
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1437–1446,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Extreme Extraction -- Machine Reading in a Week

Marjorie Freedman, Lance Ramshaw, Elizabeth Boschee, Ryan Gabbard,

Gary Kratkiewicz, Nicolas Ward, Ralph Weischedel
Raytheon BBN Technologies

10 Moulton St.

Cambridge, MA 02138

mfreedma,lramshaw,eboschee,rgabbard,kratkiewicz,

nward,weischedel@bbn.com

The views expressed are those of the author and do not reflect the official policy or position of the Depart-

ment of Defense or the U.S. Government. This is in accordance with DoDI 5230.29, January 8, 2009.

Abstract

We report on empirical results in extreme

extraction. It is extreme in that (1) from re-

ceipt of the ontology specifying the target

concepts and relations, development is li-

mited to one week and that (2) relatively

little training data is assumed. We are able

to surpass human recall and achieve an F1

of 0.51 on a question-answering task with

less than 50 hours of effort using a hybrid

approach that mixes active learning, boot-

strapping, and limited (5 hours) manual

rule writing. We compare the performance

of three systems: extraction with handwrit-

ten rules, bootstrapped extraction, and a

combination. We show that while the recall

of the handwritten rules surpasses that of

the learned system, the learned system is

able to improve the overall recall and F1.

1 Introduction

Throughout the Automatic Content Extraction
1

(ACE) evaluations and the Message Understanding

Conferences
2
 (MUC), teams typically had a year or

more from release of the target to submitting sys-

tem results. One exception was MUC-6 (Grishman

& Sundheim, 1996), in which scenario templates

for changing positions were extracted given only

one month. Our goal was to confine development

to a calendar week, in fact, <50 person hours. This

1 http://www.nist.gov/speech/tests/ace/
2 http://www-nlpir.nist.gov/related_projects/muc/

is significant in two ways: the less effort it takes to

bring up a new domain, (1) the more broadly ap-

plicable the technology is and (2) the less effort

required to run a diagnostic research experiment.

Our second goal concerned minimizing training

data. Rather than approximately 250k words of

entity and relation annotation as in ACE, only ~20

example pairs per relation-type were provided as

training. Reducing the training requirements has

the same two desirable outcomes: demonstrating

that the technology can be broadly applicable and

reducing the overhead for running experiments.

The system achieved recall of 0.49 and precision

of 0.53 (for an F1 of 0.51) on a blind test set of 60

queries of the form Ri(arg1, arg2), where Ri is one

of the 5 new relations and exactly one of arg1 or

arg2 is a free variable for each query.

Key to this achievement was a hybrid of:
 a variant of (Miller, et al., 2004) to learn two

new classes of entities via automatically induced

word classes and active learning (6 hours)

 bootstrap relation learning (Freedman et al,

2010) to learn 5 new relation classes (2.5 hours),

 handwritten patterns over predicate-argument

structure (5 hours), and

 coreference (20 hours)

Our bootstrap learner is initialized with relation

tuples (not annotated text) and uses LDC‘s Giga-

word and Wikipedia as a background corpus to

learn patterns for relation detection that are based

on normalized predicate argument structure as well

as surface strings.

These early empirical results suggest the follow-

ing: (1) It is possible to specify a domain, adapt

our system, and complete manual scoring, includ-

1437

ing human performance, within a month. Experi-

ments in machine reading (and in extraction) can

be performed much more quickly and cheaply than

ever before. (2) Through machine learning and

limited human pattern writing (6 hours), we

adapted a machine reading system within a week

(using less than 50 person hours), achieving ques-

tion answering performance with an F1 of 0.5 and

with recall 11% higher (relative) to a human read-

er. (3) Unfortunately, machine learning, though

achieving 80% precision,
3
 significantly lags behind

a gifted human pattern writer in recall. Thus, boot-

strap learning with much higher recall at minimal

sacrifice in precision is highly desirable.

2 Related Work

This effort is evaluated extrinsically via formal

questions expressed as a binary relation with one

free variable. This contrasts with TREC Question

Answering,
4
 where the questions are in natural

language, and not restricted to a single binary rela-

tion. Like the ―list‖ queries of TREC QA, the re-

quirement is to find all answers, not just one.

Though question interpretation is not required in

our work, interpretation of the text corpus is.

The goal of rapid adaptation has been tested in

other contexts. In 2003, a series of experiments in

adapting to a new language in less than month

tested system performance on Cebuano and Hindi.

