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Abstract

This paper investigates novel methods for in-
corporating syntactic information in proba-
bilistic latent variable models of lexical choice
and contextual similarity. The resulting mod-
els capture the effects of context on the inter-
pretation of a word and in particular its effect
on the appropriateness of replacing that word
with a potentially related one. Evaluating our
techniques on two datasets, we report perfor-
mance above the prior state of the art for esti-
mating sentence similarity and ranking lexical
substitutes.

1 Introduction

Distributional models of lexical semantics, which
assume that aspects of a word’s meaning can be re-
lated to the contexts in which that word is typically
used, have a long history in Natural Language Pro-
cessing (Spärck Jones, 1964; Harper, 1965). Such
models still constitute one of the most popular ap-
proaches to lexical semantics, with many proven ap-
plications. Much work in distributional semantics
treats words as non-contextualised units; the models
that are constructed can answer questions such as
“how similar are the words body and corpse?” but
do not capture the way the syntactic context in which
a word appears can affect its interpretation. Re-
cent developments (Mitchell and Lapata, 2008; Erk
and Padó, 2008; Thater et al., 2010; Grefenstette et
al., 2011) have aimed to address compositionality of
meaning in terms of distributional semantics, lead-
ing to new kinds of questions such as “how similar
are the usages of the words body and corpse in the

phrase the body/corpse deliberated the motion. . . ?”
and “how similar are the phrases the body deliber-
ated the motion and the corpse rotted?”. In this pa-
per we focus on answering questions of the former
type and investigate models that describe the effect
of syntactic context on the meaning of a single word.

The work described in this paper uses probabilis-
tic latent variable models to describe patterns of syn-
tactic interaction, building on the selectional prefer-
ence models of Ó Séaghdha (2010) and Ritter et al.
(2010) and the lexical substitution models of Dinu
and Lapata (2010). We propose novel methods for
incorporating information about syntactic context in
models of lexical choice, yielding a probabilistic
analogue to dependency-based models of contextual
similarity. Our models attain state-of-the-art per-
formance on two evaluation datasets: a set of sen-
tence similarity judgements collected by Mitchell
and Lapata (2008) and the dataset of the English
Lexical Substitution Task (McCarthy and Navigli,
2009). In view of the well-established effectiveness
of dependency-based distributional semantics and of
probabilistic frameworks for semantic inference, we
expect that our approach will prove to be of value in
a wide range of application settings.

2 Related work

The literature on distributional semantics is vast; in
this section we focus on outlining the research that is
most directly related to capturing effects of context
and compositionality.1 Mitchell and Lapata (2008)

1The interested reader is referred to Padó and Lapata (2007)
and Turney and Pantel (2010) for a general overview.
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follow Kintsch (2001) in observing that most dis-
tributional approaches to meaning at the phrase or
sentence level assume that the contribution of syn-
tactic structure can be ignored and the meaning of a
phrase is simply the commutative sum of the mean-
ings of its constituent words. As Mitchell and Lap-
ata argue, this assumption clearly leads to an impov-
erished model of semantics. Mitchell and Lapata in-
vestigate a number of simple methods for combining
distributional word vectors, concluding that point-
wise multiplication best corresponds to the effects
of syntactic interaction.

Erk and Padó (2008) introduce the concept of a
structured vector space in which each word is as-
sociated with a set of selectional preference vec-
tors corresponding to different syntactic dependen-
cies. Thater et al. (2010) develop this geometric ap-
proach further using a space of second-order distri-
butional vectors that represent the words typically
co-occurring with the contexts in which a word typi-
cally appears. The primary concern of these authors
is to model the effect of context on word meaning;
the work we present in this paper uses similar intu-
itions in a probabilistic modelling framework.

A parallel strand of research seeks to represent
the meaning of larger compositional structures us-
ing matrix and tensor algebra (Smolensky, 1990;
Rudolph and Giesbrecht, 2010; Baroni and Zampar-
elli, 2010; Grefenstette et al., 2011). This nascent
approach holds the promise of providing a much
richer notion of context than is currently exploited
in semantic applications.

