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Abstract

In this paper, we introduce a connotation lex-
icon, a new type of lexicon that lists words
with connotative polarity, i.e., words with pos-
itive connotation (e.g., award, promotion) and
words with negative connotation (e.g., cancer,
war). Connotation lexicons differ from much
studied sentiment lexicons: the latter concerns
words that express sentiment, while the former
concerns words that evoke or associate with
a specific polarity of sentiment. Understand-
ing the connotation of words would seem to
require common sense and world knowledge.
However, we demonstrate that much of the
connotative polarity of words can be inferred
from natural language text in a nearly unsu-
pervised manner. The key linguistic insight
behind our approach is selectional preference
of connotative predicates. We present graph-
based algorithms using PageRank and HITS
that collectively learn connotation lexicon to-
gether with connotative predicates. Our em-
pirical study demonstrates that the resulting
connotation lexicon is of great value for sen-
timent analysis complementing existing senti-
ment lexicons.

1 Introduction

In this paper, we introduce a connotation lexicon,
a new type of lexicon that lists words with conno-
tative polarity, i.e., words with positive connotation
(e.g., award, promotion) and words with negative
connotation (e.g., cancer, war). Connotation lexi-
cons differ from sentiment lexicons that are studied
in much of previous research (e.g., Esuli and Sebas-

tiani (2006), Wilson et al. (2005a)): the latter con-
cerns words that express sentiment either explicitly
or implicitly, while the former concerns words that
evoke or even simply associate with a specific polar-
ity of sentiment. To our knowledge, there has been
no previous research that investigates polarized con-
notation lexicons.

Understanding the connotation of words would
seem to require common sense and world knowl-
edge at first glance, which in turn might seem to re-
quire human encoding of knowledge base. However,
we demonstrate that much of the connotative polar-
ity of words can be inferred from natural language
text in a nearly unsupervised manner.

The key linguistic insight behind our approach is
selectional preference of connotative predicates. We
define a connotative predicate as a predicate that
has selectional preference on the connotative polar-
ity of some of its semantic arguments. For instance,
in the case of the connotative predicate “prevent”,
there is strong selectional preference on negative
connotation with respect to the thematic role (se-
mantic role) “THEME”. That is, statistically speak-
ing, people tend to associate negative connotation
with the THEME of “prevent”, e.g., “prevent can-
cer” or “prevent war”, rather than positive conno-
tation, e.g., “prevent promotion”. In other words,
even though it is perfectly valid to use words with
positive connotation in the THEME role of “pre-
vent”, statistically more dominant connotative po-
larity is negative. Similarly, the THEME of “con-
gratulate” or “praise” has strong selectional prefer-
ence on positive connotation.

The theoretical concept supporting the selective
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accomplish, achieve, advance, advocate, admire,
applaud, appreciate, compliment, congratulate,
develop, desire, enhance, enjoy, improve, praise,
promote, respect, save, support, win

Table 1: Positively Connotative Predicates w.r.t. THEME

alleviate, accuse, avert, avoid, cause, complain,
condemn, criticize, detect, eliminate, eradicate,
mitigate, overcome, prevent, prohibit, protest, re-
frain, suffer, tolerate, withstand

Table 2: Negatively Connotative Predicates w.r.t. THEME

preference of connotative predicates is that of se-
mantic prosody in corpus linguistics. Semantic
prosody describes how some of the seemingly neu-
tral words (e.g., “cause”) can be perceived with pos-
itive or negative polarity because they tend to col-
locate with words with corresponding polarity (e.g.,
Sinclair (1991), Louw et al. (1993), Stubbs (1995),
Stefanowitsch and Gries (2003)). In this work, we
demonstrate that statistical approaches that exploit
this very concept of semantic prosody can success-
fully infer connotative polarity of words.

Having described the key linguistic insight, we
now illustrate our graph-based algorithms. Figure 1
depicts the mutually reinforcing relation between
connotative predicates (nodes on the left-hand side)
and words with connotative polarity (node on the
right-hand side). The thickness of edges represents
the strength of the association between predicates
and arguments. For brevity, we only consider conno-
tation of words that appear in the THEME thematic
role.

We expect that words that appear often in the
THEME role of various positively (or negatively)
connotative predicates are likely to be words with
positive (or negative) connotation. Likewise, pred-
icates whose THEME contains words with mostly
positive (or negative) connotation are likely to be
positively (or negatively) connotative predicates. In
short, we can induce the connotative polarity of
words using connotative predicates, and inversely,
we can learn new connotative predicates based on
words with connotative polarity.