The primary goal was to adapt to a new language,

rather than a new domain. The extraction partici-

pants focused on named-entity recognition, not

relation extraction (May, et al, 2003; Sekine &

Grishman, 2003; Li & McCallum, 2003; Maynard

et al, 2003). The scenario templates of MUC-6

(Grishman & Sundheim, 1996) are more similar to

our relation extraction task, although the domain is

quite different. Our experiment allowed for 1 week

of development time, while MUC-6 allowed a

month. The core entities in the MUC-6 task

(people and organizations) had been worked on

previously. In contrast all of our relations included

at least one novel class. While MUC-6 systems

tended to use finite-state patterns, they did not in-

corporate bootstrapping or patterns based on the

output of a statistical parser.

3 Handwritten patterns achieved 52% precision.
4 http://trec.nist.gov/data/qamain.html

For learning entity classes, we follow Miller, et

al., (2004), using word clustering and active learn-

ing to train a perceptron model, but unlike that

work we apply the technique not just to names but

also to descriptions. An alternative approach to

learning classes, applying structural patterns to

bootstrap description recognition without active

learning, is seen in Riloff (1996) and Kozareva et

al., (2008)

Much research (e.g. Ramshaw 2001) has fo-

cused on learning relation extractors using large

amounts of supervised training, as in ACE. The

obvious weakness of such approaches is the result-

ing reliance on manually annotated examples,

which are expensive and time-consuming to create.

Others have explored bootstrap relation learn-

ing from seed examples. Agichtein & Gravano

(2000) and Ravichandran & Hovy (2002) reported

results for generating surface patterns for relation

identification; others have explored similar ap-

proaches (e.g. Pantel & Pennacchiotti, 2006). Mit-

chell et al. (2009) showed that for macro-reading,

precision and recall can be improved by learning a

large set of interconnected relations and concepts

simultaneously. None use coreference to find train-

ing examples; all use surface (word) patterns.

Freedman et. al (2010) report improved perfor-

mance from using predicate structure for boot-

strappped relation learning.

Most approaches to automatic pattern genera-

tion have focused on precision, e.g., Ravichandran

and Hovy (2002) report results in TREC QA,

where extracting one instance of a relation can be

sufficient, rather than detecting all instances. Mit-

chell et al. (2009), while demonstrating high preci-

sion, do not measure recall.

By contrast, our work emphasizes recall, not

just precision. Our question answering task asks

list-like questions that require multiple answers.

We also include the results of a secondary, extrac-

tion evaluation which requires that the system

identify every mention of the relations in a small

set of documents. This evaluation is loosely based

on the relation mention detection task in ACE.

3 Task Set-Up and Evaluation

Our effort was divided into four phases. During the

first phase, a third party produced an ontology and

the resources, which included: brief (~1 paragraph)

guidelines for each relation and class in the ontolo-

1438

gy; ~20 examples for each relation in the ontology;

2K documents that are rich in domain relations.

Table 1 lists the 5 new relations and number of ex-

amples provided for each. Arguments in italics

were known by the system prior to the evaluation.

Relation Ex.
possibleTreatment(Substance, Condition) 23

expectedDateOnMarket(Substance, Date) 11

responsibleForTreatment(Substance, Agent) 19

studiesDisease(Agent, Condition) 16

hasSideEffect(Substance, Condition) 27

Table 1: New Relations and Number of Examples

In phase two, we spent one week extending our

extraction system for the new ontology. During the

third phase, we ran our system over 10K docu-

ments to extract all instances of domain relations

from those documents. In the fourth phase, our

question answering system used the extracted in-

formation to answer queries.

4 Approach to Domain Specialization

Our approach to extracting domain relations inte-

grated novel relation and class detectors into an

existing extraction system, designed primarily

around the ACE tasks. The existing system uses a

discriminatively trained classifier to detect the enti-

ty and value types of ACE. It also produces a syn-

tactic parse for each sentence; normalizes these

parses to find logical predicate argument structure;

and detects and coreferences pronominal, nominal,

and name mentions for each of the 7 ACE entity

types (Person, Organization, Geopolitical Entity,

Location, Facility, Weapon, and Vehicle).
5

The extraction system has three components that

allow for rapid adaptation to a new domain:
 Class detectors trained using word classes de-

rived from unsupervised clustering and sentence-

selected training data.

 A bootstrap relation learner which given a few

seed examples learns patterns that indicate the

presence of relations.

 An expressive pattern language which allows a

developer to express rules for relation extraction

in a simple, but fast manner.

Component Approach Effort

Class Recognizer Active Learning 6 hrs

5
 The extraction system detects relations and events in the

ACE ontology, but these were not used in the current work.