Probabilistic latent variable frameworks for gen-
eralising about contextual behaviour (in the form
of verb-noun selectional preferences) were proposed
by Pereira et al. (1993) and Rooth et al. (1999). La-
tent variable models are also conceptually similar
to non-probabilistic dimensionality reduction tech-
niques such as Latent Semantic Analysis (Landauer
and Dumais, 1997). More recently, Ó Séaghdha
(2010) and Ritter et al. (2010) reformulated Rooth et
al.’s approach in a Bayesian framework using mod-
els related to Latent Dirichlet Allocation (Blei et al.,
2003), demonstrating that this “topic modelling” ar-
chitecture is a very good fit for capturing selectional
preferences. Reisinger and Mooney (2010) inves-
tigate nonparametric Bayesian models for teasing
apart the context distributions of polysemous words.

As described in Section 3 below, Dinu and Lapata
(2010) propose an LDA-based model for lexical sub-
stitution; the techniques presented in this paper can
be viewed as a generalisation of theirs. Topic models
have also been applied to other classes of semantic
task, for example word sense disambiguation (Li et
al., 2010), word sense induction (Brody and Lapata,
2009) and modelling human judgements of semantic
association (Griffiths et al., 2007).

3 Models

3.1 Latent variable context models

In this paper we consider generative models of lex-
ical choice that assign a probability to a particular
word appearing in a given linguistic context. In par-
ticular, we follow recent work (Dinu and Lapata,
2010; Ó Séaghdha, 2010; Ritter et al., 2010) in as-
suming a latent variable model that associates con-
texts with distributions over a shared set of variables
and associates each variable with a distribution over
the vocabulary of word types:

P (w|c) =
∑

z∈Z
P (w|z)P (z|c) (1)

The set of latent variables Z is typically much
smaller than the vocabulary size; this induces a (soft)
clustering of the vocabulary. Latent Dirichlet Allo-
cation (Blei et al., 2003) is a powerful method for
learning such models from a text corpus in an unsu-
pervised way; LDA was originally applied to doc-
ument modelling, but it has recently been shown to
be very effective at inducing models for a variety of
semantic tasks (see Section 2).

Given the latent variable framework in (1) we can
develop a generative model of paraphrasing a word
o with another word n in a particular context c:

PC→T (n|o, c) =
∑

z

P (n|z)P (z|o, c) (2)

P (z|o, c) = P (o|z)P (z|c)∑
z′ P (o|z′)P (z′|c)

(3)

In words, the probability P (n|o, c) is the probability
that n would be generated given the latent variable
distribution associated with seeing o in context c;
this latter distribution P (z|o, c) can be derived using
Bayes’ rule and the assumption P (o|z, c) = P (o|z).
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Given a set of contexts C in which an instance o ap-
pears (e.g., it may be both the subject of a verb and
modified by an adjective), (2) and (3) become:

PC→T (n|o, C) =
∑

z

P (n|z)P (z|o, C) (4)

P (z|o, C) = P (o|z)P (z|C)∑
z′ P (o|z′)P (z′|C)

(5)

P (z|C) =
∏

c∈C P (z|c)∑
z′
∏

c∈C P (z
′|c) (6)

Equation (6) can be viewed as defining a “product
of experts” model (Hinton, 2002). Dinu and Lapata
(2010) also use a similar formulation to (5), except
that P (z|o, C) is factorised over P (z|o, C) rather
than just P (z|C):

PDL10(z|o, C) =
∏

c∈C

P (o|z)P (z|c)∑
z′ P (o|z′)P (z′|c)

(7)

In Section 5 below, we find that using (5) rather than
(7) gives better results.

