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Abstract 

We report on empirical results in extreme 

extraction. It is extreme in that (1) from re-

ceipt of the ontology specifying the target 

concepts and relations, development is li-

mited to one week and that (2) relatively 

little training data is assumed. We are able 

to surpass human recall and achieve an F1 

of 0.51 on a question-answering task with 

less than 50 hours of effort using a hybrid 

approach that mixes active learning, boot-

strapping, and limited (5 hours) manual 

rule writing. We compare the performance 

of three systems: extraction with handwrit-

ten rules, bootstrapped extraction, and a 

combination. We show that while the recall 

of the handwritten rules surpasses that of 

the learned system, the learned system is 

able to improve the overall recall and F1.      

1 Introduction 

Throughout the Automatic Content Extraction
1
 

(ACE) evaluations and the Message Understanding 

Conferences
2
 (MUC), teams typically had a year or 

more from release of the target to submitting sys-

tem results. One exception was MUC-6 (Grishman 

& Sundheim, 1996), in which scenario templates 

for changing positions were extracted given only 

one month. Our goal was to confine development 

to a calendar week, in fact, <50 person hours. This 
                                                           
1 http://www.nist.gov/speech/tests/ace/ 
2 http://www-nlpir.nist.gov/related_projects/muc/ 

is significant in two ways: the less effort it takes to 

bring up a new domain, (1) the more broadly ap-

plicable the technology is and (2) the less effort 

required to run a diagnostic research experiment. 

Our second goal concerned minimizing training 

data. Rather than approximately 250k words of 

entity and relation annotation as in ACE, only ~20 

example pairs per relation-type were provided as 

training. Reducing the training requirements has 

the same two desirable outcomes: demonstrating 

that the technology can be broadly applicable and 

reducing the overhead for running experiments. 

The system achieved recall of 0.49 and precision 

of 0.53 (for an F1 of 0.51) on a blind test set of 60 

queries of the form Ri(arg1, arg2), where Ri is one 

of the 5 new relations and exactly one of arg1 or 

arg2 is a free variable for each query. 

Key to this achievement was a hybrid of:   
 a variant of (Miller, et al., 2004) to learn two 

new classes of entities via automatically induced 

word classes and active learning (6 hours) 

 bootstrap relation learning (Freedman et al, 

2010) to learn 5 new relation classes (2.5 hours),  

 handwritten patterns over predicate-argument 

structure (5 hours), and 

 coreference (20 hours) 

Our bootstrap learner is initialized with relation 

tuples (not annotated text) and uses LDC‘s Giga-

word and Wikipedia as a background corpus to 

learn patterns for relation detection that are based 

on normalized predicate argument structure as well 

as surface strings.  

These early empirical results suggest the follow-

ing: (1) It is possible to specify a domain, adapt 

our system, and complete manual scoring, includ-
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ing human performance, within a month. Experi-

ments in machine reading (and in extraction) can 

be performed much more quickly and cheaply than 

ever before. (2) Through machine learning and 

limited human pattern writing (6 hours), we 

adapted a machine reading system within a week 

(using less than 50 person hours), achieving ques-

tion answering performance with an F1 of 0.5 and 

with recall 11% higher (relative) to a human read-

er. (3) Unfortunately, machine learning, though 

achieving 80% precision,
3
 significantly lags behind 

a gifted human pattern writer in recall. Thus, boot-

strap learning with much higher recall at minimal 

sacrifice in precision is highly desirable. 

2 Related Work 

This effort is evaluated extrinsically via formal 

questions expressed as a binary relation with one 

free variable. This contrasts with TREC Question 

Answering,
4
 where the questions are in natural 

language, and not restricted to a single binary rela-

tion. Like the ―list‖ queries of TREC QA, the re-

quirement is to find all answers, not just one. 

Though question interpretation is not required in 

our work, interpretation of the text corpus is. 

The goal of rapid adaptation has been tested in 

other contexts. In 2003, a series of experiments in 

adapting to a new language in less than month 

tested system performance on Cebuano and Hindi. 

