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Abstract

In active dual supervision, not only informa-
tive examples but also features are selected for
labeling to build a high quality classifier with
low cost. However, how to measure the infor-
mativeness for both examples and feature on
the same scale has not been well solved. In
this paper, we propose a non-negative matrix
factorization based approach to address this is-
sue. We first extend the matrix factorization
framework to explicitly model the correspond-
ing relationships between feature classes and
examples classes. Then by making use of
the reconstruction error, we propose a unified
scheme to determine which feature or exam-
ple a classifier is most likely to benefit from
having labeled. Empirical results demonstrate
the effectiveness of our proposed methods.

1 Introduction

Active learning, as an effective paradigm to optimize
the learning benefit from domain experts’ feedback
and to reduce the cost of acquiring labeled examples
for supervised learning, has been intensively stud-
ied in recent years (McCallum and Nigam, 1998;
Tong and Koller, 2002; Settles, 2009). Traditional
approaches for active learning query the human ex-
perts to obtain the labels for intelligently chosen
data samples. However, in text classification where
the input data is generally represented as document-
word matrices, human supervision can be obtained
on both documents and words. For example, in sen-
timent analysis of product reviews, human labelers
can label reviews as positive or negative, they can

also label the words that elicit positive sentiment
(such as “sensational” and “electrifying”) as posi-
tive and words that evoke negative sentiment (such
as “depressed” and “unfulfilling”) as negative. Re-
cent work has demonstrated that labeled words (or
feature supervision) can greatly reduce the number
of labeled samples for building high-quality classi-
fiers (Druck et al., 2008; Zaidan and Eisner, 2008).
In fact, different kinds of supervision generally have
different acquisition costs, different degrees of util-
ity and are not mutually redundant (Sindhwani et
al., 2009). Ideally, effective active learning schemes
should be able to utilize different forms of supervi-
sion.

To incorporate the supervision on words and doc-
uments at same time into the active learning scheme,
recently an active dual supervision (or dual active
learning) has been proposed (Melville and Sind-
hwani, 2009; Sindhwani et al., 2009). Comparing
with traditional active learning which aims to select
the most “informative” examples (e.g., documents)
for domain experts to label, active dual supervi-
sion selects both the “informative” examples (e.g.,
documents) and features (e.g., words) for labeling.
For active dual supervision to be effective, there
are three important components: a) an underlying
learning mechanism that is able to learn from both
the labeled examples and features (i.e., incorporat-
ing supervision on both examples and features); b)
methods for estimating the value of information for
example and feature labels; and c) a scheme that
should be able to trade-off the costs and benefits of
the different forms of supervision since they have
different labeling costs and different benefits.
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In Sindhwani et al.’s initial work on active dual
supervision (Sindhwani et al., 2009), a transductive
bipartite graph regularization approach is used for
learning from both labeled examples and features.
In addition, uncertainty sampling and experimental
design are used for selecting informative examples
and features for labeling. To trade-off between dif-
ferent types of supervision, a simple probabilistic
interleaving scheme where the active learner prob-
abilistically queries the example oracle and the fea-
ture oracle is used. One problem in their method is
that the values of acquiring the feature labels and
the example labels are not on the same scale.

Recently, Li et al. (Li et al., 2009) proposed a
dual supervision method based on constrained non-
negative tri-factorization of the document-term ma-
trix where the labeled features and examples are
naturally incorporated as sets of constraints. Hav-
ing a framework for incorporating dual-supervision
based on matrix factorization, gives rise to the nat-
ural question of how to perform active dual super-
vision in this setting. Since rows and columns are
treated equally in estimating the errors of matrix fac-
torization, another question is can we address the
scaling issue in comparing the value of feature la-
bels and example labels.

In this paper, we study the problem of ac-
tive dual supervision using non-negative matrix tri-
factorization. Our work is based on the dual supervi-
sion framework using constrained non-negative tri-
factorization proposed in (Li et al., 2009). We first
extend the framework to explicitly model the corre-
sponding relationships between feature classes and
example classes. Then by making use of the recon-
struction error criterion in matrix factorization, we
propose a unified scheme to evaluate the value of
feature and example labels. Instead of comparing
the estimated performance increase of new feature
labels or example labels, our proposed scheme as-
sumes that a better supervision (a feature label or a
example label) should lead to a more accurate re-
construction of the original data matrix. In our pro-
posed scheme, the value of feature labels and ex-
ample labels is computed on the same scale. The
experiments show that our proposed unified scheme
to query selection (i.e., feature/example selection for
labeling) outperforms the interleaving schemes and
the scheme based on expected log gain.