The model described above (henceforth C → T )
models the dependence of a target word on its con-
text. An alternative perspective is to model the de-
pendence of a set of contexts on a target word, i.e.,
we induce a model

P (c|w) =
∑

z

P (c|z)P (z|w) (8)

Making certain assumptions, a formula for P (n|o, c)
can be derived from (8):

PT→C(n|o, c) =
P (c|o, n)P (n|o)

P (c|o) (9)

P (c|o, n) =
∑

z

P (c|z)P (z|o, n)

P (z|o, n) = P (z|o)P (z|n)∑
z′ P (z

′|o)P (z′|n) (10)

P (c|o) =
∑

z

P (c|z)P (z|o) (11)

P (n|o) = 1/V (12)

The assumption of a uniform prior P (n|o) on the
choice of a paraphrase n for o is clearly not appro-
priate from a language modelling perspective (one
could imagine an alternative P (n) based on corpus
frequency), but in the context of measuring semantic

similarity it serves well. The T → C model for a set
of contexts C is:

PT→C(n|o, C) =
P (C|o, n)P (n|o)

P (C|o) (13)

P (C|o, n) =
∑

z

P (z|o, n)
∏

c∈C
P (c|z) (14)

P (C|o) =
∑

z

P (z|o)
∏

c∈C
P (c|z) (15)

P (z|o, C) = P (z|o)P (C|o)∑
z′ P (z

′|o)P (C|o) (16)

With appropriate priors chosen for the distribu-
tions over words and latent variables, P (n|o, C) is
a fully generative model of lexical substitution. A
non-generative alternative is one that estimates the
similarity of the latent variable distributions associ-
ated with seeing n and o in context C. The princi-
ple that similarity between topic distributions corre-
sponds to semantic similarity is well-known in doc-
ument modelling and was proposed in the context
of lexical substitution by Dinu and Lapata (2010).
In terms of the equations presented above, we could
compare the distributions P (z|o, C) with P (z|n,C)
using equations (5) or (16). However, Thater et
al. (2010) and Dinu and Lapata (2010) both ob-
serve that contextualising both o and n can degrade
performance; in view of this we actually compare
P (z|o, C) with P (z|n) and make the further simpli-
fying assumption that P (z|n) ∝ P (n|z). The sim-
ilarity measure we adopt is the Bhattacharyya coef-
ficient, which is a natural measure of similarity be-
tween probability distributions and is closely related
to the Hellinger distance used in previous work on
topic modelling (Blei and Lafferty, 2007):

simbhatt(Px(z), Py(z)) =
∑

z

√
Px(z)Py(z) (17)

This measure takes values between 0 and 1.
In this paper we train LDA models of P (w|c) and

P (c|w). In the former case, the analogy to document
modelling is that each context type plays the role of
a “document” consisting of all the words observed
in that context in a corpus; for P (c|w) the roles are
reversed. The models are trained by Gibbs sampling
using the efficient procedure of Yao et al. (2009).
The empirical estimates for distributions over words
and latent variables are derived from the assignment
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of topics over the training corpus in a single sam-
pling state. For example, to model P (w|c) we cal-
culate:

P (w|z) = fzw + β

fz· +Nβ
(18)

P (z|c) = fzc + αz

f·c +
∑

z′ αz′
(19)

where fzw is the number of words of type w as-
signed topic z, fzc is the number of times z is associ-
ated with context c, fz· and f·c are the marginal topic
and context counts respectively, N is the number of
word types and α and β parameterise the Dirichlet
prior distributions over P (z|c) and P (w|z). Follow-
ing the recommendations of Wallach et al. (2009)
we use asymmetric α and symmetric β; rather than
using fixed values for these hyperparameters we es-
timate them from data in the course of LDA train-
ing using an EM-like method.2 We use standard set-
tings for the number of training iterations (1000), the
length of the burnin period before hyperparameter
estimation begins (200 iterations) and the frequency
of hyperparameter estimation (50 iterations).