The primary goal was to adapt to a new language, 

rather than a new domain. The extraction partici-

pants focused on named-entity recognition, not 

relation extraction (May, et al, 2003; Sekine & 

Grishman, 2003; Li & McCallum, 2003; Maynard 

et al, 2003). The scenario templates of MUC-6 

(Grishman & Sundheim, 1996) are more similar to 

our relation extraction task, although the domain is 

quite different. Our experiment allowed for 1 week 

of development time, while MUC-6 allowed a 

month. The core entities in the MUC-6 task 

(people and organizations) had been worked on 

previously. In contrast all of our relations included 

at least one novel class. While MUC-6 systems 

tended to use finite-state patterns, they did not in-

corporate bootstrapping or patterns based on the 

output of a statistical parser.   

                                                           
3 Handwritten patterns achieved 52% precision. 
4 http://trec.nist.gov/data/qamain.html 

For learning entity classes, we follow Miller, et 

al., (2004), using word clustering and active learn-

ing to train a perceptron model, but unlike that 

work we apply the technique not just to names but 

also to descriptions. An alternative approach to 

learning classes, applying structural patterns to 

bootstrap description recognition without active 

learning, is seen in Riloff (1996) and Kozareva et 

al., (2008)   

Much research (e.g. Ramshaw 2001) has fo-

cused on learning relation extractors using large 

amounts of supervised training, as in ACE. The 

obvious weakness of such approaches is the result-

ing reliance on manually annotated examples, 

which are expensive and time-consuming to create.  

Others have explored bootstrap relation learn-

ing from seed examples. Agichtein & Gravano 

(2000) and Ravichandran & Hovy (2002) reported 

results for generating surface patterns for relation 

identification; others have explored similar ap-

proaches (e.g. Pantel & Pennacchiotti, 2006). Mit-

chell et al. (2009) showed that for macro-reading, 

precision and recall can be improved by learning a 

large set of interconnected relations and concepts 

simultaneously. None use coreference to find train-

ing examples; all use surface (word) patterns. 

Freedman et. al (2010) report improved perfor-

mance from using predicate structure for boot-

strappped relation learning.  

Most approaches to automatic pattern genera-

tion have focused on precision, e.g., Ravichandran 

and Hovy (2002) report results in TREC QA, 

where extracting one instance of a relation can be 

sufficient, rather than detecting all instances. Mit-

chell et al. (2009), while demonstrating high preci-

sion, do not measure recall. 

By contrast, our work emphasizes recall, not 

just precision. Our question answering task asks 

list-like questions that require multiple answers.  

We also include the results of a secondary, extrac-

tion evaluation which requires that the system 

identify every mention of the relations in a small 

set of documents. This evaluation is loosely based 

on the relation mention detection task in ACE.  

3 Task Set-Up and Evaluation 

Our effort was divided into four phases. During the 

first phase, a third party produced an ontology and 

the resources, which included: brief (~1 paragraph) 

guidelines for each relation and class in the ontolo-
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gy; ~20 examples for each relation in the ontology; 

2K documents that are rich in domain relations. 

Table 1 lists the 5 new relations and number of ex-

amples provided for each. Arguments in italics 

were known by the system prior to the evaluation.  

Relation Ex. 
possibleTreatment(Substance, Condition) 23 

expectedDateOnMarket(Substance, Date) 11 

responsibleForTreatment(Substance, Agent) 19 

studiesDisease(Agent, Condition) 16 

hasSideEffect(Substance, Condition) 27 

Table 1: New Relations and Number of Examples 

In phase two, we spent one week extending our 

extraction system for the new ontology. During the 

third phase, we ran our system over 10K docu-

ments to extract all instances of domain relations 

from those documents. In the fourth phase, our 

question answering system used the extracted in-

formation to answer queries.  

4 Approach to Domain Specialization 

Our approach to extracting domain relations inte-

grated novel relation and class detectors into an 

existing extraction system, designed primarily 

around the ACE tasks. The existing system uses a 

discriminatively trained classifier to detect the enti-

ty and value types of ACE. It also produces a syn-

tactic parse for each sentence; normalizes these 

parses to find logical predicate argument structure; 

and detects and coreferences pronominal, nominal, 

and name mentions for each of the 7 ACE entity 

types (Person, Organization, Geopolitical Entity, 

Location, Facility, Weapon, and Vehicle).
5
  

The extraction system has three components that 

allow for rapid adaptation to a new domain:  
 Class detectors trained using word classes de-

rived from unsupervised clustering and sentence-

selected training data. 