We hypothesize that this mutually reinforcing re-

Prevent 

Avoid 

Alleviate Cancer 

Incident 

Promotion 

Overcome Tragedy 

Figure 1: Bipartite graph of connotative predicates and
arguments. Edge weights are proportionate to the associ-
ation strength.

lation between connotative predicates and their ar-
guments can be captured via graph centrality in
graph-based algorithms. Given a small set of seed
words for connotative predicates, our algorithms
collectively learn connotation lexicon together with
connotative predicates in a nearly unsupervised
manner. A number of different graph representa-
tions are explored using both PageRank (Page et al.,
1999) and HITS (Kleinberg, 1999) algorithms. Em-
pirical study demonstrates that our graph based al-
gorithms are highly effective in learning both con-
notation lexicon and connotative predicates.

Finally, we quantify the practical value of our
connotation lexicon in concrete sentiment analysis
applications, and demonstrate that the connotation
lexicon is of great value for sentiment classification
tasks complementing conventional sentiment lexi-
cons.

2 Connotation Lexicon & Connotative
Predicate

In this section, we define connotation lexicon and
connotative predicates more formally, and contrast
them against words in conventional sentiment lexi-
cons.

2.1 Connotation Lexicon

This lexicon lists words with positive and negative
connotation, as defined below.

• Words with positive connotation: In this
work, we define words with positive connota-
tion as those that describe physical objects or
abstract concepts that people generally value,
cherish or care about. For instance, we regard
words such as “freedom”, “life”, or “health” as
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words with positive connotation. Some of these
words may express subjectivity either explic-
itly or implicitly, e.g., “joy” or “satisfaction”.
However, a substantial number of words with
positive connotation are purely objective, such
as “life”, “health”, “tenure”, or “scientific”.

• Words with negative connotation: We define
words with negative connotation as those that
describe physical objects or abstract concepts
that people generally disvalue or avoid. Sim-
ilarly as before, some of these words may ex-
press subjectivity (e.g., “disappointment”, “hu-
miliation”), while many other are purely objec-
tive (e.g., “bedbug”, “arthritis, “funeral”).

Note that this explicit and intentional inclusion of
objective terms makes connotation lexicons differ
from sentiment lexicons: most conventional senti-
ment lexicons have focused on subjective words by
definition (e.g., Wilson et al. (2005b)), as many re-
searchers use the term sentiment and subjectivity in-
terchangeably (e.g., Wiebe et al. (2005)).

2.2 Connotative Predicate
In this work, connotative predicates are those that
exhibit selectional preference on the connotative po-
larity of some of their arguments. We emphasize that
the polarity of connotative predicates does not coin-
cide with the polarity of sentiment in conventional
sentiment lexicons, as will be elaborated below.

• Positively connotative predicate: In this
work, we define positively connotative predi-
cates as those that expect positive connotation
in some arguments. For example, “congratu-
late” or “save” are positively connotative pred-
icates that expect words with positive conno-
tation in the THEME argument: people typi-
cally congratulate something positive, and save
something people care about. More examples
are shown in Table 1.

• Negatively connotative predicate: In this
work, we define negatively connotative predi-
cates as those that expect negative connotation
in some arguments. For instance, predicates
such as “prevent” or “suffer” tend to project
negative connotation in the THEME argument.
More examples are shown in Table 2.

Note that positively connotative predicates are not
necessarily positive sentiment words. For instance
“save” is not a positive sentiment word in the
lexicon published by Wilson et al. (2005b). In-
versely, (strongly) positive sentiment words are not
necessarily (strongly) positively connotative predi-
cates, e.g., “illuminate”, “agree”. Likewise, neg-
atively connotative predicates are not necessarily
negative sentiment words. For instance, predicates
such as “prevent”, “detect”, or “cause” are not
negative sentiment words, but they tend to corre-
late with negative connotation in the THEME argu-
ment. Inversely, (strongly) negative sentiment words
are not necessarily (strongly) negatively connotative
predicates, e.g., “abandon” (“abandoned [something
valuable]”).

3 Graph Representation

In this section, we explore the graphical representa-
tion of our task. Figure 1 depicts the key intuition as
a bipartite graph, where the nodes on the left-hand
side correspond to connotative predicates, and the
nodes on the right-hand side correspond to words in
the THEME argument. There is an edge between a
predicate p and an argument a, if the argument a
appears in the THEME role of the predicate p. For
brevity, we explore only verbs as the predicates, and
words in the THEME role of the predicates as argu-
ments. Our work can be readily extended to exploit
other predicate-argument relations however.