3.2 Context types

We have not yet defined what the contexts c look
like. In vector space models of semantics it is
common to distinguish between window-based and
dependency-based models (Padó and Lapata, 2007);
one can make the same distinction for probabilis-
tic context models. A broad generalisation is that
window-based models capture semantic association
(e.g. referee is associated with football), while
dependency models capture a finer-grained notion
of similarity (referee is similar to umpire but not
to football). Dinu and Lapata (2010) propose a
window-based model of lexical substitution; the set
of contexts in which a word appears is the set of
surrounding words within a prespecified “window
size”. In this paper we also investigate dependency-
based context sets derived from syntactic structure.
Given a sentence such as

2We use the estimation methods provided by the MAL-
LET toolkit, available from http://mallet.cs.umass.
edu/.

The:d executive:j body:n

n:ncmod:j

OO decided:v

v:ncsubj:n
��

. . .

the set C of dependency contexts for the noun body
is {executive:j:ncmod−1:n, decide:v:ncsubj:n},
where ncmod−1 denotes that body stands in an in-
verse non-clausal modifier relation to executive (we
assume that nouns are the heads of their adjectival
modifiers).

4 Experiment 1: Similarity in context

4.1 Data

Mitchell and Lapata (2008) collected human judge-
ments of semantic similarity for pairs of short sen-
tences, where the sentences in a pair share the same
subject but different verbs. For example, the sales
slumped and the sales declined should be judged as
very similar while the shoulders slumped and the
shoulders declined should be judged as less similar.
The resulting dataset (henceforth ML08) consists of
120 such pairs using 15 verbs, balanced across high
and low expected similarity. 60 subjects rated the
data using a scale of 1–7; Mitchell and Lapata cal-
culate average interannotator correlation to be 0.40
(using Spearman’s ρ). Both Mitchell and Lapata
and Erk and Padó (2008) split the data into a devel-
opment portion and a test portion, the development
portion consisting of the judgements of six annota-
tors; in order to compare our results with previous
research we use the same data split. To evaluate per-
formance, the predictions made by a model are com-
pared to the judgements of each annotator in turn
(using ρ) and the resulting per-annotator ρ values are
averaged.

4.2 Models

All models were trained on the written section of the
British National Corpus (around 90 million words),
parsed with RASP (Briscoe et al., 2006). The BNC
was also used by Mitchell and Lapata (2008) and
Erk and Padó (2008); as the ML08 dataset was com-
piled using words appearing more than 50 times in
the BNC, there are no coverage problems caused
by data sparsity. We trained LDA models for the
grammatical relations v:ncsubj:n and n:ncsubj−1:v
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Model PARA SIM

No optimisation
C → T 0.24 0.34
T → C 0.36 0.39
T ↔ C 0.33 0.39

Optimised on dev
C → T 0.24 0.35
T → C 0.41 0.41
T ↔ C 0.37 0.41

Erk and Padó (2008)
Mult 0.24
SVS 0.27

Table 1: Performance (average ρ) on the ML08 test
set

and used these to create predictors of type C → T
and T → C, respectively. For each predictor, we
trained five runs with 100 topics for 1000 iterations
and averaged the predictions produced from their fi-
nal states. We investigate both the generative para-
phrasing model (PARA) and the method of compar-
ing topic distributions (SIM). For both PARA and
SIM we present results using each predictor type on
its own as well as a combination of both types (T ↔
C); for PARA the contributions of the types are mul-
tiplied and for SIM they are averaged.3 One poten-
tial complication is that the PARA model is trained
to predict P (n|c, o), which might not be comparable
across different combinations of subject c and verb
o. Using P (n|c, o) as a proxy for the desired joint
distribution P (n, c, o) is tantamount to assuming a
uniform distribution P (c, o), which can be defended
on the basis that the choice of subject noun and ref-
erence verb is not directly relevant to the task. As
shown by the results below, this assumption seems
to work reasonably well in practice.

