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Abstract

We consider the problem of inducing
grapheme-to-phoneme mappings for un-
known languages written in a Latin alphabet.
First, we collect a data-set of 107 languages
with known grapheme-phoneme relationships,
along with a short text in each language. We
then cast our task in the framework of super-
vised learning, where each known language
serves as a training example, and predictions
are made on unknown languages. We induce
an undirected graphical model that learns
phonotactic regularities, thus relating textual
patterns to plausible phonemic interpretations
across the entire range of languages. Our
model correctly predicts grapheme-phoneme
pairs with over 88% F1-measure.

1 Introduction

Written language is one of the defining technologies
of human civilization, and has been independently
invented at least three times through the course of
history (Daniels and Bright, 1996). In many ways
written language reflects its more primary spoken
counterpart. Both are subject to some of the same
forces of change, including human migration, cul-
tural influence, and imposition by empire. In other
ways, written language harkens further to the past,
reflecting aspects of languages long since gone from
their spoken forms. In this paper, we argue that this
imperfect relationship between written symbol and
spoken sound can be automatically inferred from
textual patterns. By examining data for over 100
languages, we train a statistical model to automat-

ically relate graphemic patterns in text to phonemic
sequences for never-before-seen languages.

We focus here on the the alphabet, a writing sys-
tem that has come down to us from the Sumerians.
In an idealized alphabetic system, each phoneme
in the language is unambiguously represented by a
single grapheme. In practice of course, this ideal
is never achieved. When existing alphabets are
melded onto new languages, they must be imper-
fectly adapted to a new sound system. In this paper,
we exploit the fact that a single alphabet, that of the
Romans, has been adapted to a very large variety of
languages.

Recent research has demonstrated the effective-
ness of cross-lingual analysis. The joint analysis of
several languages can increase model accuracy, and
enable the development of computational tools for
languages with minimal linguistic resources. Previ-
ous work has focused on settings where just a hand-
ful of languages are available. We treat the task
of grapheme-to-phoneme analysis as a test case for
larger scale multilingual learning, harnessing infor-
mation from dozens of languages.

On a more practical note, accurately relating
graphemes and phonemes to one another is cru-
cial for tasks such as automatic speech recognition
and text-to-speech generation. While pronunciation
dictionaries and transcribed audio are available for
some languages, these resources are entirely lack-
ing for the vast majority of the world’s languages.
Thus, automatic and generic methods for determin-
ing sound-symbol relationships are needed.

Our paper is based on the following line of rea-
soning: that character-level textual patterns mirror
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phonotactic regularities; that phonotactic regulari-
ties are shared across related languages and uni-
versally constrained; and that textual patterns for a
newly observed language may thus reveal its under-
lying phonemics. Our task can be viewed as an easy
case of lost language decipherment – one where the
underlying alphabetic system is widely known.

Nevertheless, the task of grapheme-to-phoneme
prediction is challenging. Characters in the Roman
alphabet can take a wide range of phonemic values
across the world’s languages. For example, depend-
ing on the language, the grapheme “c” can represent
the following phonemes:1

• /k/ (unvoiced velar plosive)

• /c/ (unvoiced palatal plosive)

• /s/ (unvoiced alveolar fricative)

• /|/ (dental click)

• /
>
dZ/ (affricated voiced postalveolar fricative)

• /
>
tS/ (affricated unvoiced postalveolar fricative)

• /
>
ts/ (affricated unvoiced alveolar fricative)

To make matters worse, the same language may
use a single grapheme to ambiguously represent
multiple phonemes. For example, English orthog-
raphy uses “c” to represent both /k/ and /s/. Our
task is thus to select a subset of phonemes for each
language’s graphemes. We cast the subset selec-
tion problem as a set of related binary prediction
problems, one for each possible grapheme-phoneme
pair. Taken together, these predictions yield the
grapheme-phoneme mapping for that language.