Note that there are many sources of noise in the
construction of graph. For instance, some of the
predicates might be negated, changing the semantic
dynamics between the predicate and the argument.
In addition, there might be many unusual combina-
tions of predicates and arguments, either due to data
processing errors or due to idiosyncratic use of lan-
guage. Some of such combinations can be valid ones
(e.g., “prevent promotion”), challenging the learning
algorithm with confusing evidence.

We hypothesize that by focusing on the important
part of the graph via centrality analysis , it is possible
to infer connotative polarity of words despite various
noise introduced in the graph structure. This implies
that it is important to construct the graph structure so
as to capture important linguistic relations between
predicates and arguments. With this goal in mind,
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we next explore the directionality of the edges and
different strategies to assign weights to them.

3.1 Undirected (Symmetric) Graph
First we explore undirected edges. In this case,
we assign weight for each undirected edge between
a predicate p and an argument a. Intuitively, the
weight should correspond to the strength of relat-
edness or association between the predicate p and
the argument a. We use Pointwise Mutual Infor-
mation (PMI), as it has been used by many pre-
vious research to quantify the association between
two words (e.g., Turney (2001), Church and Hanks
(1990)). The PMI score between p and a is defined
as follows:

w(p− a) := PMI(p, a) = log
P (p, a)

P (p)P (a)

The log of the ratio is positive when the pair of
words tends to co-occur and negative when the pres-
ence of one word correlates with the absence of the
other word.

3.2 Directed (Asymmetric) Graph
Next we explore directed edges. That is, for each
connected pair of a predicate p and an argument a,
there are two edges in opposite directions: e(p→ a)
and e(a → p). In this case, we explore the use
of asymmetric weights using conditional probabil-
ity. In particular, we define weights as follows:

w(p→ a) := P (a|p) = P (p, a)

P (p)

w(a→ p) := P (p|a) = P (p, a)

P (a)

Having defined the graph structure, next we explore
algorithms that analyze graph centrality via random
walks. In particular, we investigate the use of HITS
algorithm (Section 4), and PageRank (Section 5).

4 Lexicon Induction using HITS

The graph representation described thus far (Sec-
tion 3) captures general semantic relations between
predicates and arguments, rather than those specific
to connotative predicates and arguments. Therefore
in this section, we explore techniques to augment
the graph representation so as to bias the centrality

of the graph toward connotative predicates and argu-
ments.

In order to establish a learning bias, we start with
a small set of seed words for just connotative predi-
cates. We use 20 words for each polarity, as listed in
Table 1 and Table 2. These seed words act as prior
knowledge in our learning. We explore two different
techniques to incorporate prior knowledge into ran-
dom walk, as will be elaborated in Section 4.2 & 4.3,
followed by brief description of HITS in Section 4.1.

4.1 Hyperlink-Induced Topic Search (HITS)
HITS (Hyperlink-Induced Topic Search) algorithm
(Kleinberg, 1999), also known as Hubs and author-
ities, is a link analysis algorithm that is particularly
suitable to model mutual reinforcement between two
different types of nodes: hubs and authorities. The
definitions of hubs and authorities are given recur-
sively. A (good) hub is a node that points to many
(good) authorities, and a (good) authority is a node
pointed by many (good) hubs.

Notice that the mutually reinforcing relation-
ship is precisely what we intend to model between
connotative predicates and arguments. Let G =
(P,A,E) be the bipartite graph, where P is the set
of nodes corresponding to connotative predicates, A
is the set of nodes corresponding to arguments, and
E is the set of edges among nodes. (Pi, Aj) ∈ E
if and only if the predicate Pi and the argument Ai
occur together as a predicate – argument pair in the
corpus. The co-occurrence matrix derived from our
corpus is denoted as L, where

Lij =

{
w(i, j) if(Pi, Aj) ∈ E
0 otherwise

The value of w(i, j) is set to w(i − j) as defined
in Section 3.1 for undirected graphs, and w(i → j)
defined in Section 3.2 for directed graphs.

Let a(Ai) and h(Ai) be the authority and hub
score respectively, for a given node Ai ∈ A. Then
we compute the authority and hub score recursively
as follows:

a(Ai) =
∑

Pi,Aj∈E

w(i, j)h(Aj) +
∑

Pj ,Ai∈E

h(Pj)w(j, i)

h(Ai) =
∑

Pi,Aj∈E

w(i, j)a(Aj) +
∑

Pj ,Ai∈E

a(Pj)w(j, i)
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The scores a(Pi) and h(Pi) for Pi ∈ P are defined
similarly as above.