Class Recognizer Web-Mined List 1 hrs

Relation Recognizer
Semi-supervised

Bootstrapping
8.5 hrs

Relation Recognizer Manual Patterns 5 hrs

Coreference Heuristics 20 hrs

Table 2: Effort and Approach for New Domain

4.1 Class Extraction

Each of the relations in the new domain included at

least one argument that was new. While question

answering requires the system to identify the

classes only when they appear in a relation, know-

ledge of when a class is present provides important

information for relation extraction. For example in

our ontology, Y is a treatment for X only if Y is a

substance. Thus, ‗Group counseling sessions are

effective treatments for depression’ does not con-

tain an instance of possibleTreatment(), while

‗SSRIs are effective treatments for depression‘

does. The bootstrap learner allows constraints

based on argument type. To use this capability, we

trained the recognizer at the beginning of the week

of domain adaptation and used the predicted

classes during learning.

We annotated 1064 sentences (~31K words) us-

ing active learning combined with unsupervised

word clusters (Miller,et al., 2004) for the following

classes: Substance-Name, Substance-Description,

Condition-Name, and Condition-Description. Ge-

neric noun-phrases like new drugs, the illness, etc

were labeled as descriptors. Because of the time

frame, we did not develop extensive guidelines nor

measure inter-annotator agreement. Annotation

took 6 hours. We supplemented our annotation

with lists of substances and treatments from the

web, which took 1 hour.

4.2 Coreference

Providing a name reference is generally preferable

to a non-specific string (e.g. the drugs), but not

always feasible; for instance, reports of new re-

search may appear without a name for the drug.

Our existing system‘s coreference algorithms op-

erate only on mentions of ACE entity types (per-

sons, organizations, GPEs, other locations,

facilities, vehicles, and weapons). During the week

of domain adaption we developed new heuristics

for coreference over non-ACE types. Most of our

heuristics are domain independent (e.g. linking the

parts of an appositive). Our decision to annotate

names and descriptions separately was driven par-

1439

tially by the need to select the best reference (i.e.

name) for co-referent clusters. Adding coreference

heuristics for the two new entity types was the sin-

gle most time-consuming activity, taking 20 of the

total 43 hours.

4.3 Relation Extraction

For relation extraction, we used both pattern

learning and handwritten patterns. We initialized

our bootstrap relation learner with the example

instances provided with the domain ontology; Ta-

ble 3 includes examples of the instances provided

to the system as training. Our bootstrap relation

learner finds instances of the relation argument

pairs in text and then proposes both predicate-

argument structure and word-based connections

between the arguments as possible new patterns for

the relation. The learner automatically prunes po-

tential patterns using information about the number

of known-to-be true and novel instances matched

by a proposed pattern. By running the pattern ex-

tractor over a large corpus, the proposed patterns

generate new seeds which are in turn are used to

propose new patterns. For this experiment, we in-

corporated a small amount of supervision during

the bootstrapping process (roughly 1 hour total per

relation); we also performed ~30 minutes total in

pruning domain patterns at the end of learning.
 Relation Arg-1 Arg-2

possTreatmnt AZT AIDS

studyDisease Dr Henri Joyeux cancer

studyDisease Samir Khleif cancer

Table 3: Sample Instances for Initializing Learner

We also used a small amount of human effort

creating rules for detecting the relations. The pat-

tern writer was given the guidelines, the examples,

and a 2K document background corpus and spent 1

hour per relation writing rules.

The learned patterns use a subset of the full pat-

tern language used by the pattern-writer. The lan-

guage operates over surface-strings as well as

predicate-argument structure. Figure 1 illustrates

learned and handwritten patterns for the possible-

TreatmentRelation(). The patterns in rectangles

match surface-string patterns; the tree-like patterns

match normalized predicate argument structure.

The –WORD- token indicates a wild card of 1-3

words. The blue rectangles at the root of the trees

in the handwritten patterns are sets of predicates

that can be matched by the pattern.

5 Evaluation

Our question answering evaluation was inspired

by the evaluation in DARPA‘s machine reading

program, which requires systems to map the in-

formation in text into a formal ontology and an-

swer questions based on that ontology. Unlike

ACE, this allows evaluators to measure perfor-

mance without exhaustively annotating documents,

allows for balance between rare and common rela-

tions, and implicitly measures coreference without

requiring explicit annotation of answer keys for

coreference. However because the evaluation only

measures performance on the set of queries, many

relation instances will be unscored. Furthermore,

the system is not rewarded for finding the same

relation multiple times; finding 100 instances of

isPossibleTreatment(Penicillin, Strep Throat) is

the same as finding 1 (or 10) instances.