As well as reporting correlations for straightfor-
ward averages of each set of five runs, we also inves-
tigate whether the development data can be used to
select an optimal subset of runs. This is done by sim-
ply evaluating every possible subset of 1–5 runs on
the development data and picking the best-scoring
subset.

4.3 Results

Table 1 presents the results of the PARA and SIM

predictors on the ML08 dataset. The best results

3This configuration seems the most intuitive; averaging
PARA predictors and multiplying SIM also give good results.

previously reported for this dataset were given by
Erk and Padó (2008), who measured average ρ val-
ues of 0.24 for a vector multiplication method and
0.27 for their structured vector space (SVS) syn-
tactic disambiguation method. Even without using
the development set to select models, performance is
well above the previous state of the art for all predic-
tors except PARAC→T . Model selection on the de-
velopment data brings average ρ up to 0.41, which is
comparable to the human “ceiling” of 0.40 measured
by Mitchell and Lapata. In all cases the T → C pre-
dictors outperform C → T : models that associate
target words with distributions over context clusters
are superior to those that associate contexts with dis-
tributions over target words.

Figure 1 plots the beneficial effect of averaging
over multiple runs; as the number of runs n is in-
creased, the average performance over all combi-
nations of n predictors chosen from the set of five
T → C and five C → T runs is observed to in-
crease monotonically. Figure 1 also shows that the
model selection procedure is very effective at se-
lecting the optimal combination of models; develop-
ment set performance is a reliable indicator of test
set performance.

5 Experiment 2: Lexical substitution

5.1 Data

The English Lexical Substitution task, run as part
of the SemEval-1 competition, required participants
to propose good substitutes for a set of target words
in various sentential contexts (McCarthy and Nav-
igli, 2009). Table 2 shows two example sentences
and the substitutes appearing in the gold standard,
ranked by the number of human annotators who pro-
posed each substitute. The dataset contains a total of
2,010 annotated sentences with 205 distinct target
words across four parts of speech (noun, verb, ad-
jective, adverb). In line with previous work on con-
textual disambiguation, we focus here on the subtask
of ranking attested substitutes rather than proposing
them from an unrestricted vocabulary. To this end,
a candidate set is constructed for each target word
from all the substitutes proposed for that word in all
sentences in the dataset.

The data contains a number of multiword para-
phrases such as rush at; as our models (like most
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(a) PARA: Target → Context
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(b) PARA: Context → Target
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(c) PARA: Target ↔ Context
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(d) SIM: Target → Context
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(f) SIM: Target ↔ Context

Figure 1: Performance on the ML08 test set with different predictor types and different numbers of LDA
runs per predictor type; the solid line tracks the average performance, the dashed line shows the performance
of the predictor combination that scores best on the development set.

Realizing immediately that strangers have come,
attack (5), rush at (1)

the animals charge them and the horses began to fight.

Commission is the amount charged to execute a trade. levy (2), impose (1), take (1), demand (1)

Table 2: Examples for the verb charge from the English Lexical Substitution Task

current models of distributional semantics) do not
represent multiword expressions, we remove such
paraphrases and discard the 17 sentences which have
only multiword substitutes in the gold standard.4

There are also 7 sentences for which the gold stan-
dard contains no substitutes. This leaves a total of
1986 sentences. These sentences were lemmatised
and parsed with RASP.

Previous authors have partitioned the dataset in
various ways. Erk and Padó (2008) use only a sub-
set of the data where the target is a noun headed
by a verb or a verb heading a noun. Thater et al.

4Thater et al. (2010) and Dinu and Lapata (2010) similarly
remove multiword paraphrases (Georgiana Dinu, p.c.).