The rest of this paper is organized as follows: the
related work is discussed in Section 2, and the dual
supervision framework based on non-negative ma-
trix tri-factorization is introduced in Section 3. We
extend non-negative matrix tri-factorization to active
learning settings in Section 4, and propose a unified
scheme for query selection in Section 5. Experi-
ments are presented in Section 6, and finally Section
7 concludes the paper.

2 Related Work

We point the reader to a recent report (Settles, 2009)
for an in-depth survey on active learning. In this
section, we briefly cover related work to position our
contributions appropriately.

Active Learning/Active Dual Supervision Most
prior work in active learning has focused on pooled-
based techniques, where examples from an unla-
beled pool are selected for labeling (Cohn et al.,
1994). With the study of learning from labeled fea-
tures, many research efforts on active learning with
feature supervision are also reported (Melville et al.,
2005; Raghavan et al., 2006). (Godbole et al., 2004)
proposed the notion of feature uncertainty and in-
corporated the acquired feature labels into learning
by creating one-term mini-documents. (Druck et al.,
2009) performed active learning via feature labeling
using several uncertainty reduction heuristics using
the learning model developed in (Druck et al., 2008).
(Sindhwani et al., 2009) studied the problem of ac-
tive dual supervision from examples and features
using a graph-based dual supervision method with
a simple probabilistic method for interleaving fea-
ture labels and example labels. In our work, we de-
velop our active dual supervision framework using
constrained non-negative tri-factorization and also
propose a unified scheme to evaluate the value of
feature and example labels. We note the very re-
cent work of (Attenberg et al., 2010), which pro-
poses a unified approach for the dual active learn-
ing problem using expected utility where the utility
is defined as the log gain of the classification model
with a new labeled document or word. Conceptu-
ally, our proposed unified scheme is a special case
of the expected utility framework where the utility
is computed using the matrix reconstruction error.
The utility based on the log gain of the classification
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model may not be reliable as small model changes
resulted from a single additional example label or
feature label may not be reflected in the classifica-
tion performance (Attenberg et al., 2010). The em-
pirical comparisons show that our proposed unified
scheme based on reconstruction error outperforms
the expected log gain.

Dual Supervision Note that a learning method
that is capable of performing dual supervision (i.e.,
learning from both labeled examples and features)
is the basis for active dual supervision. Dual su-
pervision is a relatively new area of research and
few methods have been developed for dual super-
vision. In (Sindhwani and Melville, 2008; Sind-
hwani et al., 2008), a bipartite graph regularization
model (GRADS) is used to diffuse label informa-
tion along both sides of the document-term matrix
and to perform dual supervision for semi-supervised
sentiment analysis. Conceptually, their model im-
plements a co-clustering assumption closely related
to Singular Value Decomposition (see also (Dhillon,
2001; Zha et al., 2001) for more on this perspec-
tive). In (Sandler et al., 2008), standard regulariza-
tion models are constrained using graphs of word co-
occurrences. In (Melville et al., 2009), Naive Bayes
classifier is extended, where the parameters, the con-
ditional word distributions given the classes, are es-
timated by combining multiple sources, e.g. docu-
ment labels and word labels. Our work is based on
the dual supervision framework using constrained
non-negative tri-factorization.

3 Learning with Dual Supervision via
Tri-NMF

Our dual supervision model is based on non-
negative matrix tri-factorization (Tri-NMF), where
the non-negative input document-word matrix is ap-
proximated by 3 factor matrices as X ≈ GSF T , in
which, X is an n×m document-term matrix, G is an
n × k non-negative orthogonal matrix representing
the probability of generating a document from a doc-
ument cluster, F is an m× k non-negative orthogo-
nal matrix representing the probability of generating
a word from a word cluster, and S is a k × k non-
negative matrix providing the relationship between
document cluster space and word cluster space.