We develop a probabilistic undirected graphical
model for this prediction problem, where a large set
of languages serve as training data and a single held-
out language serves as test data. Each training and
test language yields an instance of the graph, bound

1For some brief background on phonetics, see Section 2.
Note that we use the term “phoneme” throughout the paper,
though we also refer to “phonetic” properties. As we are deal-
ing with texts (written in a roughly phonemic writing system),
we have no access to the true contextual phonetic realizations,
and even using IPA symbols to relate symbols across languages
is somewhat theoretically suspect.

together through a shared set of features and param-
eter values to allow cross-lingual learning and gen-
eralization.

In the graph corresponding to a given language,
each node represents a grapheme-phoneme pair
(g : p). The node is labeled with a binary value to
indicate whether grapheme g can represent phoneme
p in the language. In order to allow coupled label-
ings across the various grapheme-phoneme pairs of
the language, we employ a connected graph struc-
ture, with an automatically learned topology shared
across the languages. The node and edge features
are derived from textual co-occurrence statistics for
the graphemes of each language, as well as general
information about the language’s family and region.
Parameters are jointly optimized over the training
languages to maximize the likelihood of the node la-
belings given the observed feature values. See Fig-
ure 1 for a snippet of the model.

We apply our model to a novel data-set consisting
of grapheme-phoneme mappings for 107 languages
with Roman alphabets and short texts. In this set-
ting, we consider each language in turn as the test
language, and train our model on the remaining 106
languages. Our highest performing model achieves
an F1-measure of 88%, yielding perfect predictions
for over 21% of languages. These results compare
quite favorably to several baselines.

Our experiments lead to several conclusions. (i)
Character co-occurence features alone are not suf-
ficient for cross-lingual predictive accuracy in this
task. Instead, we map raw contextual counts to more
linguistically meaningful generalizations to learn ef-
fective cross-lingual patterns. (ii) A connected graph
topology is crucial for learning linguistically co-
herent grapheme-to-phoneme mappings. Without
any edges, our model yields perfect mappings for
only 10% of test languages. By employing struc-
ture learning and including the induced edges, we
more than double the number of test languages with
perfect predictions. (iii) Finally, an analysis of our
grapheme-phoneme predictions shows that they do
not achieve certain global characteristics observed
across true phoneme inventories. In particular, the
level of “feature economy” in our predictions is too
low, suggesting an avenue for future research.
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ph:/ph/ th:/th/

q:/!/

q:/k/
x:/

>
ks/c:/k/

w:/w/

c:/s/

Figure 1: A snippet of our undirected graphical model. The binary-valued nodes represent whether a particular
grapheme-phoneme pair is allowed by the language. Sparse edges are automatically induced to allow joint training
and prediction over related inventory decisions.

2 Background and Related Work

In this section, we provide some background on pho-
netics and phoneme inventories. We also review
prior work on grapheme-to-phoneme prediction and
multilingual modeling.

2.1 Phoneme Inventories

The sounds of the world’s languages are produced
through a wide variety of articulatory mechanisms.
Consonants are sounds produced through a partial
or complete stricture of the vocal tract, and can be
roughly categorized along three independent dimen-
sions: (i) Voicing: whether or not oscillation of the
vocal folds accompanies the sound. For example, /t/
and /d/ differ only in that the latter is voiced. (ii)
Place of Articulation: where in the anatomy of the
vocal tract the stricture is made. For example, /p/ is
a bilabial (the lips touching one another) while /k/
is a velar (tongue touching touching the soft palate).
(iii) Manner of Articulation: the manner in which
the airflow is regulated. For example, /m/ is a nasal
(air flowing through the nostrils), while /p/ is a plo-
sive (obstructed air suddenly released through the
mouth).

In contrast, vowels are voiced sounds produced
with an open vocal tract. They are categorized pri-
marily based on the position of the tongue and lips,
along three dimensions: (i) Roundedness: whether
or not the lips are rounded during production of

the sound; (ii) Height: the vertical position of the
tongue; (iii) Backness: how far forward the tongue
lies.