Figure 1: Sample Patterns for possibleTreatment()

The evaluation included only queries of the type

Find all instances for which the relation P(X, Z) is

true where one of X or Z is constant. For example,

Find possible treatments for diabetes; or What is

expected date to market for Abilify? There were 60

queries in the evaluation set to be answered from a

10K document corpus. To produce a preliminary

answer key, annotators were given the queries and

corpus indexed by Google Desktop. Annotators

were given 1 hour to find potential answers to each

query. If no answers were found after 1 hour, the

annotators were given a second hour to look for

answers. For two queries, both of the form Find

treatments with an expected date to market of MM-

YYYY, even after two hours of searching the anno-

tators were unable to find any answers.
6

Annotator answers served as the initial gold-

standard. Given this initial answer key, annotators

reviewed system answers and aligned them with

gold-standard answers. System output not aligned

with the initial gold standard was assessed as cor-

rect or incorrect. We assume that the final gold-

standard constitutes a complete answer key, and

6 Evaluators wanted some queries with no answers.

1440

are thus able to calculate recall for our system and

for humans
7
. Because we had only one annotator

for each query and because we assumed that any

answer found by an annotator was correct, we

could not estimate human precision on this task.

Answers can be specific named concepts (e.g.

Penicillin) or generic descriptions (e.g. drug, ill-

ness). Given the sentence, ACME produces a wide

range of drugs including treatments for malaria

and athletes foot,‘ our reading system would ex-

tract the relations responsibleForTreatment(drugs,

ACME), possibleTreatment(drugs, malaria), pos-

sibleTreatment(drugs, athletes foot). When a name

was available in the document, annotators marked

the answer as correct, but underspecified. We cal-

culated precision and recall treating underspecified

answers as incorrect and separately calculated pre-

cision and recall counting underspecified answers

as correct. When treated as correct, there was less

than a 0.05 absolute increase in both precision and

recall. Unless otherwise specified, all scores re-

ported here use the stricter condition which treats

underspecified answers as incorrect.

We also evaluated extracting all information in a

small document collection (here human search of

the 10k documents does not play a role in finding

answers). Individuals were asked to annotate every

instance of the 5 relations in a set of 102 docu-

ments. Recall, Precision, and F were calculated by

aligning system responses to the answer key. Sys-

tem answers that aligned are correct; those that did

not are incorrect; and answers in the key that were

not found by the system are misses. Unlike the

question answering evaluation, this evaluation

measures the ability to find every instance of a

fact. If the gold standard includes 100 instances of

isPossibleTreatment(Penicillin, Strep Throat), re-

call will decrease for each instance missed. The

―extraction‖ evaluation does not penalize systems

for missing coreference.

6 Results

6.1 Class Detection

7 The answer key may contain some answers that were found

neither by the annotator nor by the systems described here,

since the answer key includes answers pooled from other sys-

tems not reported in this paper. The system reported here was

the highest performing of all those participating in the experi-

ment. Furthermore, if a system answer is marked as correct,

but underspecified, the specific answer is put in the key.

The recall, precision, and F1 for class detection

using 10-fold cross validation of the ~1K anno-

tated sentences appear in the 3-5
th
 columns of Table

4. Given the amount of training, our results are

lower than in Miller et al (2004) (an F1 of 90 with

less than 25K words of training). Several factors

could explain this: Finding boundaries and types

for descriptions is more complex than for names in

English.
8
 Our classes, pharmaceutical substances

and physiological conditions, may have been more

difficult to learn. Our classes are less common in

news reporting; as such, both word-class clusters

and active learning may have been less effective.

Finally, our evaluation was done on a 10-fold split

of the active-learning selected data; bias in select-

ing the data could explain at least a part of our

lower performance.

Type
in

GS

Without Lists With Lists

R P F R P F

Subst-D 789 77 85 80.8 78 85 81.3

Subst-N 410 70 82 75.5 77 81 78.9

Cond-D 427 72 78 74.9 72 77 74.4

Cond-N 963 80 87 83.4 84 83 83.5

Table 4: Cross Validation: Condition & Substance

We noticed that the system frequently reported

country names to be substance-names. Surprising-

ly, we found that our well-trained name finder

made the opposite mistake, occasionally reporting

drugs as geo-political entities.

We incorporated lists of known substances and

conditions to improve recall. Performance on the

same cross-validation split is shown in the final

three columns of Table 4. Incorporating the lists led

to recall gains for both substance-name and condi-

tion-name. Because a false-alarm in class recogni-

tion only leads to an incorrect relation extraction if

it appears in a context indicating a domain relation,

false alarms of classes may be less important in the

question answering and extraction evaluations.

6.2 Question Answering and Extraction

Figure 2 and Table 6 show system performance

using only handwritten rules (HW), only learned

patterns (L), and combining both (C). Figure 2

includes scores calculated with all of the systems‘

answers (in the dotted boxes), and with just those

answers that were deemed useful (discussed be-

8 English names are capitalized; person names have a typical

form and are frequently signaled by titles; organization names

frequently have clear signal words, such as Corp.

1441

low). We include annotator recall. Handwritten

patterns outperform learned patterns consistently

with much higher recall. Encouragingly, however,

1. The combined system‘s recall and F-Score

are noticeably higher for 3 of the relations.