While Tri-NMF is first applied in co-clustering, Li

et al. (Li et al., 2009) extended it to incorporate la-
beled words and documents as dual supervision via
two loss terms in the objective function of Tri-NMF
as following:

minF,G,S ‖X −GSF T ‖2
+α trace[(F − F0)

T C1(F − F0)]
+β trace[(G−G0)

T C2(G−G0)].
(1)

Here, α > 0 is a parameter which determines the
extent to which we enforce F ≈ F0 to its labeled
rows. C1 is a m × m diagonal matrix whose en-
try (C1)ii = 1 if the row of F0 is labeled, that is,
the class of the i-th word is known and (C1)ii = 0
otherwise. β > 0 is a parameter which determines
the extent to which we enforce G ≈ G0 to its la-
beled rows. C2 is a n × n diagonal matrix whose
entry (C2)ii = 1 if the row of G0 is labeled, that
is, the category of the i-th document is known and
(C2)ii = 0 otherwise. The squared loss terms ensure
that the solution for G,F in the otherwise unsuper-
vised learning problem be close to the prior knowl-
edge G0, F0. So the partial labels on documents and
words can be described using G0 and F0, respec-
tively.

4 Dual Supervision with Explicit Class
Alignment

4.1 Modeling the Relationships between Word
Classes and Document Classes

In the solution to Equation 1, we have S = GT XF ,
or

Slk = gT
l Xfk =

1

|Rl|1/2|Ck|1/2

∑

i∈Rl

∑

j∈Ck

Xij ,

(2)
where |Rl| is the size of the l-th document class, and
|Ck| is the size of the k-th word class (Ding et al.,
2006). Note that Slk represents properly normalized
within-class sum of weights (l = k) and between-
class sum of weights (l 6= k). So, S represents the
relationship between the classes over documents and
the classes over words. Under the assumption that
the i-th document class should correspond to the i-
th word class, S should be an approximate diago-
nal matrix, since the documents of i-th class is more
likely to contain the words of the i-th class. Note
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that S is not an exact diagonal matrix, since a doc-
ument of one class apparently can use words from
other classes (especially G and F are required to be
approximately orthogonal, which means the classi-
fication is rigorous). However, in Equation 1, there
are no explicit constraints on the relationship be-
tween word classes and document classes. Instead,
the relationship is established and enforced implic-
itly using existing labeled documents and words.

In active learning, the set of starting labeled doc-
uments or words is small, and this may generate an
ill-formed S, leading to an incorrect alignment of
word classes and document classes. To explicitly
model the relationships between word classes and
document classes, we constrain the shape of S via
an extra loss term in the objective function as fol-
lows:

minF,G,S ‖X −GSF T ‖2
+α trace[(F − F0)

T C1(F − F0)]
+β trace[(G−G0)

T C2(G−G0)]
+γ trace[(S − S0)

T (S − S0)]
(3)

where S0 is a diagonal matrix.

How to Choose S0 If there is no orthogonal con-
straint on F,G and I-divergence is used as the ob-
jective function, it can been shown that the factors
of Tri-NMF have probabilistic interpretation (Ding
et al., 2008; Shen et al., 2011):

Fil = P (w = wi|zw = l),
Gjk = P (d = dj |zd = k),
Skl = P (zd = k, zw = l),

(4)

where w is word variable, d is document variable,
and zw, zd are random variables indicating word
class and document class respectively. F and G
represent posterior distributions for words and docu-
ments, and S represents the joint distribution of doc-
ument class and word class. With such an interpre-
tation, S0 can be easily decided in balanced classifi-
cation problems with each diagonal entry equals to
one over the number of classes.

However, in our setting of Tri-NMF, orthogonal
constraints are enforced on F, G and Euclidean dis-
tance is used as the objective function. To pre-
compute S0, one way is to first solve the optimiza-
tion problem Equation 1 with another constraint that

S should be diagonal. Alternatively, to keep it sim-
ple, we ignore the known label information and just
assume there exists a diagonal matrix S0 and two
orthogonal matrices G,F , that

GS0F
T ≈ X.