Linguists have noted several statistical regulari-
ties found in phoneme inventories throughout the
world. Feature economy refers to the idea that lan-
guages tend to minimize the number of differenti-
ating characteristics (e.g. different kinds of voic-
ing, manner, and place) that are used to distinguish
consonant phonemes from one another (Clements,
2003). In other words, once an articulatory feature
is used to mark off one phoneme from another, it will
likely be used again to differentiate other phoneme
pairs in the same language. The principle of Maxi-
mal perceptual contrast refers to the idea that the set
of vowels employed by a language will be located
in phonetic space to maximize their perceptual dis-
tances from one another, thus relieving the percep-
tual burden of the listener (Liljencrants and Lind-
blom, 1972). In an analysis of our results, we will
observe that our model’s predictions do not always
follow these principles.

Finally, researchers have noted that languages
exhibit set patterns in how they sequence their
phonemes (Kenstowicz and Kisseberth, 1979). Cer-
tain sequences are forbidden outright by languages,
while others are avoided or favored. While many
of these patterns are language-specific, others seem
more general, either reflecting anatomical con-
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straints, common language ancestry, or universal as-
pects of the human language system. These phono-
tactic regularities and constraints are mirrored in
graphemic patterns, and as our experiments show,
can be explicitly modeled to achieve high accuracy
in our task.

2.2 Grapheme-to-Phoneme Prediction

Much prior work has gone into developing meth-
ods for accurate grapheme-to-phoneme prediction.
The common assumption underlying this research
has been that some sort of knowledge, usually in the
form of a pronunciation dictionary or phonemically
annotated text, is available for the language at hand.
The focus has been on developing techniques for
dealing with the phonemic ambiguity present both in
annotated and unseen words. For example, Jiampo-
jamarn and Kondrak (Jiampojamarn and Kondrak,
2010) develop a method for aligning pairs of writ-
ten and phonemically transcribed strings; Dwyer
and Kondrak (Dwyer and Kondrak, 2009) develop
a method for accurate letter-to-phoneme conversion
while minimizing the number of training examples;
Reddy and Goldsmith (Reddy and Goldsmith, 2010)
develop an MDL-based approach to finding sub-
word units that align well to phonemes.

A related line of work has grown around the task
of machine transliteration. In this task, the goal is to
automatically transliterate a name in one language
into the written form of another language. Often this
involves some level of phonetic analysis in one or
both languages. Notable recent work in this vein in-
cludes research by Sproat et al (Sproat et al., 2006)
on transliteration between Chinese and English us-
ing comparable corpora, and Ravi and Knight (Ravi
and Knight, 2009) who take a decipherment ap-
proach to this problem.

Our work differs from all previous work on
grapheme-to-phoneme prediction in that (i) we as-
sume no knowledge for our target language beyond
a small unannotated text (and possibly some region
or language family information), and (ii) our goal
is to construct the inventory of mappings between
the language’s letters and its phonemes (the latter
of which we do not know ahead of time). When a
grapheme maps to more than one phoneme, we do
not attempt to disambiguate particular instances of
that grapheme in words.

A final thread of related work is the task of quan-
titatively categorizing writing systems according to
their levels of phonography and logography (Sproat,
2000; Penn and Choma, 2006). As our data-set
consists entirely of Latin-based writing systems, our
work can be viewed as a more fine-grained compu-
tational exploration of the space of writing systems,
with a focus on phonographic systems with the Latin
pedigree.

2.3 Multilingual Analysis

An influential thread of previous multilingual work
starts with the observation that rich linguistic re-
sources exist for some languages but not others.
The idea then is to project linguistic informa-
tion from one language onto others via parallel
data. Yarowsky and his collaborators first devel-
oped this idea and applied it to the problems of
part-of-speech tagging, noun-phrase bracketing, and
morphology induction (Yarowsky and Wicentowski,
2000; Yarowsky et al., 2000; Yarowsky and Ngai,
2001), and other researchers have applied the idea
to syntactic and semantic analysis (Hwa et al., 2005;
Padó and Lapata, 2006) In these cases, the existence
of a bilingual parallel text along with highly accurate
predictions for one of the languages was assumed.