 A bootstrap relation learner which given a few 

seed examples learns patterns that indicate the 

presence of relations.  

 An expressive pattern language which allows a 

developer to express rules for relation extraction 

in a simple, but fast manner.  

 
 

Component Approach Effort 

Class Recognizer Active Learning 6 hrs 

                                                           
5
 The extraction system detects relations and events in the 

ACE ontology, but these were not used in the current work.  

 

Class Recognizer Web-Mined List 1 hrs 

Relation Recognizer 
Semi-supervised 

Bootstrapping 
8.5 hrs 

Relation Recognizer Manual Patterns 5 hrs 

Coreference Heuristics 20 hrs 

Table 2: Effort and Approach for New Domain 

4.1 Class Extraction  

Each of the relations in the new domain included at 

least one argument that was new. While question 

answering requires the system to identify the 

classes only when they appear in a relation, know-

ledge of when a class is present provides important 

information for relation extraction. For example in 

our ontology, Y is a treatment for X only if Y is a 

substance. Thus, ‗Group counseling sessions are 

effective treatments for depression’ does not con-

tain an instance of possibleTreatment(), while 

‗SSRIs are effective treatments for depression‘ 

does. The bootstrap learner allows constraints 

based on argument type. To use this capability, we 

trained the recognizer at the beginning of the week 

of domain adaptation and used the predicted 

classes during learning.  

We annotated 1064 sentences (~31K words) us-

ing active learning combined with unsupervised 

word clusters (Miller,et al., 2004) for the following 

classes: Substance-Name, Substance-Description, 

Condition-Name, and Condition-Description. Ge-

neric noun-phrases like new drugs, the illness, etc 

were labeled as descriptors. Because of the time 

frame, we did not develop extensive guidelines nor 

measure inter-annotator agreement. Annotation 

took 6 hours. We supplemented our annotation 

with lists of substances and treatments from the 

web, which took 1 hour.  

4.2 Coreference 

Providing a name reference is generally preferable 

to a non-specific string (e.g. the drugs), but not 

always feasible; for instance, reports of new re-

search may appear without a name for the drug. 

Our existing system‘s coreference algorithms op-

erate only on mentions of ACE entity types (per-

sons, organizations, GPEs, other locations, 

facilities, vehicles, and weapons). During the week 

of domain adaption we developed new heuristics 

for coreference over non-ACE types.  Most of our 

heuristics are domain independent (e.g. linking the 

parts of an appositive). Our decision to annotate 

names and descriptions separately was driven par-
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tially by the need to select the best reference (i.e. 

name) for co-referent clusters. Adding coreference 

heuristics for the two new entity types was the sin-

gle most time-consuming activity, taking 20 of the 

total 43 hours. 

4.3 Relation Extraction  

For relation extraction, we used both pattern 

learning and handwritten patterns. We initialized 

our bootstrap relation learner with the example 

instances provided with the domain ontology; Ta-

ble 3 includes examples of the instances provided 

to the system as training. Our bootstrap relation 

learner finds instances of the relation argument 

pairs in text and then proposes both predicate-

argument structure and word-based connections 

between the arguments as possible new patterns for 

the relation. The learner automatically prunes po-

tential patterns using information about the number 

of known-to-be true and novel instances matched 

by a proposed pattern. By running the pattern ex-

tractor over a large corpus, the proposed patterns 

generate new seeds which are in turn are used to 

propose new patterns. For this experiment, we in-

corporated a small amount of supervision during 

the bootstrapping process (roughly 1 hour total per 

relation); we also performed ~30 minutes total in 

pruning domain patterns at the end of learning.  
 Relation Arg-1 Arg-2 

possTreatmnt AZT AIDS 

studyDisease Dr Henri Joyeux cancer 

studyDisease Samir Khleif cancer 

Table 3: Sample Instances for Initializing Learner 

We also used a small amount of human effort 

creating rules for detecting the relations. The pat-

tern writer was given the guidelines, the examples, 

and a 2K document background corpus and spent 1 

hour per relation writing rules.  

The learned patterns use a subset of the full pat-

tern language used by the pattern-writer. The lan-

guage operates over surface-strings as well as 

predicate-argument structure. Figure 1 illustrates 

learned and handwritten patterns for the possible-

TreatmentRelation(). The patterns in rectangles 

match surface-string patterns; the tree-like patterns 

match normalized predicate argument structure.  