(2010) discard sentences which their parser cannot
parse and paraphrases absent from their training cor-
pus and then optimise the parameters of their model
through four-fold cross-validation. Here we aim for
complete coverage on the dataset and do not perform
any parameter tuning. We use two measures to eval-
uate performance: Generalised Averaged Precision
(Kishida, 2005) and Kendall’s τb rank correlation
coefficient, which were used for this task by Thater
et al. (2010) and Dinu and Lapata (2010), respec-
tively. Generalised Averaged Precision (GAP) is
a precision-like measure for evaluating ranked pre-
dictions against a gold standard. τb is a variant of
Kendall’s τ that is appropriate for data containing
tied ranks. We do not use the “precision out of ten”
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COORDINATION:

Cats and

c:conj:n

OO

c:conj:n

OOdogs run

v:ncsubj:n
��

⇒ Cats and dogsOO

n:and:n

OO run
��

v:ncsubj:n
��

PREDICATION:

The cat is

v:ncsubj:n

OO

v:xcomp:j
��

fierce ⇒ The cat

n:ncmod:j
��

is fierce

PREPOSITIONS:

The cat

n:ncmod:i
��

in

i:dobj:n

OOthe hat ⇒ The cat

n:prep in:n
��

in the hat

Table 3: Dependency graph preprocessing

measure that was used in the original Lexical Substi-
tution Task; this measure assigns credit for the pro-
portion of the first 10 proposed paraphrases that are
present in the gold standard and in the context of
ranking attested substitutes it is unclear how to ob-
tain non-trivial results for target words with 10 or
fewer possible substitutes. We calculate statistical
significance of performance differences using strati-
fied shuffling (Yeh, 2000).5

5.2 Models
We apply the models developed in Section 3.1 to the
Lexical Substitution Task dataset using dependency-
and window-based context information. Here we
only use the SIM predictor type. PARA did not give
satisfactory results; in particular, it tended to rank
common words highly in most contexts.6

As before we compiled training data by extracting
target-context cooccurrences from a text corpus. In
addition to the parsed BNC described above we used
a corpus of Wikipedia text consisting of over 45 mil-
lion sentences (almost 1 billion words) parsed using
the fast Combinatory Categorial Grammar (CCG)
parser described by Clark et al. (2009). The depen-

5We use the software package available at http://www.
nlpado.de/˜sebastian/sigf.html.

6Favouring more general words may indeed make sense in
some paraphrasing tasks (Nulty and Costello, 2010).

dency representation produced by this parser is inter-
operable with the RASP dependency format. In or-
der to focus our models on semantically discrimina-
tive information and make inference more tractable
we ignored all parts of speech other than nouns,
verbs, adjectives, prepositions and adverbs. Stop-
words and words of fewer than three characters were
removed. We also removed the very frequent but se-
mantically weak lemmas be and have.

We compare two classes of context models: mod-
els learned from window-based contexts and models
learned from syntactic dependency contexts. For the
syntactic models we extracted all dependencies and
inverse dependencies between lemmas of the afore-
mentioned POS types; in order to maximise the ex-
traction yield, the dependency graph for each sen-
tence was preprocessed using the transformations
shown in Table 3. For the window-based context
model we follow Dinu and Lapata (2010) in treating
each word within five words of a target as a member
of its context set.

It proved necessary to subsample the corpora in
order to make LDA training tractable, especially for
the window-based model where the training set of
context-target counts is extremely dense (each in-
stance of a word in the corpus contributes up to
10 context instances). For the window-based data,
we divided each context-target count by a factor of
5 and a factor of 70 for the BNC and Wikipedia
corpora respectively, rounding fractional counts to
the closest integer. The choice of 70 for scaling
Wikipedia counts is adopted from Dinu and Lap-
ata (2010), who used the same factor for the com-
parably sized English Gigaword corpus. As the de-
pendency data is an order of magnitude smaller we
downsampled the Wikipedia counts by 5 and left the
BNC counts untouched. Finally, we created a larger
corpus by combining the counts from the BNC and
Wikipedia datasets. Type and token counts for the
BNC and combined corpora are given in Table 4.