2. The learned patterns generate answers not

found by handwritten patterns.

3. The learned patterns have high precision.
9

There is variation across the different relations.

The two best performing relations possibleTreat-

ment() and studiesDisease() have F1 more than

twice as high as the two worst performing rela-

tions, expectedDateToMarket() and hasSideEf-

fect(). This is primarily due to differences in recall.

Figure 2: Overall Q/A Performance: All answers in

dotted boxes; 'Useful Answers' unboxed

The combined system‘s recall (0.49), while low,

is higher than that of the annotators (0.44). While

hardly surprising that a machine can process in-

formation much more quickly than a person, it is

encouraging that higher recall is achieved even

with only one week‘s effort. In the context of our

pooled answer-key, the relatively low recall of

both the system and the annotator suggests that

there was little overlap between the answers found

by the annotator and those found by the system.

As already described, the system answers can

include both specific references (e.g. Prozac) and

more generic references (the drug). When a more

specific answer is present in the document, generic

references have been treated as incorrect. Howev-

er, sometimes there is not a more specific refer-

ence; for example an article written before a drug

has been released may never name the drug. Scores

reported thus far treat such answers as correct.

These answers would be useful when answering

more complex queries. For example, given the sen-

9 The learned patterns' high precision is to be expected for two

reasons. First, a few bad patterns were manually removed for

each relation. More importantly, the learning algorithm strong-

ly favors high precision patterns because it needs to maintain a

seed set with low noise in order to learn effectively.

tence ‗ACME spent 5 years developing a pill to

treat the flu which it will release next week,’ ex-

tracting relations involving ‗the pill’ would allow

a system to answer questions that use multiple rela-

tions in the ontology to for example ask about or-

ganizations developing treatments for the flu, or

the expected date of release for ACME’s drugs.

However, in our simple question answering

framework such generic answers never convey

novel information and thus were probably ignored

by human annotators.

 To measure the impact of treating these generic

references as correct,
10

 we did additional annota-

tion on the correct answers, marking answers as

‗useful‘ (specific) and ‗not-useful‘ (generic). The

unboxed bars in Figure 2 show performance when

‗not-useful‘ answers are removed from the answer-

key and the responses. For the four relations where

there was a change Table 5 provides the relative

change performance when only ‗useful‘ answers

are considered. The annotator‘s recall increases

noticeably while the combined system‘s drops.

This results in the overall recall of annotators sur-

passing that of the combined system.

Relation
Recall Precision

A C H L C H L

possTreat 12 10 10 14 -10 -11 -3

respTreat 9 0 -5 8 -4 -4 -1

studyDis 12 -6 -9 13 -11 -13 0

hasSidEff 3 4 4 4 0 0 0

Total 11 -2 -4 6 -9 -10 -2

Table 5: Relative Change in Recall and Precision When

Non-Useful Answers are Removed
Table 7 shows the total number of answers pro-

duced by annotators and by each system, as well as

the percentage of queries with at least one correct

answer for each system. For one relation expec-

tedDateOnMarket(), the learned system did not

find any answers. This relation had far fewer an-

swers found by annotators and occurred far more

rarely in the fully annotated extraction set (see Ta-

ble 8). Anecdotally, extracting this relation fre-

quently required co-referencing ‗it‘ (e.g. ―It will be

released in March 2011”). Our heuristics for core-

ference of the new classes did not account for pro-

nouns. Learning from such examples would

require coreference during bootstrapping. Most

likely, the learned system was unable to generate

enough novel instances to continue bootstrapping

10 Generic answers were treated as correct only if a more spe-

cific reference was not available in the document.

1442

and was thus unable to learn the relation.

Relation Type

(# Queries; # Correct Ans.)