The –WORD- token indicates a wild card of 1-3 

words.  The blue rectangles at the root of the trees 

in the handwritten patterns are sets of predicates 

that can be matched by the pattern. 

5 Evaluation  

Our question answering evaluation was inspired 

by the evaluation in DARPA‘s machine reading 

program, which requires systems to map the in-

formation in text into a formal ontology and an-

swer questions based on that ontology. Unlike 

ACE, this allows evaluators to measure perfor-

mance without exhaustively annotating documents, 

allows for balance between rare and common rela-

tions, and implicitly measures coreference without 

requiring explicit annotation of answer keys for 

coreference. However because the evaluation only 

measures performance on the set of queries, many 

relation instances will be unscored. Furthermore, 

the system is not rewarded for finding the same 

relation multiple times; finding 100 instances of 

isPossibleTreatment(Penicillin, Strep Throat) is 

the same as finding 1 (or 10) instances.  

 
Figure 1: Sample Patterns for possibleTreatment() 

 

The evaluation included only queries of the type 

Find all instances for which the relation P(X, Z) is 

true where one of X or Z is constant. For example, 

Find possible treatments for diabetes; or What is 

expected date to market for Abilify? There were 60 

queries in the evaluation set to be answered from a 

10K document corpus. To produce a preliminary 

answer key, annotators were given the queries and 

corpus indexed by Google Desktop. Annotators 

were given 1 hour to find potential answers to each 

query. If no answers were found after 1 hour, the 

annotators were given a second hour to look for 

answers. For two queries, both of the form Find 

treatments with an expected date to market of MM-

YYYY, even after two hours of searching the anno-

tators were unable to find any answers.
6
  

Annotator answers served as the initial gold-

standard. Given this initial answer key, annotators 

reviewed system answers and aligned them with 

gold-standard answers. System output not aligned 

with the initial gold standard was assessed as cor-

rect or incorrect. We assume that the final gold-

standard constitutes a complete answer key, and 

                                                           
6 Evaluators wanted some queries with no answers. 
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are thus able to calculate recall for our system and 

for humans
7
. Because we had only one annotator 

for each query and because we assumed that any 

answer found by an annotator was correct, we 

could not estimate human precision on this task.  

Answers can be specific named concepts (e.g. 

Penicillin) or generic descriptions (e.g. drug, ill-

ness). Given the sentence, ACME produces a wide 

range of drugs including treatments for malaria 

and athletes foot,‘ our reading system would ex-

tract the relations responsibleForTreatment(drugs, 

ACME), possibleTreatment(drugs, malaria), pos-

sibleTreatment(drugs, athletes foot). When a name 

was available in the document, annotators marked 

the answer as correct, but underspecified. We cal-

culated precision and recall treating underspecified 

answers as incorrect and separately calculated pre-

cision and recall counting underspecified answers 

as correct. When treated as correct, there was less 

than a 0.05 absolute increase in both precision and 

recall. Unless otherwise specified, all scores re-

ported here use the stricter condition which treats 

underspecified answers as incorrect.  

We also evaluated extracting all information in a 

small document collection (here human search of 

the 10k documents does not play a role in finding 

answers). Individuals were asked to annotate every 

instance of the 5 relations in a set of 102 docu-

ments. Recall, Precision, and F were calculated by 

aligning system responses to the answer key. Sys-

tem answers that aligned are correct; those that did 

not are incorrect; and answers in the key that were 

not found by the system are misses. Unlike the 

question answering evaluation, this evaluation 

measures the ability to find every instance of a 

fact. If the gold standard includes 100 instances of 

isPossibleTreatment(Penicillin, Strep Throat), re-

call will decrease for each instance missed. The 

―extraction‖ evaluation does not penalize systems 

for missing coreference.  

6 Results 

6.1 Class Detection 

                                                           
7 The answer key may contain some answers that were found 

neither by the annotator nor by the systems described here, 

since the answer key includes answers pooled from other sys-

tems not reported in this paper. The system reported here was 

the highest performing of all those participating in the experi-

ment. Furthermore, if a system answer is marked as correct, 

but underspecified, the specific  answer is put in the key. 