Another line of work assumes the existence of
bilingual parallel texts without the use of any super-
vision (Dagan et al., 1991; Resnik and Yarowsky,
1997). This idea has been developed and applied to
a wide variety tasks, including morphological anal-
ysis (Snyder and Barzilay, 2008a; Snyder and Barzi-
lay, 2008b), part-of-speech induction (Snyder et al.,
2008; Snyder et al., 2009a; Naseem et al., 2009), and
grammar induction (Snyder et al., 2009b; Blunsom
et al., 2009; Burkett et al., 2010). An even more re-
cent line of work does away with the assumption of
parallel texts and performs joint unsupervised induc-
tion for various languages through the use of cou-
pled priors in the context of grammar induction (Co-
hen and Smith, 2009; Berg-Kirkpatrick and Klein,
2010).

In contrast to these previous approaches, the
method we propose does not assume the existence
of any parallel text, but instead assumes that labeled
data exists for a wide variety of languages. In this re-
gard, our work most closely resembles recent work
which trains a universal morphological analyzer us-
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phonemes #lang ent
a /a/ /5/ /A/ /@/ /2/ 106 1.25
c /c/ /

>
dZ/ /k/ /s/ /

>
ts/ /

>
tS/ /|/ 62 2.33

ch /k/ /
>
tS/ /x/ /S/ 39 1.35

e /e/ /i/ /æ/ /@/ /E/ 106 1.82
h /-/ /h/ /x/ /ø/ /H/ 85 1.24
i /i/ /j/ /I/ 106 0.92
j /

>
dZ/ /h/ /j/ /

>
tS/ /x/ /é/ /Z/ 79 2.05

o /o/ /u/ /6/ /0/ 103 1.47
ph /f/ /ph/ 15 0.64
q /k/ /q/ /!/ 32 1.04
r /r/ /ó/ /R/ /ö/ /K/ 95 1.50
th /th/ /T/ 15 0.64
u /u/ /w/ /y/ /1/ /U/ /Y/ 104 0.96
v /b/ /f/ /v/ /w/ /B/ 70 1.18
w /u/ /v/ /w/ 74 0.89
x /

>
ks/ /x/ /{/ /S/ 44 1.31

z /
>
dz/ /s/ /

>
ts/ /z/ /T/ 72 0.93

Table 1: Ambiguous graphemes and the set of phonemes
that they may represent among our set of 107 languages.

ing a structured nearest neighbor approach for 8 lan-
guages (Kim et al., 2011). Our work extends this
idea to a new task and also considers a much larger
set of languages. As our results will indicate, we
found that a nearest neighbor approach was not as
effective as our proposed model-based approach.

3 Data and Features

In this section we discuss the data and features used
in our experiments.

3.1 Data

The data for our experiments comes from three
sources: (i) grapheme-phoneme mappings from an
online encyclopedia, (ii) translations of the Univer-
sal Declaration of Human Rights (UDHR)2, and (iii)
entries from the World Atlas of Language Structures
(WALS) (Haspelmath and Bibiko, 2005).

To start, we downloaded and transcribed im-
age files containing grapheme-phoneme mappings
for several hundred languages from an online en-

2http://www.ohchr.org/en/udhr/pages/introduction.aspx

cyclopedia of writing systems3. We then cross-
referenced the languages with the World Atlas
of Language Structures (WALS) database (Haspel-
math and Bibiko, 2005) as well as the translations
available for the Universal Declaration of Human
Rights (UDHR). Our final set of 107 languages in-
cludes those which appeared consistently in all three
sources and that employ a Latin alphabet. See Fig-
ure 2 for a world map annotated with the locations
listed in the WALS database for these languages, as
well as their language families. As seen from the fig-
ure, these languages cover a wide array of language
families and regions.

We then analyzed the phoneme inventories for the
107 languages. We decided to focus our attention
on graphemes which are widely used across these
languages with a diverse set of phonemic values.
We measured the ambiguity of each grapheme by
calculating the entropy of its phoneme sets across
the languages, and found that 17 graphemes had en-
tropy > 0.5 and appeared in at least 15 languages.
Table 1 lists these graphemes, the set of phonemes
that they can represent, the number of languages in
our data-set which employ them, and the entropy
of their phoneme-sets across these languages. The
data, along with the feature vectors discussed below,
are published as part of this paper.