In what follows, we describe two different tech-
niques to incorporate prior knowledge. Note that it
is possible to apply each of the following techniques
to both directed and undirected graph representa-
tions introduced in Section 3. Also note that for each
technique, we construct two separate graphsG+ and
G− corresponding to positive and negative polarity
respectively. That is, G+ learns positively connota-
tive predicates and arguments, while G− learns neg-
atively connotative predicates and arguments.

4.2 Prior Knowledge via Truncated Graph
First we introduce a method based on graph trunca-
tion. In this method, when constructing the bipartite
graph, we limit the set of predicates P to only those
words in the seed set, instead of including all words
that can be predicates. In a way, the truncated graph
representation can be viewed as the query induced
graph on which the original HITS algorithm was in-
vented (Kleinberg, 1999).

The truncated graph is very effective in reducing
the level of noise that can be introduced by predi-
cates of the opposite polarity. It may seem like we
cannot discover new connotative predicates in the
truncated graph however, as the graph structure is
limited only to the seed predicates. We address this
issue by alternating truncation to different side of the
graph, i.e., left (predicates) or right (arguments), as
illustrated in Figure 1, through multiple rounds of
HITS.

For instance, we start with the graph G =
(P o, A,E(P o)) that is truncated only on the left-
hand side, with the seed predicates P o. Here,E(P o)
denotes the reduced set of edges discarding those
edges that connect to predicates not in P o. Then, we
apply HITS algorithm until convergence to discover
new words with connotation, and this completes the
first round of HITS.

Next we begin the second round. Let Ao be the
new words with connotation that are found in the
first round. We now set Ao as seed words for the
second phase of HITS, where we construct a new
graph G = (P,Ao, E(Ao)) that is truncated only
on the right-hand side, with full candidate words for
predicates included on the left-hand side. This al-
ternation can be repeated multiple times to discover

many new connotative predicates and arguments.

4.3 Prior Knowledge via Focussed Graph
In the truncated graph described above, one poten-
tial concern is that the discovery of new words with
connotation is limited to those that happen to corre-
late well with the seed predicates. To mitigate this
problem, we explore an alternative technique based
on the full graph, which we will name as focussed
graph.

In this method, instead of truncating the graph, we
simply emphasize the important portion of the graph
via edge weights. That is, we assign high weights to
those edges that connect a seed predicate with an ar-
gument, while assigning low weights for those edges
that connect to a predicate outside the seed set. This
way, we allow predicates not in the seed set to par-
ticipate in hubs and authority scores, but in a much
suppressed way. This method can be interpreted as
a smoothed version of the truncated graph described
in Section 4.2.

More formally, if the node Ai is connected to
the seed predicate Pj , the value of co-occurrence
matrix Lij is defined by prior knowledge(e.g.
PMI(Ai, Pj) or P (Ai|Pj) ), otherwise a small con-
stant ε is assigned to the edge.

Lij =

{
w(i, j) ifPj ∈ Eo
ε otherwise

Similarly to the truncated graph, we proceed with
multiple rounds of HITS, focusing different part of
the bipartite graph alternately.

5 Lexicon Induction using PageRank

In this section, we explore the use of another popu-
lar approach for link analysis: PageRank (Page et
al., 1999). We first describe PageRank algorithm
briefly in Section 5.1, then introduce two different
techniques to incorporate prior knowledge in Sec-
tion 5.2 and 5.3.

5.1 PageRank
Let G = (V,E) be the graph, where vi ∈ V =
P ∪ A are nodes (words) for the disjunctive set of
predicates (P ) and arguments (A), and e(i,j) ∈ E
are edges. Let In(i) be the set of nodes with an
edge leading to ni and similarly, Out(i) be the set
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of nodes that ni has an edge leading to. At a given
iteration of the algorithm, we update the score of ni
as follows:

S(i) = α
∑

j∈In(i)
S(j)× w(i, j)

|Out(i)| + (1− α) (1)

where the value α is constant damping factor. The
value of α is typically set to 0.85. The value of
w(i, j) is set to w(i−j) as defined in Section 3.1 for
undirected graphs, and w(i → j) as defined in Sec-
tion 3.2 for directed graphs. As before, we will con-
sider two different techniques to incorporate prior
knowledge into the graph analysis as follows.

5.2 Prior Knowledge via Truncated Graph
Unlike HITS, which was originally invented for a
query-induced graph, PageRank is typically applied
to the full graph. However, we can still apply the
truncation technique introduced in Section 4.2 to
PageRank as well. To do so, when constructing the
bipartite graph, we limit the set of predicates P to
only those words in the seed set, instead of including
all words that can be predicates. Graph truncation
eliminates the noise that can be introduced by pred-
icates of the opposite polarity. However, in order to
learn new predicates, we need to perform multiple
rounds of PageRank, truncating different side of the
bipartite graph alternately. Refer to Section 4.2 for
futher details.