The recall, precision, and F1 for class detection 

using 10-fold cross validation of the ~1K anno-

tated sentences appear in the 3-5
th
 columns of Table 

4. Given the amount of training, our results are 

lower than in Miller et al (2004) (an F1 of 90 with 

less than 25K words of training). Several factors 

could explain this: Finding boundaries and types 

for descriptions is more complex than for names in 

English.
8
 Our classes, pharmaceutical substances 

and physiological conditions, may have been more 

difficult to learn. Our classes are less common in 

news reporting; as such, both word-class clusters 

and active learning may have been less effective. 

Finally, our evaluation was done on a 10-fold split 

of the active-learning selected data; bias in select-

ing the data could explain at least a part of our 

lower performance.  

Type 
# in 

GS 

Without Lists With Lists 

R P F R P F 

Subst-D 789 77 85 80.8 78 85 81.3 

Subst-N 410 70 82 75.5 77 81 78.9 

Cond-D 427 72 78 74.9 72 77 74.4 

Cond-N 963 80 87 83.4 84 83 83.5 

Table 4: Cross Validation:  Condition & Substance 

We noticed that the system frequently reported 

country names to be substance-names. Surprising-

ly, we found that our well-trained name finder 

made the opposite mistake, occasionally reporting 

drugs as geo-political entities.  

We incorporated lists of known substances and 

conditions to improve recall. Performance on the 

same cross-validation split is shown in the final 

three columns of Table 4. Incorporating the lists led 

to recall gains for both substance-name and condi-

tion-name. Because a false-alarm in class recogni-

tion only leads to an incorrect relation extraction if 

it appears in a context indicating a domain relation, 

false alarms of classes may be less important in the 

question answering and extraction evaluations.   

6.2 Question Answering and Extraction 

Figure 2 and Table 6 show system performance 

using only handwritten rules (HW), only learned 

patterns (L), and combining both (C). Figure 2  

includes scores calculated with all of the systems‘ 

answers (in the dotted boxes), and with just those 

answers that were deemed useful (discussed be-

                                                           
8 English names are capitalized; person names have a typical 

form and are frequently signaled by titles; organization names 

frequently have clear signal words, such as Corp. 
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low). We include annotator recall. Handwritten 

patterns outperform learned patterns consistently 

with much higher recall. Encouragingly, however, 

1. The combined system‘s recall and F-Score 

are noticeably higher for 3 of the relations.  

2. The learned patterns generate answers not 

found by handwritten patterns.  

3. The learned patterns have high precision.
9
 

There is variation across the different relations. 

The two best performing relations possibleTreat-

ment() and studiesDisease() have F1 more than 

twice as high as the two worst performing rela-

tions, expectedDateToMarket() and hasSideEf-

fect(). This is primarily due to differences in recall.  

 
Figure 2: Overall Q/A Performance: All answers in  

dotted boxes; 'Useful Answers' unboxed 

The combined system‘s recall (0.49), while low, 

is higher than that of the annotators (0.44). While 

hardly surprising that a machine can process in-

formation much more quickly than a person, it is 

encouraging that higher recall is achieved even 

with only one week‘s effort. In the context of our 

pooled answer-key, the relatively low recall of 

both the system and the annotator suggests that 

there was little overlap between the answers found 

by the annotator and those found by the system.  

As already described, the system answers can 

include both specific references (e.g. Prozac) and 

more generic references (the drug). When a more 

specific answer is present in the document, generic 

references have been treated as incorrect. Howev-

er, sometimes there is not a more specific refer-

ence; for example an article written before a drug 

has been released may never name the drug. Scores 

reported thus far treat such answers as correct. 

These answers would be useful when answering 

more complex queries. For example, given the sen-

                                                           
9 The learned patterns' high precision is to be expected for two 

reasons. First, a few bad patterns were manually removed for 

each relation. More importantly, the learning algorithm strong-

ly favors high precision patterns because it needs to maintain a 

seed set with low noise in order to learn effectively.  

tence ‗ACME spent 5 years developing a pill to 

treat the flu which it will release next week,’ ex-

tracting relations involving ‗the pill’  would allow 

a system to answer questions that use multiple rela-

tions in the ontology to for example ask about  or-

ganizations developing treatments for the flu, or 

the expected date of release for ACME’s drugs. 

However, in our simple question answering 

framework such generic answers never convey 

novel information and thus were probably ignored 

by human annotators.  