3.2 Features
The key intuition underlying this work is that
graphemic patterns in text can reveal the phonemes
which they represent. A crucial step in operational-
izing this intuition lies in defining input features that
have cross-lingual predictive value. We divide our
feature set into three categories.

Text Context Features: These features represent
the textual environment of each grapheme in a lan-
guage. For each grapheme g, we consider counts of
graphemes to the immediate left and right of g in the
UDHR text. We define five feature templates, in-
cluding counts of (1) single graphemes to the left of
g, (2) single graphemes to the right of g, (3) pairs of
graphemes to the left of g, (4) pairs of graphemes to
the right of g, and (5) pairs of graphemes surround-
ing g. As our experiments below show, this set of
features on its own performs poorly. It seems that

3http://www.omniglot.com/writing/langalph.htm#latin
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Figure 2: Map and language families of languages in our data-set

these features are too language specific and not ab-
stract enough to yield effective cross-lingual gener-
alization. Our next set of features was designed to
alleviate this problem.

Phonemic Context Features: A perfect feature-
set would depend on the entire set of grapheme-
to-phoneme predictions for a language. In other
words, we would ideally map all the graphemes in
our text to phonemes, and then consider the plau-
sibility of the resulting phoneme sequences. In
practice, of course, this is impossible, as the set
of possible grapheme-to-phoneme mappings is ex-
ponentially large. As an imperfect proxy for this
idea, we made the following observation: for most
Latin graphemes, the most common phonemic value
across languages is the identical IPA symbol of that
grapheme (e.g. the most common phoneme for g is
/g/, the most common phoneme for t is /t/, etc). Us-
ing this observation, we again consider all contexts
in which a grapheme appears, but this time map the
surrounding graphemes to their IPA phoneme equiv-
alents. We then consider various linguistic prop-
erties of these surrounding “phonemes” – whether
they are vowels or consonants, whether they are
voiced or not, their manner and places of articulation
– and create phonetic context features. The process

is illustrated in Figure 3. The intuition here is that
these features can (noisily) capture the phonotactic
context of a grapheme, allowing our model to learn
general phonotactic constraints. As our experiments
below demonstrate, these features proved to be quite
powerful.

Language Family Features: Finally, we consider
features drawn from the WALS database which
capture general information about the language –
specifically, its region (e.g. Europe), its small lan-
guage family (e.g. Germanic), and its large language
family (e.g. Indo-European). These features al-
low our model to capture family and region specific
phonetic biases. For example, African languages
are more likely to use c and q to represents clicks
than are European languages. As we mention be-
low, we also consider conjunctions of all features.
Thus, a language family feature can combine with
a phonetic context feature to represent a family spe-
cific phonotactic constraint. Interestingly, our exper-
iments below show that these features are not needed
for highly accurate prediction.

3.3 Feature Discretization and Filtering

It is well known that many learning techniques per-
form best when continuous features are binned and
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Raw Context Features 
 

L1:k =15 
L1:b=3 
L1:g=7 

 

 
Noisy IPA Conversion 

 
   L1:/k/ =15 

 L1:/b/=3 
 L1:/g/=7 

 
 

 
 
 
 

Phonetic Context Features 
 

L1:velar=22 
L1:bilabial=3 
L1:voiced=10 

L1:unvoiced=15 
L1:consonant=25 

 
 
 

Figure 3: Generating phonetic context features. First, character context features are extracted for each grapheme.
The features drawn here give the counts of the character to the immediate left of the grapheme. Next, the contextual
characters are noisily converted to phones using their IPA notation. Finally, phonetic context features are extracted. In
this case, phones /k/ and /g/ combine to give a “velar” count of 22, while /g/ and /b/ combine to give a “voiced” count
of 10.

converted to binary values (Dougherty et al., 1995).
As a preprocessing step, we therefore discretize and
filter the count-based features outlined above. We
adopt the technique of Recursive Minimal Entropy
Partitioning (Fayyad and Irani, 1993). This tech-
nique recursively partitions feature values so as to
minimize the conditional entropy of the labels. Par-
titioning stops when the gain in label entropy falls
below the number of additional bits in overhead
needed to describe the new feature split. This leads
to a (local) minimum description length discretiza-
tion.