Recall Precision F

A C HW L C HW L C HW L

possTreatment (10;247) 0.27 0.63 0.50 0.34 0.51 0.47 0.83 0.56 0.48 0.48

respForTreat (15;134) 0.73 0.33 0.24 0.22 0.66 0.78 0.73 0.44 0.37 0.33

expectDateMarkt (11;60) 0.90 0.17 0.17 0.00 0.77 0.83 0.00 0.27 0.28 0

studiesDisease (13;292) 0.23 0.67 0.59 0.09 0.51 0.50 0.79 0.58 0.54 0.16

hasSideEffect (11;104) 0.80 0.10 0.13 0.02 0.83 0.70 1.00 0.17 0.23 0.04

Total (60;837) 0.44 0.49 0.42 0.17 0.53 0.52 0.80 0.51 0.46 0.28

Table 6: Question Answering Results by Relation Type

Relation Type

Total Number of Answers % Queries with At Least 1 Corr. Ans

A C HW L A C HW L

possTreatment 66 303 261 100 100.0% 90.0% 90.0% 90.0%

respForTreat 98 67 41 40 100.0% 66.7% 60.0% 60.0%

expectDateMarkt 54 13 12 0 72.7% 45.5% 45.5% 0.0%

studiesDisease 68 379 347 33 100.0% 61.5% 46.2% 46.2%

hasSideEffect 83 12 20 2 72.7% 36.4% 45.5% 18.2%

Total 369 774 681 175 90.0% 60.0% 56.7% 43.3%

Table 7: Number of Answers and Number of Queries Answered

Overall, the system did better on relations hav-

ing more correct answers. Bootstrap learning has

an easier time discovering new instances and new

patterns when there are more examples to work

with. Even a human pattern writer will have more

examples to generalize from for common relations.

While possibleTreatment() and hasSideEffect()

have similar F-scores, their performance is very

different at the query level. The system was able to

find at least one correct answer to every possible-

Treatment() query; however only 72.7% of the stu-

diesDisease() queries were answered.

Table 8 presents results from the extraction

evaluation where a set of ~100 documents were

annotated for all mentions of the 5 relations. Be-

cause every mention in the document set must be

found, the system cannot rely on finding the easiest

answers for common relations. The results in Table

8 are significantly lower than for the question ans-

wering tasks; yet some of the same trends are

present. Handwritten rules outperform learned pat-

terns. For at least some relations, the combination

of the two improves performance. The three rela-

tions for which the learned system has the lowest

performance on the question-answering task have

the fewest instances annotated in the document set.

Fewer instance in the large corpus make bootstrap-

ping more difficult—the learner is less able to gen-

erate novel instances to expand its pattern set.

7 Discussion

7.1 Sources of Error

The most common source of error is pattern cover-

age. In the following figure, the system identified

responsibleForTreatment(Janssen Pharmaceutical,

Sporanox), but missed the corresponding relation

between Novartis and Lamisil.

Relation Type # Relations Found Recall Precision F

GS C HW L C HW L C HW L C HW L

possibleTreatment 518 225 187 68 0.15 0.10 0.09 0.34 0.28 0.66 0.21 0.15 0.15

respForTreatment 387 101 77 36 0.10 0.08 0.05 0.41 0.40 0.50 0.17 0.13 0.08

expDateOnMarket 66 13 13 0 0.06 0.06 0.00 0.31 0.31 0.00 0.10 0.10 0.00

studiesDisease 136 95 91 4 0.08 0.09 0.00 0.12 0.13 0.00 0.10 0.11 0.00

hasSideEffect 256 26 25 2 0.04 0.04 0.00 0.39 0.40 0.50 0.07 0.07 0.01

Table 8: Extraction Results on the 102 Document Test Set Annotated for All Instances of the Relations

Sporanox is made by Janssen Pharmaceutica Inc.,

of Titusville, N.J. Lamisil is a product of Novartis

Pharmaceuticals of East Hanover, N.J.

1443

Missed class instances contribute to errors, some-

times originating in errors in tokenization (e.g. not

removing the ‗_‘ in each drug name in a bulleted

list of the form ―_Trovan, an antibiotic...; etc.)

However, many drug-names are simply missed:

The system correctly identifies Rebif and Aricept

as drugs, but misses Pregabalin and Serono. In

both misses, the immediately preceding and fol-

lowing words provide little evidence that the word

refers to a drug rather than some other product.

Substance detection might be better served with a

web-scale, list-learning approach like the doubly

anchored patterns described in (Kozareva et al.,

2008). Alternatively, our approach may need to be

extended to include a larger context window.

7.2 Learned Patterns

One of the ways in which learned patterns supple-

ment handwritten ones is learning highly specific

surface-string patterns that are insensitive to errors

in parsing. Figure 3 illustrates two examples of

what appear to be easy cases of possibleTreat-

ment(). Because the handwritten patterns are not

exhaustive and make extensive use of syntactic

structure, parse errors prevented the system based

on handwritten rules from firing. Learned surface-

string patterns were able to find these relations.

Even when the syntactic structure is correct,

learned patterns capture expressions not common

enough to have been noticed by the rule writer. For

example, while the handwritten patterns included

‗withdrew’ as a predicate indicating a company

was responsible for a drug, they did not include

‗pulled.’ By including ‗pulled’, learned patterns

extracted responsibleForTreatment() from ‗Ameri-

can Home Products pulled Duract, a painkiller.’

Similarly, the learned patterns include an explicit

pattern ‗CONDITION drug called SUBSTANCE’,

and thus extracted a possibleTreatment() relation

from ‗newly approved narcolepsy drug called

modafinil’ without relying on the coreference

component to link drug to modafinil.