 To measure the impact of treating these generic 

references as correct,
10

 we did additional annota-

tion on the correct answers, marking answers as 

‗useful‘ (specific) and ‗not-useful‘ (generic). The 

unboxed bars in Figure 2 show performance when 

‗not-useful‘ answers are removed from the answer-

key and the responses. For the four relations where 

there was a change Table 5 provides the relative 

change performance when only ‗useful‘ answers 

are considered. The annotator‘s recall increases 

noticeably while the combined system‘s drops. 

This results in the overall recall of annotators sur-

passing that of the combined system.   

Relation 
Recall Precision 

A C H L C H L 

possTreat 12 10 10 14 -10 -11 -3 

respTreat 9 0 -5 8 -4 -4 -1 

studyDis 12 -6 -9 13 -11 -13 0 

hasSidEff 3 4 4 4 0 0 0 

Total 11 -2 -4 6 -9 -10 -2 

Table 5: Relative Change in Recall and Precision When 

Non-Useful Answers are Removed 
Table 7 shows the total number of answers pro-

duced by annotators and by each system, as well as 

the percentage of queries with at least one correct 

answer for each system. For one relation expec-

tedDateOnMarket(), the learned system did not 

find any answers. This relation had far fewer an-

swers found by annotators and occurred far more 

rarely in the fully annotated extraction set (see Ta-

ble 8). Anecdotally, extracting this relation fre-

quently required co-referencing ‗it‘ (e.g. ―It will be 

released in March 2011”). Our heuristics for core-

ference of the new classes did not account for pro-

nouns. Learning from such examples would 

require coreference during bootstrapping. Most 

likely, the learned system was unable to generate 

enough novel instances to continue bootstrapping 

                                                           
10 Generic answers were treated as correct only if a more spe-

cific reference was not available in the document.  
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and was thus unable to learn the relation.  

Relation Type 

(# Queries; # Correct Ans.) 

Recall Precision F 

A C HW L C HW L C HW L 

possTreatment (10;247) 0.27 0.63 0.50 0.34 0.51 0.47 0.83 0.56 0.48 0.48 

respForTreat (15;134) 0.73 0.33 0.24 0.22 0.66 0.78 0.73 0.44 0.37 0.33 

expectDateMarkt (11;60) 0.90 0.17 0.17 0.00 0.77 0.83 0.00 0.27 0.28 0 

studiesDisease (13;292) 0.23 0.67 0.59 0.09 0.51 0.50 0.79 0.58 0.54 0.16 

hasSideEffect (11;104) 0.80 0.10 0.13 0.02 0.83 0.70 1.00 0.17 0.23 0.04 

Total (60;837) 0.44 0.49 0.42 0.17 0.53 0.52 0.80 0.51 0.46 0.28 

Table 6: Question Answering Results by Relation Type 

Relation Type 

 

Total Number of Answers % Queries with At Least 1 Corr. Ans 

A C HW L A C HW L 

possTreatment  66 303 261 100 100.0% 90.0% 90.0% 90.0% 

respForTreat  98 67 41 40 100.0% 66.7% 60.0% 60.0% 

expectDateMarkt  54 13 12 0 72.7% 45.5% 45.5% 0.0% 

studiesDisease  68 379 347 33 100.0% 61.5% 46.2% 46.2% 

hasSideEffect  83 12 20 2 72.7% 36.4% 45.5% 18.2% 

Total  369 774 681 175 90.0% 60.0% 56.7% 43.3% 

Table 7: Number of Answers and Number of Queries Answered 

Overall, the system did better on relations hav-

ing more correct answers. Bootstrap learning has 

an easier time discovering new instances and new 

patterns when there are more examples to work 

with. Even a human pattern writer will have more 

examples to generalize from for common relations.  

While possibleTreatment() and hasSideEffect() 

have similar F-scores, their performance is very 

different at the query level. The system was able to 

find at least one correct answer to every possible-

Treatment() query; however only 72.7% of the stu-

diesDisease() queries were answered.  

Table 8 presents results from the extraction 

evaluation where a set of ~100 documents were 

annotated for all mentions of the 5 relations. Be-

cause every mention in the document set must be 

found, the system cannot rely on finding the easiest 

answers for common relations. The results in Table 

8 are significantly lower than for the question ans-

wering tasks; yet some of the same trends are 

present. Handwritten rules outperform learned pat-

terns. For at least some relations, the combination 

of the two improves performance. The three rela-

tions for which the learned system has the lowest 

performance on the question-answering task have 

the fewest instances annotated in the document set. 