5.3 Prior Knowledge via Teleportation
We next explore what is known as teleportation
technique for topic sensitive PageRank (Haveliwala,
2002). For this, we use the following equation that
is slightly augmented from Equation 1.

S(i) = α
∑

j∈In(i)
S(j)× w(i, j)

|Out(i)| + (1− α) εi (2)

Here, the new term εi is a smoothing factor that pre-
vents cliques in the graph from garnering reputation
through feedback (Bianchini et al. (2005)). In or-
der to emphasize important portion of the graph, i.e.,
subgraphs connected to the seed set, we assign non-
zero ε scores to only those important nodes, i.e., the
seed set. Intuitively, this will cause the random walk
to restart from the seed set with (1−α) = 0.15 prob-
ability for each step.

6 The Use of Google Web 1T Data
In order to implement the network of connotative
predicates and arguments, we need a substantially
large amount of documents. The quality of the co-
occurrence statistics is expected to be proportionate
to the size of corpus, but collecting and process-
ing such a large amount of data is not trivial. We
therefore resort to the Google Web 1T data (Brants
and Franz., 2006), which consists of Google n-gram
counts (frequency of occurrence of each n-gram) for
1 ≤ n ≤ 5. The use of Web 1T data will lessen the
challenge with respect to data acquisition, while still
allowing us to enjoy the co-occurrence statistics of
web-scale data. Because Web 1T data is just n-gram
statistics, rather than a collection of normal docu-
ments, it does not provide co-occurrence statistics of
any random word pairs. However, it provides a nice
approximation to the particular co-occurrence statis-
tics we are interested in, which are, predicate – ar-
gument pairs. This is because the THEME argument
of a verb predicate is typically on the right hand side
of the predicate, and the argument is within the close
range of the predicate.

We now describe how to derive co-occurrence
statistics of each predicate – argument pair using the
Web 1T data. For a given predicate p and an argu-
ment a, we add up the count (frequency) of all n-
grams (2 ≤ n ≤ 5) that match the following pattern:

[p] [?]n−2 [a]

where p must be the first word (head), a must be the
last word (tail), and [?]n−2 matches any n− 2 num-
ber of words between p and a. Note that this rule
enforces the argument a to be on the right hand side
of the predicate p. To reduce the level of noise, we
do not allow the wildcard [?] to match any punctu-
ation mark, as such n-grams are likely to cross sen-
tence boundaries representing invalid predicate – ar-
gument relations. We consider a word as a predicate
if it is tagged as a verb by a Part-of-Speech tagger
(Toutanova and Manning, 2000). For argument [a],
we only consider content-words.

The use of web n-gram statistics necessarily in-
vites certain kinds of noise. For instance, some of
the [p] [?]n−2 [a] patterns might not correspond to
a valid predicate – argument relation. However, we
expect that our graph-based algorithms — HITS and
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Lexicon FREQ HITS-sT HITS-aT HITS-sF HITS-aF Page-aT Page-aF
Top 100 73.6 67.8 77.7 67.8 48.4 76.3 77.0
Top 1000 67.8 60.6 68.8 60.6 38.0 68.4 68.5
Top MAX 65.8 57.6 66.5 57.6 39.1 65.5 65.7

Table 3: Comparison Result with General Inquirer Lexicon(%)

Lexicon FREQ HITS-sT HITS-aT HITS-sF HITS-aF Page-aT Page-aF
Top 100 83.0 79.3 86.3 79.3 55.8 86.3 87.2
Top 1000 80.3 67.3 81.3 67.3 46.5 80.7 80.3
Top MAX 71.5 62.7 72.2 62.7 45.4 71.1 72.3

Table 4: Comparison Result with OpinionFinder (%)

PageRank — will be able to discern valid relations
from noise, by focusing on the important part of the
graph. In other words, we expect that good predi-
cates will be supported by good arguments, and vice
versa, thereby resulting in a reliable set of predicates
and arguments that are mutually supported by each
other.