We noticed that most of our raw features (espe-
cially the text features) could not achieve even a sin-
gle split point without increasing description length,
as they were not well correlated with the labels. We
decided to use this heuristic as a feature selection
technique, discarding such features. After this dis-
cretization and filtering, we took the resulting binary
features and added their pairwise conjunctions to the
set. This process was conducted separately for each
leave-one-out scenario, without observation of the
test language labels. Table 2 shows the total number
of features before the discretization/filtering as well
as the typical numbers of features obtained after fil-
tering (the exact numbers depend on the training/test
split).

4 Model

Using the features described above, we develop an
undirected graphical model approach to our predic-

Raw Filtered
# Text Features 28,474 1,848
# Phonemic Features 28,948 7,799
# Family Features 66 32
Total 57,488 9,679

Table 2: Number of features in each category before
and after discretization/filtering. Note that the pair-wise
conjunction features are not included in these counts.

tion task. Corresponding to each training language is
an instance of our undirected graph, labeled with its
true grapheme-phoneme mapping. We learn weights
over our features which optimally relate the input
features of the training languages to their observed
labels. At test-time, the learned weights are used to
predict the labeling of the held-out test language.

More formally, we assume a set of graph nodes
1, ...,m with edges between some pairs of nodes
(i, j). Each node corresponds to a grapheme-
phoneme pair (g : p) and can be labeled with a bi-
nary value. For each training language ℓ, we observe
a text x(ℓ) and a binary labeling of the graph nodes
y(ℓ). For each node i, we also obtain a feature vector
fi(x

(ℓ)), by examining the language’s text and ex-
tracting textual and noisy phonetic patterns (as de-
tailed in the previous section). We obtain similar
feature vectors for edges (i, j): gjk(x

(ℓ)). We then
parameterize the probability of each labeling using
a log-linear form over node and edge factors:4

4The delta function δ(p) evaluates to 1 when predicate p is
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log P
(
y(ℓ)|x(ℓ)

)
=

∑
i

λi ·
[
fi(x

(ℓ)) δ(y
(ℓ)
i = 1)

]
+

∑
j,k

λjk1 ·
[
gjk(x

(ℓ)) δ(y
(ℓ)
j = 1 ∧ y

(ℓ)
k = 1)

]
+

∑
j,k

λjk2 ·
[
gjk(x

(ℓ)) δ(y
(ℓ)
j = 1 ∧ y

(ℓ)
k = 0)

]
+

∑
j,k

λjk3 ·
[
gjk(x

(ℓ)) δ(y
(ℓ)
j = 0 ∧ y

(ℓ)
k = 1)

]
− log Z(x(ℓ), λ)

The first term sums over nodes i in the graph. For
each i, we extract a feature vector fi(x

(ℓ)). If the
label of node i is 1, we take the dot product of the
feature vector and corresponding parameters, other-
wise the term is zeroed out. Likewise for the graph
edges j, k: we extract a feature vector, and depend-
ing on the labels of the two vertices yj and yk, take
a dot product with the relevant parameters. The final
term is a normalization constant to ensure that the
probabilities sum to one over all possible labelings
of the graph.

Before learning our parameters, we first automat-
ically induce the set of edges in our graph, using
the PC graph structure learning algorithm (Spirtes
et al., 2000). This procedure starts with a fully con-
nected undirected graph structure, and iteratively re-
moves edges between nodes that are conditionally
independent given other neighboring nodes in the
graph according to a statistical independence test
over all training languages. In our graphs we have
75 nodes, and thus 2,775 potential edges. Run-
ning the structure learning algorithm on our data
yields sparse graphs, typically consisting of about
50 edges. In each leave-one-out scenario, a single
structure is learned for all languages.