Then

trace[XXT ] ≈ trace[GS0F
T FST

0 GT ],
= trace[S0S

T
0 F T FGT G],

= trace[S0S
T
0 ],

=
∑

k(S0)
2
kk.

(5)

So if a classification problem is balanced with K
classes, S0 can be estimated as following:

(S0)kl =

{ √
trace[XXT ]

K l = k,

0 otherwise.
(6)

4.2 Computing Algorithm
This optimization problem can be solved using the
following update rules

Gjk ← Gjk
XFS+βC2G0

(GGT XFS+βGGT C2G)jk
,

Sjk ← Sjk
F T XT G+γS0

(F T FSGT G+γS)jk
,

Fjk ← Fjk
XT GST +αC1F0

(FF T XT GST +αC1F )jk
.

(7)

The algorithm consists of an iterative procedure us-
ing the above three rules until convergence.

Theorem 4.1 The above iterative algorithm con-
verges.

Theorem 4.2 At convergence, the solution satisfies
the Karuch-Kuhn-Tucker (KKT) optimality condi-
tion, i.e., the algorithm converges correctly to a lo-
cal optima.

Theorem 4.1 can be proved using the standard aux-
iliary function approach (Lee and Seung, 2001).

Proof of Theorem 4.2: Proof for the update rules
of G,F is the same as in (Li et al., 2009). Here we
focus on the update rule of S. We want to minimize

L(S) = ‖X −GSF T ‖2
+α trace[(F − F0)

T C1(F − F0)]
+β trace[(G−G0)

T C2(G−G0)]
+γ trace[(S − S0)

T (S − S0)].
(8)
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The gradient of L is

∂L

∂S
= 2F T FSGT G− 2F T XT G + 2γ(S − S0)

The KKT complementarity condition for the non-
negativity of Sjk gives

[2F T FSGT G−2F T XT G+2γ(S−S0)]jkSjk = 0.

This is the fixed point relation that local minima for
S must satisfy, which is equivalent with the update
rule of S in Equation 7.

5 A Unified Scheme for Query Selection
Using the Reconstruction Error

5.1 Introduction

An ideal active dual supervision scheme should be
able to evaluate the value of acquiring labels for doc-
uments and words on the same scale. In the initial
study of dual active supervision, different scores are
used for documents and words (e.g. uncertainty for
documents and certainty for words), and thus they
are not on the same scale (Sindhwani et al., 2009).
Recently, the framework of Expected Utility (Esti-
mated Risk Minimization) is proposed in (Attenberg
et al., 2010). At each step of the framework, the next
word or document selected for labeling is the one
that will result in the highest estimated improvement
in classifier performance as defined as:

EU(qj) =
K∑

k=1

P (qj = ck)U(qj = ck), (9)

where K is the class number, P (qj = ck) indicates
the probability that qj , j-th query (a word or docu-
ment), belongs to the k-th class, and the U(qj = ck)
indicates the utility that qj belongs to the k-th class.
However, the choice of the utility measure is still a
challenge.

5.2 Reconstruction Error

In our matrix factorization framework, rows and
columns are treated equally in estimating the errors
of matrix factorization, and the reconstruction error
is thus a natural measure of utility. Let the current
supervision knowledge be G0, F0. To select a new
unlabeled document/word for labeling, we assume

that a good supervision should lead to a good con-
strained factorization for the document-term matrix,
X ≈ GSF T . If the new query qj is a word and its
label is k, then the new factorization is

G∗
j=k, S

∗
j=k, F

∗
j=k

= arg minG,S,F ‖X −GSF T ‖2
+ α trace[(G−G0)

T C2(G−G0)]
+ β trace[(F − F0,j=k)

T C1(F − F0,j=k)]
+ γ trace[(S − S0)

T (S − S0)],
(10)

where F0,j=k is same as F0 except that
F0,j=k(j, k) = 1. In other words, we obtained
a new factorization using the labeled words. Sim-
ilarly, if the new query qj is a document, then the
new factorization is

G∗
j=k, S

∗
j=k, F

∗
j=k

= arg minG,S,F ‖X −GSF T ‖2
+ α trace[(G−G0,j=k)