Handwritten Patterns

Despite the examples above of successfully learned

patterns, handwritten patterns perform significantly

better. In the active-learning context used for these

experiments, the handwritten rules also required

less manual effort. This comparison is not entirely

fair-- while learned patterns required more hours,

supervising the bootstrapping algorithm requires

no training. The handwritten patterns, in contrast,

require a trained expert.

Figure 3: Extractions Missed by Handwritten Rules &

the Erroneous Parses that Hid them

While handwritten rules and learned patterns use

the same language, they make use of it differently.

The handwritten patterns group similar concepts

together. A human pattern writer adds relevant

synonyms, as well as words that are not synonym-

ous but in the pattern context can be used inter-

changeably. In Figure 4, the handwritten patterns

include three word-sets: (patient*, people, partici-

pant*); (given, taken, took, using); and (report*,

experience*, develop*, suffer*). The ‗*‘ serves as a

wild-card to further generalize a pattern. The word-

sets in Figure 4 illustrate challenges for a learned

system: the words are not synonyms, but rather are

words that can be used to imply the relation.

A human pattern writer frequently generates

new classes not in the domain ontology. In Figure

4, the circled patterns form a class of ‗people tak-

ing a substance.‘ The handwritten patterns for stu-

diesDisease() include classes targeting scientists

and researchers. These classes are not necessarily

triggered by nouns. Such classes allow the pattern

writer to include complex patterns as in Figure 4

and to write relatively precise, but open-ended pat-

terns such as: if there is a single named-drug and a

named, non-side-effect disease in the same sen-

tence, the drug is a treatment for the disease.

Pfizer also hopes to introduce Pregabalin next

year for treatment of neuropathic pain, epilepsy

and anxiety…Other deals include co-promoting

Rebif for multiple sclerosis with its discoverer,

Serono, and marketing Aricept for Alzheimer's

disease with its developer, Eisai Co.

1444

Figure 4: Learned and Handwritten Patterns for

hasSideEffect()

A final difference between handwritten and

learned patterns is the level of predicate-argument

complexity used. In general, handwritten patterns

account for larger spans of predicate argument

structure while learned patterns tend to limit them-

selves to the connections between the arguments of

the relation with minor extensions.

8 Conclusions and Lessons Learned

First, it is encouraging that the synthesis of learn-

ing algorithms and handwritten algorithms can

achieve an F1 of 0.51 in a new domain in a week

(<50 hours of effort). Second, it is exciting that so

little training data is required: ~20 relation pairs

out of context (~2.5 hours of effort) and ~6 hours

of active learning for the new classes.

Third, the effectiveness of learning algorithms is

still not competitive with handwritten patterns

based on predicate-argument structure (~5 hours of

effort on top of active learning for entities).

Though the learned patterns have high precision

(0.80 on average), recall is low (0.17) and varied

greatly across the relations. Though the dominant

factor in missing relations is pattern coverage,

missing instances of classes contributed to low re-

call. Comparing learned patterns to manually writ-

ten patterns, (1) synonyms or other lexical

alternatives that a human pattern writer would in-

clude, (2) the creation of subclasses for argument

types, and (3) the scope of patterns
11

 are each ma-

jor sources of the disparity in coverage. Research

on learning approaches to raise recall without sig-

nificant sacrifice in precision seems essential.

Fourth, despite the disparity in performance of

learned versus manual patterns, and despite the low

11 Learned patterns tend to focus on the structure that appears

between the two arguments, rather than structure surrounding

the left and right arguments.

recall of learned patterns, the combined system‘s

recall and F-Score are higher for three of the rela-

tions because the learned patterns generated an-

swers not found by handwritten patterns. We found

examples where highly specific, learned, surface-

level patterns (lexical patterns) occasionally found

information missed by handwritten patterns due to

parsing errors or general low coverage.

Fifth, the effort for coreference was the most

time-consuming, given that every new relation

contained at least one of the new argument types.

While we included this in our estimate of domain

adaptation, the infrastructure we built is domain

generic. Improving generic coreference will reduce

domain specific effort in future.

Perhaps most significant of all, running a com-

plete experiment from definition of the domain

through creation of training data and measurement

of end-to-end performance of the system can be

completed in a month. The ability to rapidly,

cheaply, and empirically measure the impact of

extraction research could prove a significant spur

to research across the board.

These experiments suggest three possible direc-

tions for improving the ability to quickly develop

information extraction technology for a new set of

relations: (1) reducing the amount of supervision

provided to the bootstrap-learner; (2) improving

the bootstrapping approach to reach the level of

recall achieved by the human pattern writer elimi-

nating the need for a trained expert during domain

adaptation; and (3) focusing improvements to the

bootstrapping approach on techniques that allow it

to find more of the instances missed by the pattern

writer, thus improving the accuracy of the hybrid

system.