We trained three LDA predictors for each corpus:
a window-based predictor (W5), a Context → Tar-
get predictor (C → T ) and a Target → Context
predictor (T → C). For W5 the sets of types and
contexts should be symmetrical (in practice there
is some discrepancy due to preprocessing artefacts).
ForC → T , individual models were trained for each
of the four target parts of speech; in each case the set
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BNC BNC+Wikipedia
Tokens Types Contexts Tokens Types Contexts

Nouns 18723082 122999 316237 54145216 106448 514257
Verbs 7893462 18494 57528 20082658 16673 82580
Adjectives 4385788 73684 37163 11536424 88488 57531
Adverbs 1976837 7124 14867 3017936 4056 18510
Window5 28329238 88265 102792 42828094 139640 143443

Table 4: Type and token counts for the BNC and downsampled BNC+Wikipedia corpora

BNC BNC + Wikipedia
GAP τb Coverage GAP τb Coverage

W5 44.5 0.17 100.0 44.8 0.17 100.0
C → T 43.2 0.16 86.4 48.7 0.21 86.5
T → C 47.2 0.21 86.4 49.3 0.22 86.5
T ↔ C 45.7 0.20 86.4 49.1 0.23 86.5
W5 + C → T 46.0 0.18 100.0 48.7 0.21 100.0
W5 + T → C 48.6 0.21 100.0 49.3 0.22 100.0
W5 + T ↔ C 48.1 0.20 100.0 49.5 0.23 100.0

Table 5: Results on the English Lexical Substitution Task dataset; boldface denotes best performance at full
coverage for each corpus

of types is the vocabulary for that part of speech and
the set of contexts is the set of dependencies taking
those types as dependents. For T → C we again
train four models; the sets of types and contexts are
reversed. For the both corpora we trained models
with Z = {600, 800, 1000, 1200} topics; for each
setting of Z we ran five estimation runs. Each in-
dividual prediction of similarity between P (z|C, o)
and P (z|n) is made by averaging over the predic-
tions of all runs and over all settings of Z. Choosing
a single setting of Z does not degrade performance
significantly; however, averaging over settings is a
convenient way to avoid having to pick a specific
value.

We also investigate combinations of predictor
types, once again produced by averaging: we com-
bine C → T with C ↔ T (T ↔ C) and combine
each of these three models with W5.

5.3 Results
Table 5 presents the results attained by our mod-
els on the Lexical Substitution Task data. The
dependency-based models have imperfect coverage
(86% of the data); they can make no prediction when
no syntactic context is provided for a target, per-

haps as a result of parsing error. The window-based
models have perfect coverage, but score noticeably
lower. By combining dependency- and window-
based models we can reach high performance with
perfect coverage. All combinations outperform the
corresponding W5 results to a statistically signifi-
cant degree (p < 0.01). Performance at full cov-
erage is already very good (GAP= 48.6, τb = 0.21)
on the BNC corpus, but the best results are attained
by W5 + T ↔ C trained on the combined corpus
(GAP= 49.5, τb = 0.23). The results for the W5
model trained on BNC data is comparable to that
trained on the combined corpus; however the syntac-
tic models show a clear benefit from the less sparse
dependency data in the combined training corpus.

As remarked in Section 3.1, Dinu and Lap-
ata (2010) use a slightly different formulation of
P (z|C, o). Using the window-based context model
our formulation (5) outperforms (7) for both training
corpora; the Dinu and Lapata (2010) version scores
GAP = 41.5, τb = 0.15 for the BNC corpus and
GAP = 42.0, τb = 0.15 for the combined corpus.
The advantage of our formulation is statistically sig-
nificant for all evaluation measures.
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Nouns Verbs Adjectives Adverbs Overall
GAP τb GAP τb GAP τb GAP τb GAP τb