Once the graph structure has been induced, we
learn parameter values by maximizing the L2-
penalized conditional log-likelihood over all train-
ing languages:5

L(λ) =
∑

ℓ

log P
(
y(ℓ)|x(ℓ)

)
− C||λ||2

true, and to 0 when p is false.
5In our experiments, we used an L2 penalty weight of .5

for node features and .1 for edge features. Similar results are
observed for a wide range of values.

The gradient takes the standard form of a difference
between expected and observed feature counts (Laf-
ferty et al., 2001). Expected counts, as well as
predicted assignments at test-time, are computed
using loopy belief propagation (Murphy et al.,
1999). Numerical optimization is performed using
L-BFGS (Liu and Nocedal, 1989).

5 Experiments

In this section, we describe the set of experiments
performed to evaluate the performance of our model.
Besides our primary undirected graphical model, we
also consider several baselines and variants, in or-
der to assess the contribution of our model’s graph
structure as well as the features used. In all cases,
we perform leave-one-out cross-validation over the
107 languages in our data-set.

5.1 Baselines

Our baselines include:

1. A majority baseline, where the most common
binary value is chosen for each grapheme-
phoneme pair,

2. two linear SVM’s, one trained using the dis-
cretized and filtered features described in Sec-
tion 3.2, and the other using the raw continuous
features,

3. a Nearest Neighbor classifier, which chooses
the closest training language for each
grapheme-phoneme pair in the discretized
feature space, and predicts its label, and

4. a variant of our model with no edges between
nodes (essentially reducing to a set of indepen-
dent log-linear classifiers).

5.2 Evaluation

We report our results using three evaluation metrics
of increasing coarseness.

1. Phoneme-level: For individual grapheme-
phoneme pairs (e.g. a:/5/, a:/2/, c:/k/, c:/tS/)
our task consists of a set of binary predic-
tions, and can thus be evaluated in terms of
precision, recall, and F1-measure. We report
micro-averages of these quantities across all
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Phoneme Grapheme Language
Precision Recall F1 Accuracy Accuracy

MAJORITY 80.47 57.47 67.06 55.54 2.8
SVM CONTINUOUS 79.87 64.48 79.87 59.07 3.74
SVM DISCRETE 90.55 78.27 83.97 70.78 8.41
NEAREST NEIGHBOR 85.35 79.43 82.28 67.97 2.8
MODEL: NO EDGES 89.35 82.05 85.54 73.96 10.28
FULL MODEL 91.06 83.98 87.37 78.58 21.5
MODEL: NO FAMILY 92.43 84.67 88.38 80.04 19.63
MODEL: NO TEXT 89.58 81.43 85.31 75.86 15.89
MODEL: NO PHONETIC 86.52 74.19 79.88 69.6 9.35

Table 3: The performance of baselines and variants of our model, evaluated at the phoneme-level (binary predictions),
whole-grapheme accuracy, and whole-language accuracy.

grapheme-phoneme pairs in all leave-one-out
test languages.

2. Grapheme-level: We also report grapheme-
level accuracy. For this metric, we con-
sider each grapheme g and examine its pre-
dicted labels over all its possible phonemes:
(g : p1), (g : p2), ..., (g : pk). If all k binary
predictions are correct, then the grapheme’s
phoneme-set has been correctly predicted. We
report the percentage of all graphemes with
such correct predictions (micro-averaged over
all graphemes in all test language scenarios).

3. Language-level: Finally, we assess language-
wide performance. For this metric, we re-
port the percentage of test languages for which
our model achieves perfect predictions on all
grapheme-phoneme pairs, yielding a perfect
mapping.

5.3 Results
The results for the baselines and our model are
shown in Table 3. The majority baseline yields 67%
F1-measure on the phoneme-level binary prediction
task, with 56% grapheme accuracy, and about 3%
language accuracy.

Using undiscretized raw count features, the SVM
improves phoneme-level performance to about 80%
F1, but fails to provide any improvement on
grapheme or language performance. In contrast, the
SVM using discretized and filtered features achieves
performance gains in all three categories, achieving
71% grapheme accuracy and 8% language accuracy.

