parallel bitexts
to transfer (supervised) delexicalized parsers across
languages. Parser projection is by far the most suc-
cessful approach to date and we hope that it too
may stand to gain from our modeling improvements.
Of the 10 languages for which we found results
in the literature, transferred parsers underperformed
the grammar inducers in only one case: on En-
glish (see Table 8). The unsupervised system that
performed better used a special “weighted” initial-
izer (Spitkovsky et al., 2011b,§3.1) that worked well
for English (but less so for many other languages).

DBMs may be able to improve initialization. For
example, modeling of incomplete sentences could
help in incremental initialization strategies likebaby
steps(Spitkovsky et al., 2009), which are likely sen-
sitive to the proverbial “bum steer” from unrepresen-
tative short fragments,paceTu and Honavar (2011).

8.4 Miscellaneous Systems on Short Sentences

Several recent systems (Cohen et al., 2011; Søgaard,
2011b; Naseem et al., 2010; Gillenwater et al., 2010;
Berg-Kirkpatrick and Klein, 2010,inter alia) are ab-
sent from Table 8 because they do not report perfor-
mance for all sentence lengths. To facilitate com-
parison with this body of important previous work,
we also tabulated final accuracies for the “up-to-ten
words” task under heading@10: 51.9%, on average.

9 Conclusion

Although a dependency parse for a sentence can be
mapped to a constituency parse (Xia and Palmer,
2001), the probabilistic models generating them use
different conditioning: dependency grammars focus
on the relationship between arguments and heads,
constituency grammars on the coherence of chunks
covered by non-terminals. Since redundant views of
data can make learning easier (Blum and Mitchell,
1998), integrating aspects of both constituency and
dependency ought to be able to help grammar in-
duction. We have shown that this insight is correct:
dependency grammar inducers can gain from mod-
eling boundary information that is fundamental to
constituency (i.e., phrase-structure) formalisms.

DBMs are a step in the direction towards mod-
eling constituent boundaries jointly with head de-
pendencies. Further steps must involve more tightly

coupling the two frameworks, as well as showing
ways to incorporate both kinds of information in
other state-of-the art grammar induction paradigms.
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