T C2(G−G0,j=k)]
+ β trace[(F − F0)

T C1(F − F0)]
+ γ trace[(S − S0)

T (S − S0)],
(11)

where G0,j=k is same as G0 except that
G0,j=k(j, k) = 1. In other words, we obtained
a new factorization using the labeled documents.
Then the new reconstruction error is

RE(qj = k) = ‖X −G∗
j=kS

∗
j=kF

∗
j=k‖2. (12)

So the expected utility of a document or word label
query, qj , can be computed as

EU(qj) =

K∑

k=1

P (qj = k)∗ (−RE(qj = k)). (13)

To calculate the P (qj = k), which is the posterior
distribution for words or documents, probabilistic
interpretation of Tri-NMF is abused. When a query
qj is a word, P (qj = k) is

P (zw = k|w = wi)

∝ P (w = wi|zw = k)
∑K

j=1 P (zw = k, zd = j)

= Fik ∗
∑K

j=1 Skj ,
(14)

otherwise,

P (zd = k|d = di)

∝ P (d = di|zd = k)
∑K

j=1 P (zw = j, zd = k)

= Gik ∗
∑K

j=1 Sjk.
(15)
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5.3 Algorithm Description

Computational Improvement: It can be computa-
tionally intensive if the reconstruction error is com-
puted for all unknown documents and words. In-
spired by (Attenberg et al., 2010), we first select the
top 100 unknown words that the current model is
most certain about, and the top 100 unknown docu-
ments that the current model is most uncertain about.
Then we identify the words or documents in this
pool with the highest expected utility (reconstruc-
tion error). Equations 14 and 15 are used to perform
the initial selection of top 100 unknown words and
top 100 unknown documents.

Algorithm 1 Active Dual Supervision Algorithm
Based on Matrix Factorization
INPUT: X , document-word matrix; F0, current la-
beled words; G0, current labeled documents; O, the
oracle
OUTPUT: G, classification result for all documents
in X

1. Get base factorization of X: G,S, F .
2. Active dual supervision
repeat

D is the set of top 100 unlabeled documents
with most uncertainty;
W is the set of top 100 unlabeled words with
most certainty;
Q = D ∪W ;
for all q ∈ Q do

for k = 1 to K do
Get G∗

q=k, F
∗
q=k, S

∗
q=k by Equation 10 or

Equation 11 according to whether the
query q is a document or a word;

Calculate EU(q) by Equation 13;
q∗ = arg maxq EU(q);
Acquire new label of q∗, l from O;
G,F, S = G∗

q∗=l, F
∗
q∗=l, S

∗
q∗=l;

until stop criterion is met.

The overall algorithm procedure is described in
Algorithm 1. First we iteratively use the updat-
ing rules of Equation 7 to obtain the factoriza-
tion G,F, S based on initial labeled documents and
words. Then to select a new query, for each unla-
beled document or word in the pool and for each
possible class, we compute the reconstruction error

with new supervision (using the current factoriza-
tion results as initialization values). It is efficient to
compute a new factorization due to the sparsity of
the matrices. The document-term matrix is typically
very sparse with z � nm non-zero entries while k is
typically also much smaller than document number
n, and word number m. By using sparse matrix mul-
tiplications and avoiding dense intermediate matri-
ces, updating F, S, G each takes O(k2(m+n)+kz)
time per iteration which scales linearly with the di-
mensions and density of the data matrix (Li et al.,
2009). Empirically, the number of iterations that is
needed to compute the new factorization is usually
very small (less than 10).

6 Experiments

6.1 Experiments Settings

Three popular binary text classification datasets are
used in the experiments: ibm-mac (1937 examples),
baseball-hockey (1988 examples) and med-space
(1972 examples) datasets. All of them are drawn
from the 20-newsgroups text collection1 where the
task is to assign messages into the newsgroup in
which they appeared. Top 1500 frequent words in
each dataset are used as features in the binary vec-
tor representation. These datasets have labels for all
the documents. For a document query, the oracle re-
turns its label. We construct the word oracle in the
same manner as in (Sindhwani et al., 2009): first
compute the information gain of words with respect
to the known true class labels in the training splits of
a dataset, and then the top 100 words as ranked by
information gain are assigned the label which is the
class in which the word appears more frequently. To
those words with labels, the word oracle returns its
label; otherwise, the oracle returns a “don’t know”
response (no word label is obtained for learning, but
the word is excluded from the following query se-
lection).