7 Experiments
As a baseline, we use a simple method dubbed
FREQ, which uses co-occurrence frequency with
respect to the seed predicates. Using the pattern
[p] [?]n−2 [a] (see Section 6), we collect two sets
of n-gram records: one set using the positive con-
notative predicates, and the other using the negative
connotative predicates. With respect to each set, we
calculate the following for each word a,

• Given [a], the number of unique [p] as f1
• Given [a], the number of unique phrases [?]n−2

as f2
• The number of occurrences of [a] as f3

We then obtain the score σa+ for positive connota-
tion and σa− for negative connotation using the fol-
lowing equations that take a linear combination of
f1, f2, and f3 that we computed above with respect
to each polarity.

σa+ = α× σf1+ + β × σf2+ + γ × σf3+ (3)

σa− = α× σf1− + β × σf2− + γ × σf3− (4)

Note that the coefficients α, β and γ are determined
experimentally. We assign positive polarity to the
word a, if σa+ >> σa− and vice versa.

7.1 Comparison against Sentiment Lexicon
The polarity defined in the connotation lexicon dif-
fers from that of conventional sentiment lexicons in
which we aim to recognize more subtle sentiment
that correlates with words. Nevertheless, we provide
agreement statistics between our connotation lexi-
con and conventional sentiment lexicons for com-
parison purposes. We collect statistics with respect
to the following two resources: General Inquirer
(Stone and Hunt, 1963) and Opinion Finder (Wilson
et al., 2005b).
For polarity λ ∈ {+,−}, let countsentlex(λ) denote
the total number of words labeled as λ in a given
sentiment lexicon, and let countagreement(λ) denote
the total number of words labeled as λ by both the
given sentiment lexicon and our connotation lexi-
con. In addition, let countoverlap(λ) denote the total
number of words that are labeled as λ by our conno-
tation lexicon that are also included in the reference
lexicon with or without the same polarity. Then we
compute precλ as follows:

precλ % =
countagreement(λ)

countoverlap(λ)
× 100

We compare precλ % for three different segments
of our lexicon: the top 100, top 1000, and the entire
lexicon. We compare the lexicons provided by the
seven variations of our algorithm. Results are shown
in Table 3 & 4.

The acronym of each different method is defined
as follows: HITS-sT & HITS-aT correspond to
the Symmetric (undirected) and Asymmetric (di-
rected) version of the Truncated method respec-
tively. HITS-sF & HITS-aF correspond to the

1098



Positive: include, offer, obtain, allow, build, in-
crease, ensure, contain, pursue, fulfill, maintain,
recommend, represent, require, respect
Negative: abate, die, condemn, deduce, investi-
gate, commit, correct, apologize, debilitate, dis-
pel, endure, exacerbate, indicate, induce, mini-
mize

Table 5: Examples of newly discovered connotative pred-
icates

Positive: boogie, housewarming, persuasiveness,
kickoff, playhouse, diploma, intuitively, monu-
ment, inaugurate, troubleshooter, accompanist
Negative: seasickness, overleap, gangrenous,
suppressing, fetishist, unspeakably, doubter,
bloodmobile, bureaucratized

Table 6: Examples of newly discovered words with con-
notations: these words are treated as neutral in some con-
ventional sentiment lexicons.

symmetric and asymmetric version of the Focused
method. Finally, Page-aT & Page-aF correspond to
the Truncation and teleportation (Focused) respec-
tively.

Asymmetric HITS on a directed truncated graph
(HITS-aT) and topic-sensitive PageRank (Page-aF)
achieve the best performance in most cases, espe-
cially for top ranked words which have a higher
average frequency. The difference between these
two top performers is not large, but statistically
significant using wilcoxon test with p < 0.03.
Standard PageRank (Page-aT) achieves the third
best performance overall. All these top performing
ones (HITS-aT, Page-aF, Page-aT) outperform the
baseline approach (FREQ) statistically significantly
with p < 0.001. For brevity, we omit the PageRank
results based on the undirected graphs, as the perfor-
mance of those was not as good as that of directed
ones.

7.2 Extrinsic Evaluation via Sentiment
Analysis

Next we perform extrinsic evaluation to quantify the
practical value of our connotation lexicon in con-
crete sentiment analysis applications. In particular,
we make use of our connotation lexicon for binary

sentiment classification tasks in two different ways:

• Unsupervised classification by voting. We de-
fine r as the ratio of positive polarity words to
negative polarity words in the lexicon. In our
experiment, penalty is 0 for positive and −0.5
for negative.

score(x+) = 1 + penalty+(r,#positive)

score(x−) = −1 + penalty−(r,#negative)

• Supervised classification using SVM. We use
bag-of-words features for baseline. In order
to quantify the effect of different lexicons, we
add additional features based on the following
scores as defined below:

scoreraw(x) =
∑

wεx

s(w)

scorepurity(x) =
scoreraw(x)∑
wεx abs(s(w))

The two corpora we use are SemEval2007 (Strap-
parava and Mihalcea, 2007) and Sentiment Twitter.1

The Twitter dataset consists of tweets containing ei-
ther a smiley emoticon (representing positive senti-
ment) or a frowny emoticon (representing negative
sentiment), we randomly select 50000 smiley tweets
and 50000 frowny tweets.2 We perform a 5-fold
cross validation.