Acknowledgments
This work was supported, in part, by DARPA un-

der AFRL Contract FA8750-09-C-179. Distribu-

tion Statement ―A‖ (Approved for Public Release,

Distribution Unlimited) Thank you to the review-

ers for your insightful comments and to Michelle

Franchini for coordinating the assessment effort.

References
E. Agichtein and L. Gravano. Snowball: extracting rela-

tions from large plain-text collections. In Proceed-

ings of the ACM Conference on Digital Libraries, pp.

85-94, 2000.

1445

A. Blum and T. Mitchell. Combining Labeled and Un-

labeled Data with Co-Training. In Proceedings of the

1998 Conference on Computational Learning

Theory, July 1998.

E. Boschee, V. Punyakanok, R. Weischedel. An Explo-

ratory Study Towards ‗Machines that Learn to Read‘.

Proceedings of AAAI BICA Fall Symposium, No-

vember 2008.

J. Chen, D. Ji, C. Tan and Z. Niu. (2006). Relation ex-

traction using label propagation based semi-

supervised learning. COLING-ACL 2006: 129-136.

July 2006.

M. Freedman, E. Loper, E. Boschee, and R. Weischedel.

Empirical Studies in Learning to Read. Proceedings

of NAACL 2010 Workshop on Formalisms and Me-

thodology for Learning by Reading, pp. 61-69, June

2010.

W. Li and A. McCallum. Rapid development of Hindi

named entity recognition using conditional random

fields and feature induction. Transactions on Asian

Language Information Processing (TALIP), Volume

2 Issue 3 September, 2003.

R Grishman and B. Sundheim. Message Understanding

Conference-6 : A Brief History", in COLING-96,

Proc . of the Int'l Conj. on Computational Linguis-

tics, 1996.

Z. Kozareva and E. Hovy. Not All Seeds Are Equal:

Measuring the Quality of Text Mining Seeds. Human

Language Technologies: The 2010 Annual Confe-

rence of the North American Chapter of the Associa-

tion for Computational Linguistics, June, 2010, pp.

618-626.

Z. Kozareva, E. Riloff, and E. Hovy. 2008. Semantic

class learning from the web with hyponym pattern

linkage graphs. In Proceedings of ACL-08: HLT,

pages 1048–1056.

J. May, A. Brunstein, P. Natarajan, and R. Weischedel.

Surprise! What's in a Cebuano or Hindi Name?

Transactions on Asian Language Information

Processing (TALIP), Volume 2 Issue 3 September,

2003.

D. Maynard, V. Tablan, K. Bontcheva, and H. Cun-

ningham. Rapid customization of an information ex-

traction system for a surprise language. Transactions

on Asian Language Information Processing (TALIP),

Volume 2 Issue 3 September, 2003.

S. Miller, J. Guinness, and A. Zamanian, ―Name Tag-

ging with Word Cluster and Discriminative Train-

ing‖, Proceedings of HLT/NAACL 2004, pp. 337-

342, 2004

T. Mitchell, J. Betteridge, A. Carlson, E. Hruschka, and

R. Wang. ―Populating the Semantic Web by Macro-

Reading Internet Text. Invited paper, Proceedings of

the 8th International Semantic Web Conference

(ISWC 2009).

NIST, ACE 2007:

http://www.itl.nist.gov/iad/mig/tests/ace/2007/softwa

re.html

P. Pantel and M. Pennacchiotti. Espresso: Leveraging

Generic Patterns for Automatically Harvesting Se-

mantic Relations. In Proceedings of Conference on

Computational Linguistics / Association for Compu-

tational Linguistics (COLING/ACL-06). pp. 113-120.

Sydney, Australia, 2006.

L. Ramshaw , E. Boschee, S. Bratus, S. Miller, R.

Stone, R. Weischedel, A. Zamanian, ―Experiments in

multi-modal automatic content extraction‖, Proceed-

ings of Human Technology Conference, March 2001.

D. Ravichandran and E. Hovy. Learning surface text

patterns for a question answering system. In Pro-

ceedings of the 40th Annual Meeting of the Associa-

tion for Computational Linguistics (ACL 2002),

pages 41–47, Philadelphia, PA, 2002.

E. Riloff. Automatically generating extraction patterns

from untagged text. In Proceedings of the Thirteenth

National Conference on Artificial Intelligence, pages

1044-1049, 1996.

S. Sekine and R. Grishman. Hindi-English cross-lingual

question-answering system. Transactions on Asian

Language Information Processing (TALIP), Volume

2 Issue 3 September, 2003.

G. Zhou, J. Li, L. Qian, Q. Zhu. Semi-Supervised

Learning for Relation Extraction. Proceedings of the

Third International Joint Conference on Natural

Language Processing: Volume-I. 2008.

1446