Fewer instance in the large corpus make bootstrap-

ping more difficult—the learner is less able to gen-

erate novel instances to expand its pattern set.  

7 Discussion 

7.1 Sources of Error 

The most common source of error is pattern cover-

age. In the following figure, the system identified 

responsibleForTreatment(Janssen Pharmaceutical, 

Sporanox), but missed the corresponding relation 

between Novartis and Lamisil.  

 

 

 

 

 

Relation Type # Relations Found Recall Precision F 

GS C HW L C HW L C HW L C HW L 

possibleTreatment 518 225 187 68 0.15 0.10 0.09 0.34 0.28 0.66 0.21 0.15 0.15 

respForTreatment 387 101 77 36 0.10 0.08 0.05 0.41 0.40 0.50 0.17 0.13 0.08 

expDateOnMarket 66 13 13 0 0.06 0.06 0.00 0.31 0.31 0.00 0.10 0.10 0.00 

studiesDisease 136 95 91 4 0.08 0.09 0.00 0.12 0.13 0.00 0.10 0.11 0.00 

hasSideEffect 256 26 25 2 0.04 0.04 0.00 0.39 0.40 0.50 0.07 0.07 0.01 

Table 8: Extraction Results on the 102 Document Test Set Annotated for All Instances of the Relations 

Sporanox is made by Janssen Pharmaceutica Inc., 

of Titusville, N.J. Lamisil is a product of Novartis 

Pharmaceuticals of East Hanover, N.J. 
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Missed class instances contribute to errors, some-

times originating in errors in tokenization (e.g. not 

removing the ‗_‘ in each drug name in a bulleted 

list of the form ―_Trovan, an antibiotic...; etc.) 

However, many drug-names are simply missed: 

 
The system correctly identifies Rebif and Aricept 

as drugs, but misses Pregabalin and Serono. In 

both misses, the immediately preceding and fol-

lowing words provide little evidence that the word 

refers to a drug rather than some other product. 

Substance detection might be better served with a 

web-scale, list-learning approach like the doubly 

anchored patterns described in (Kozareva et al., 

2008). Alternatively, our approach may need to be 

extended to include a larger context window. 

7.2 Learned Patterns  

One of the ways in which learned patterns supple-

ment handwritten ones is learning highly specific 

surface-string patterns that are insensitive to errors 

in parsing. Figure 3 illustrates two examples of 

what appear to be easy cases of possibleTreat-

ment(). Because the handwritten patterns are not 

exhaustive and make extensive use of syntactic 

structure, parse errors prevented the system based 

on handwritten rules from firing. Learned surface-

string patterns were able to find these relations.  

Even when the syntactic structure is correct, 

learned patterns capture expressions not common 

enough to have been noticed by the rule writer. For 

example, while the handwritten patterns included 

‗withdrew’ as a predicate indicating a company 

was responsible for a drug, they did not include 

‗pulled.’ By including ‗pulled’, learned patterns 

extracted responsibleForTreatment() from ‗Ameri-

can Home Products pulled Duract, a painkiller.’ 

Similarly, the learned patterns include an explicit 

pattern ‗CONDITION drug called SUBSTANCE’, 

and thus extracted a possibleTreatment() relation 

from ‗newly approved narcolepsy drug called 

modafinil’ without relying on the coreference 

component to link drug to modafinil.  

Handwritten Patterns 

Despite the examples above of successfully learned 

patterns, handwritten patterns perform significantly 

better. In the active-learning context used for these 

experiments, the handwritten rules also required 

less manual effort. This comparison is not entirely 

fair-- while learned patterns required more hours, 

supervising the bootstrapping algorithm requires 

no training. The handwritten patterns, in contrast, 

require a trained expert.  

 
Figure 3: Extractions Missed by Handwritten Rules & 

the Erroneous Parses that Hid them 

While handwritten rules and learned patterns use 

the same language, they make use of it differently. 