In Table 8, we find very promising results, partic-
ularly for Twitter dataset, which is known to be very
noisy. Notice that the use of Top 6k words from
our connotation lexicon along with OpinionFinder
lexicon boost the performance up to 78.0%, which
is significantly better than than 71.4% using only
the conventional OpinionFinder lexicon. This result
shows that our connotation lexicon nicely comple-
ments existing sentiment lexicon, improving practi-
cal sentiment analysis tasks.

1http://www.stanford.edu/˜ alecmgo/cs224n/twitterdata.
2009.05.25.c.zip

2We filter out stop-words and words appearing less than 3
times. For Twitter, we also remove usernames of the format
@username occurring within tweet bodies.
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Algorithm 1st Round 2nd Round
Acc. F-val Acc. F-val

Voting 68.7 65.4 71.0 68.5
Bag of Words 69.9 65.1 69.9 65.1

(′′) + OpFinder 74.7 75.0 74.7 75.0
BoW + Top 2k 73.3 74.5 73.7 75.4

(′′) + OpFinder 72.8 73.5 75.0 77.6
BoW + Top 6k 76.6 77.1 74.5 75.3

(′′) + OpFinder 74.1 73.5 75.2 76.0
BoW + Top 10k 74,1 73.5 74.2 73.8

(′′) + OpFinder 73.5 74.3 74.7 75.1

Table 7: SemEval Classification Result(%) — (′′) denotes
that all features in the previous row are copied over.

Algorithm 1st Round 2nd Round
Acc. F-val Acc. F-val

Voting 60.4 59.1 62.6 61.3
Bag of Words 69.9 72.1 69.9 72.1

(′′) + OpFinder 70.3 71.4 70.3 71.4
BoW + Top 2k 71.3 65.4 72.7 73.3

(′′) + OpFinder 69.4 63.1 73.1 74.6
BoW + Top 6k 77.2 69.0 76.4 77.6

(′′) + OpFinder 76.4 72.0 76.8 78.0
BoW + Top 10k 73.3 73.5 73.7 74.1

(′′) + OpFinder 74.1 69.5 73.5 74.2

Table 8: Twitter Classification Result(%) — (′′) denotes
that all features in the previous row are copied over.

7.3 Intrinsic Evaluation via Human Judgment

In order to measure the quality of the connotation
lexicon, we also perform human judgment study on
a subset of the lexicon. Human judges are asked to
quantify the degree of connotative polarity of each
given word using an integer value between 1 and 5,
where 1 and 5 correspond to the most negative and
positive connotation respectively. When computing
the annotator agreement score or evaluating our con-
notation lexicon against human judgment, we con-
solidate 1 and 2 into a single negative class and 4
and 5 into a single positive class. The Kappa score
between two human annotators is 0.78.

As a control set, we also include 100 words taken
from the General Inquirer lexicon: 50 words with
positive sentiment, and 50 words with negative sen-
timent. These words are included so as to mea-

sure the quality of human judgment against a well-
established sentiment lexicon. The words were pre-
sented in a random order so that the human judges
will not know which words are from the General In-
quirer lexicon and which are from our connotative
lexicon. For the words in the control set, the anno-
tators achieved 94% (97% lenient) accuracy on the
positive set and 97% on the negative set.

Note that some words appear in both positive and
negative connotation graphs, while others appear in
only one of them. For instance, if a given word x
appears as an argument for only positive connotative
predicates, but never for negative ones, then xwould
appear only in the positive connotation graph. This
means that for such word, we can assume the conno-
tative polarity even without applying the algorithms
for graph centrality. Therefore, we first evaluate the
accuracy of the polarity of such words that appear
only in one of the connotation graphs. We discard
words with low frequency (300 in terms of Google
n-gram frequency), and randomly select 50 words
from each polarity. The accuracy of such words is
88% by strict evaluation and 94.5% by lenient eval-
uation, where lenient evaluation counts words in our
polarized connotation lexicon to be correct if the hu-
man judges assign non-conflicting polarities, i.e., ei-
ther neutral or identical polarity.