W5 46.0 0.16 38.9 0.14 44.0 0.18 54.0 0.22 44.8 0.17
W5 + T ↔ C 50.7 0.22 45.1 0.20 48.8 0.24 55.9 0.24 49.5 0.23
Thater et al. (2010) (Model 1) 46.4 – 45.9 – 39.4 – 48.2 – 44.6 –
Thater et al. (2010) (Model 2) 42.5 – – – 43.2 – 51.4 – – –
Dinu and Lapata (2010) (LDA) – 0.16 – 0.14 – 0.17 – 0.21 – 0.16
Dinu and Lapata (2010) (NMF) – 0.15 – 0.14 – 0.16 – 0.26 – 0.16

Table 6: Performance by part of speech

Table 6 gives a breakdown of performance by tar-
get part of speech for the BNC+Wikipedia-trained
W5 and W5 + T ↔ C models, as well as figures
provided by previous researchers.7 W5 + T ↔ C
outperforms W5 on all parts of speech using both
evaluation metrics. As remarked above, previous re-
searchers have used the corpus in slightly different
ways; we believe that the results of Dinu and Lapata
(2010) are fully comparable, while those of Thater et
al. (2010) were attained on a slightly smaller dataset
with parameters set through cross-validation. The
results for W5 + T ↔ C outperform all of Dinu
and Lapata’s per-POS and overall results except for
a slightly superior score on adverbs attained by their
NMF model (τb = 0.26 compared to 0.24). Turn-
ing to Thater et al., we report higher scores for ev-
ery POS with the exception of the verbs where their
Model 1 achieves 45.9 GAP compared to 45.1; the
overall average for W5 + T ↔ C is substantially
higher at 49.5 compared to 44.6. On balance, we
suggest that our models do have an advantage over
the current state of the art for lexical substitution.

6 Conclusion

In this paper we have proposed novel methods for
modelling the effect of context on lexical mean-
ing, demonstrating that information about syntactic
context and textual proximity can fruitfully be inte-
grated to produce state-of-the-art models of lexical
choice. We have demonstrated the effectiveness of
our techniques on two datasets but they are poten-
tially applicable to a range of applications where se-
mantic disambiguation is required. In future work,

7The overall average GAP for Thater et al. (2010) does not
appear in their paper but can be calculated from the score and
number of instances listed for each POS.

we intend to adapt our approach for word sense dis-
ambiguation as well as related domain-specific tasks
such as gene name normalisation (Morgan et al.,
2008). A further, more speculative direction for fu-
ture research is to investigate more richly structured
models of context, for example capturing correla-
tions between words in a text within a framework
similar to the Correlated Topic Model of Blei and
Lafferty (2007) or more explicitly modelling poly-
semy effects as in Reisinger and Mooney (2010).

Acknowledgements

We are grateful to the EMNLP reviewers for their
helpful comments. This research was supported by
EPSRC grant EP/G051070/1.

References

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing (EMNLP-
10), Cambridge, MA.

David M. Blei and John D. Lafferty. 2007. A correlated
topic model of science. The Annals of Applied Statis-
tics, 1(1):17–35.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006.
The second release of the RASP system. In Proceed-
ings of the ACL-06 Interactive Presentation Sessions,
Sydney, Australia.

Samuel Brody and Mirella Lapata. 2009. Bayesian word
sense induction. In Proceedings of EACL-09, Athens,
Greece.

1055



Stephen Clark, Ann Copestake, James R. Curran, Yue
Zhang, Aurelie Herbelot, James Haggerty, Byung-Gyu
Ahn, Curt Van Wyk, Jessika Roesner, Jonathan Kum-
merfeld, and Tim Dawborn. 2009. Large-scale syn-
tactic processing: Parsing the web. Technical report,
Final Report of the 2009 JHU CLSP Workshop.

Georgiana Dinu and Mirella Lapata. 2010. Measuring
distributional similarity in context. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP-10), Cambridge,MA.

Katrin Erk and Sebastian Padó. 2008. A structured vec-
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