The handwritten patterns group similar concepts 

together. A human pattern writer adds relevant 

synonyms, as well as words that are not synonym-

ous but in the pattern context can be used inter-

changeably. In Figure 4, the handwritten patterns 

include three word-sets: (patient*, people, partici-

pant*); (given, taken, took, using); and (report*, 

experience*, develop*, suffer*). The ‗*‘ serves as a 

wild-card to further generalize a pattern. The word-

sets in Figure 4 illustrate challenges for a learned 

system: the words are not synonyms, but rather are 

words that can be used to imply the relation.  

A human pattern writer frequently generates 

new classes not in the domain ontology. In Figure 

4, the circled patterns form a class of ‗people tak-

ing a substance.‘ The handwritten patterns for stu-

diesDisease() include classes targeting scientists 

and researchers. These classes are not necessarily 

triggered by nouns. Such classes allow the pattern 

writer to include complex patterns as in Figure 4 

and to write relatively precise, but open-ended pat-

terns such as: if there is a single named-drug and a 

named, non-side-effect disease in the same sen-

tence, the drug is a treatment for the disease.  

Pfizer also hopes to introduce Pregabalin next 

year for treatment of neuropathic pain, epilepsy 

and anxiety…Other deals include co-promoting 

Rebif for multiple sclerosis with its discoverer, 

Serono, and marketing Aricept for Alzheimer's 

disease with its developer, Eisai Co. 
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Figure 4: Learned and Handwritten Patterns for  

hasSideEffect() 

A final difference between handwritten and 

learned patterns is the level of predicate-argument 

complexity used. In general, handwritten patterns 

account for larger spans of predicate argument 

structure while learned patterns tend to limit them-

selves to the connections between the arguments of 

the relation with minor extensions.  

8 Conclusions and Lessons Learned 

First, it is encouraging that the synthesis of learn-

ing algorithms and handwritten algorithms can 

achieve an F1 of 0.51 in a new domain in a week 

(<50 hours of effort). Second, it is exciting that so 

little training data is required: ~20 relation pairs 

out of context (~2.5 hours of effort) and ~6 hours 

of active learning for the new classes.  

Third, the effectiveness of learning algorithms is 

still not competitive with handwritten patterns 

based on predicate-argument structure (~5 hours of 

effort on top of active learning for entities). 

Though the learned patterns have high precision 

(0.80 on average), recall is low (0.17) and varied 

greatly across the relations. Though the dominant 

factor in missing relations is pattern coverage, 

missing instances of classes contributed to low re-

call. Comparing learned patterns to manually writ-

ten patterns, (1) synonyms or other lexical 

alternatives that a human pattern writer would in-

clude, (2) the creation of subclasses for argument 

types, and (3) the scope of patterns
11

 are each ma-

jor sources of the disparity in coverage. Research 

on learning approaches to raise recall without sig-

nificant sacrifice in precision seems essential.  

Fourth, despite the disparity in performance of 

learned versus manual patterns, and despite the low 
                                                           
11 Learned patterns tend to focus on the structure that appears 

between the two arguments, rather than structure surrounding 

the left and right arguments. 

recall of learned patterns, the combined system‘s 

recall and F-Score are higher for three of the rela-

tions because the learned patterns generated an-

swers not found by handwritten patterns. We found 

examples where highly specific, learned, surface-

level patterns (lexical patterns) occasionally found 

information missed by handwritten patterns due to 

parsing errors or general low coverage. 

Fifth, the effort for coreference was the most 

time-consuming, given that every new relation 

contained at least one of the new argument types. 

While we included this in our estimate of domain 

adaptation, the infrastructure we built is domain 

generic. Improving generic coreference will reduce 

domain specific effort in future.  

Perhaps most significant of all, running a com-

plete experiment from definition of the domain 

through creation of training data and measurement 

of end-to-end performance of the system can be 

completed in a month. The ability to rapidly, 

cheaply, and empirically measure the impact of 

extraction research could prove a significant spur 

to research across the board. 

These experiments suggest three possible direc-

tions for improving the ability to quickly develop 

information extraction technology for a new set of 

relations: (1) reducing the amount of supervision 

provided to the bootstrap-learner; (2) improving 

the bootstrapping approach to reach the level of 

recall achieved by the human pattern writer elimi-

nating the need for a trained expert during domain 

adaptation; and (3) focusing improvements to the 

bootstrapping approach on techniques that allow it 

to find more of the instances missed by the pattern 

writer, thus improving the accuracy of the hybrid 

system.   
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