For words that appear in both positive and nega-
tive connotation graphs, we determine the final po-
larity of such words as one with higher scores given
by HITS or PageRank. We randomly select words
that rank at 5% of top 100, top 1000, top 2000, and
top 5000 by each algorithm for human judgment.
We only evaluate the top performing algorithms –
HITS-aT and Page-aF – and FREQ baseline. The
stratified performance for each of these methods is
given in Table 9.

8 Related Work
Graph based approaches have been used in many
previous research for lexicon induction. A tech-
nique named label propagation (Zhu and Ghahra-
mani, 2002) has been used by Rao and Ravichan-
dran (2009) and Velikovich et al. (2010), while ran-
dom walk based approaches, PageRank in particular,
have been used by Esuli and Sebastiani (2007). In
our work, we explore the use of both HITS (Klein-
berg, 1999) and PageRank (Page et al., 1999) and
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Average Positive Negative
Top # Str. Len. Str. Len. Str. Len.

FREQ
@100 73.5 87.3 72.2 91.1 74.7 83.5
@1000 51.8 78.6 44.4 75.6 81.8 90.9
@2000 66.9 74.7 73.1 84.2 57.3 60.0
@5000 61.5 81.3 61.4 84.1 62.0 70.0

HITS-aT
@100 61.3 79.8 74.4 93.3 47.0 65.1
@1000 39.6 75.5 48.1 77.8 30.8 73.1
@2000 57.7 72.1 78.0 86.0 41.0 60.7
@5000 55.6 73.5 69.7 85.7 44.3 63.8

Page-aF
@100 63.0 78.6 74.7 91.2 50.0 64.6
@1000 53.7 72.2 54.5 72.7 53.1 71.9
@2000 56.5 79.6 67.2 91.8 42.6 63.8
@5000 57.1 76.2 75.7 91.0 43.3 65.3

Table 9: Human Annotation Accuracies(%) – Str. de-
notes strict evaluation & Len. denotes lenient evaluation.

present systematic comparison of various options for
graph representation and encoding of prior knowl-
edge. We are not aware of any previous research
that made use of HITS algorithm for connotation or
sentiment lexicon induction.

Much of previous research investigated the use of
dictionary network (e.g., WordNet) for lexicon in-
duction (e.g., Kamps et al. (2004), Takamura et al.
(2005), Adreevskaia and Bergler (2006), Esuli and
Sebastiani (2006), Su and Markert (2009), Moham-
mad et al. (2009)), while relatively less research in-
vestigated the use of web documents (e.g., Kaji and
Kitsuregawa (2007), Velikovich et al. (2010))).

Wilson et al. (2005b) first introduced the sen-
timent lexicon, spawning a great deal of research
thereafter. At the beginning, sentiment lexicons
were designed to include only those words that ex-
press sentiment, that is, subjective words. However
in recent years, sentiment lexicons started expand-
ing to include some of those words that simply asso-
ciate with sentiment, even if those words are purely
objective (e.g., Velikovich et al. (2010), Baccianella
et al. (2010)). This trend applies even to the most re-
cent version of the lexicon of Wilson et al. (2005b).
We conjecture that this trend of broader coverage
suggests that such lexicons are practically more use-
ful than sentiment lexicons that include only those
words that are strictly subjective. In this work, we

make this transition more explicit and intentional,
by introducing a novel connotation lexicon.

Mohammad and Turney (2010) focussed on emo-
tion evoked by common words and phrases. The
spirit of their work shares some similarity with ours
in that it aims to find the emotion evoked by words,
as opposed to expressed. Two main differences are:
(1) our work aims to discover even more subtle asso-
ciation of words with sentiment, and (2) we present
a nearly unsupervised approach, while Mohammad
and Turney (2010) explored the use of Mechanical
Turk to build the lexicon based on human judgment.

In the work of Osgood et al. (1957), it has been
discussed that connotative meaning of words can
be measured in multiple scales of semantic differ-
ential, for example, the degree of “goodness” and
“badness”. Our work presents statistical approaches
that measure one such semantic differential auto-
matically. Our graph construction to capture word-
to-word relation is analogous to that of Collins-
Thompson and Callan (2007), where the graph rep-
resentation was used to model more general defini-
tions of words.

9 Conclusion
We introduced the connotation lexicon, a novel lex-
icon that list words with connotative polarity, which
will be made publically available. We also pre-
sented graph-based algorithms for learning conno-
tation lexicon together with connotative predicates
in a nearly unsupervised manner. Our approaches
are grounded on the linguistic insight with respect to
the selectional preference of connotative predicates.
Empirical study demonstrates the practical value of
the connotation lexicon for sentiment analysis en-
couraging further research in this direction.
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