The nearest neighbor baseline achieves performance
somewhere in between the two SVM variants.

The unconnected version of our model achieves
similar, though slightly improved performance over
the discretized SVM. Adding the automatically in-
duced edges into our model leads to significant
gains across all three categories. Phoneme-level
F1 reaches 87%, grapheme accuracy hits 79%, and
language accuracy more than doubles, achieving
22%. It is perhaps not surprising that the biggest
relative gains are seen at the language level: by
jointly learning and predicting an entire language’s
grapheme-phoneme inventory, our model ensures
that language-level coherence is maintained.

Recall that three sets of features are used by our
models. (1) language family and region features,
(2) textual context features, and (3) phonetic context
features. We now assess the relative merits of each
set by considering our model’s performance when
the set has been removed. Table 3 shows several
striking results from this experiment. First, it ap-
pears that dropping the region and language family
features actually improves performance. This result
is somewhat surprising, as we expected these fea-
tures to be quite informative. However, it appears
that whatever information they convey is redundant
when considering the text-based feature sets. We
next observe that dropping the textual context fea-
tures leads to a small drop in performance. Finally,
we see that dropping the phonetic context features
seriously degrades our model’s accuracy. Achieving
robust cross-linguistic generalization apparently re-
quires a level of feature abstraction not achieved by
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character-level context features alone.

6 Global Inventory Analysis

In the previous section we saw that our model
achieves relatively high performance in predicting
grapheme-phoneme relationships for never-before-
seen languages. In this section we analyze the pre-
dicted phoneme inventories and ask whether they
display the statistical properties observed in the
gold-standard mappings.

As outlined in Section 2, consonant phonemes can
be represented by the three articulatory features of
voicing, manner, and place. The principle of fea-
ture economy states that phoneme inventories will
be organized to minimize the number of distinct ar-
ticulatory features used in the language, while max-
imizing the number of resulting phonemes. This
principle has several implications. First, we can
measure the economy index of a consonant system
by computing the ratio of the number of conso-
nantal phonemes to the number of articulatory fea-
tures used in their production: #consonants

#features (Clements,
2003). The higher this value, the more economical
the sound system.

Secondly, for each articulatory dimension we can
calculate the empirical distribution over values ob-
served across the consonants of the language. Since
consonants are produced as combinations of the
three articulatory dimensions, the greatest number
of consonants (for a given set of utilized feature
values) will be produced when the distributions are
close to uniform. Thus, we can measure how eco-
nomical each feature dimension is by computing the
entropy of its distribution over consonants. For ex-
ample, in an economical system, we would expect
roughly half the consonants to be voiced, and half to
be unvoiced.

Table 4 shows the results of this analysis. First,
we notice that the average entropy of voiced vs. un-
voiced consonants is nearly identical in both cases,
close to the optimal value. However, when we ex-
amine the dimensions of place and manner, we no-
tice that the entropy induced by our model is not as
high as that of the true consonant inventories, imply-
ing a suboptimal allocation of consonants. In fact,
when we examine the economy index (ratio of con-
sonants to features), we indeed find that – on aver-
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True 0.9739 2.7355 2.4725 1.6536
Predicted 0.9733 2.6715 2.4163 1.6337

Table 4: Measures of feature economy applied to the pre-
dicted and true consonant inventories (averaged over all
107 languages).

age – our model’s predictions are not as economi-
cal as the gold standard. This analysis suggests that
we might obtain a more powerful predictive model
by taking the principle of feature economy into ac-
count.

7 Conclusions

In this paper, we considered a novel problem: that
of automatically relating written symbols to spo-
ken sounds for an unknown language using a known
writing system – the Latin alphabet. We constructed
a data-set consisting of grapheme-phoneme map-
pings and a short text for over 100 languages. This
data allows us to cast our problem in the supervised
learning framework, where each observed language
serves as a training example, and predictions are
made on a new language. Our model automatically
learns how to relate textual patterns of the unknown
language to plausible phonemic interpretations us-
ing induced phonotactic regularities.
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