Results are averaged over 10 random training-
test splits. For each split, 30% examples are used
for testing. All methods are initialized by a ran-
dom choice of 10 document labels and 10 word la-
bels. For simplicity, we follow the widely used cost
model (Raghavan and Allan, 2007; Druck et al.,

1http://www.ai.mit.edu/people/jrennie/
20_newsgroups/
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2008; Sindhwani et al., 2009) where features are
roughly 5 times cheaper to label than examples, so
we assume the cost is 1 for a word query and is 5 for
a document query. We set α = β = 5, γ = 1 for all
the following experiments2.
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Figure 1: Comparing the performance of dual supervision
via Tri-NMF w/ and w/o the constraint on S.

2We do not perform fine tuning on the parameters since the
main objective of the paper is to demonstrate the effectiveness
of matrix factorization based methods for dual active supervi-
sion. A vigorous investigation on the parameter choices is our
further work.

6.2 Experimental Results

Effect of Constraints on S in Constrained Tri-
NMF Figure 1 demonstrates the effectiveness of
dual supervision with explicit class alignment via
Tri-NMF as described in Section 4. When there
are enough labeled documents and words, the con-
straints on S have a relative small impact on the per-
formance of dual supervision. However, in the be-
ginning phase of active learning, the labeled dataset
can be small (such as 10 labeled documents and 10
labeled words). In this case, without the constraint
of S, the matrix factorization may generate incorrect
class alignment, thus lead to almost random classi-
fication results (around 50% accuracy), as shown in
Figure 1, and further make unreasonable the follow-
ing evaluation of queries.

Comparing Query Selection Approaches Figure
2 compares our proposed unified scheme (denoted as
Expected-reconstruction-error) with the following
baselines using Tri-NMF as the classifier for dual
supervision: (1). Interleaved-uncertainty which
first selects feature query by certainty and sample
query by uncertainty and then combines the two
types of queries using an interleaving scheme. The
interleaving probability (probability to select the
query as a document) is set as 0.2, 0.4, 0.6 and
0.8. (2). Expected-log-gain which selects feature
and sample query by maximizing the expected log
gain. Expected-reconstruction-error outperforms
interleaving schemes with all the different interleav-
ing probability values with which we experimented.
It also has a better performance than Expected-log-
gain. Although log gain is a finer-grained utility
measure of classifier performance than accuracy and
has a good performance in the setting with a large set
of starting labeled documents (e.g., 100 documents),
it is not reliable especially in the setting with a small
set of labeled data. Different from the Expected-log-
gain, Expected-reconstruction-error estimates the
utility using the matrix reconstruction error, making
use of information of all documents and words, in-
cluding those unlabeled.

Comparing Interleaving Scheme vs. the Uni-
fied Scheme To further demonstrate the benefit
of the proposed unified scheme , we compare it
with its interleaved version: Interleaved-expected-

955



 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0  100  200  300  400  500  600  700  800

A
cc

ur
ac

y

Labeling Cost

Expected-log-gain
Interleaved-uncertainty-0.2
Interleaved-uncertainty-0.4
Interleaved-uncertainty-0.6
Interleaved-uncertainty-0.8

Expected-reconstruction-error

(a) baseball-hockey

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0  100  200  300  400  500  600  700  800

A
cc

ur
ac

y

Labeling Cost

Expected-log-gain
Interleaved-uncertainty-0.2
Interleaved-uncertainty-0.4
Interleaved-uncertainty-0.6
Interleaved-uncertainty-0.8

Expected-reconstruction-error

(b) ibm-mac

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0  100  200  300  400  500  600  700  800

A
cc

ur
ac

y

Labeling Cost

Expected-log-gain
Interleaved-uncertainty-0.2
Interleaved-uncertainty-0.4
Interleaved-uncertainty-0.6
Interleaved-uncertainty-0.8

Expected-reconstruction-error

(c) med-space

Figure 2: Comparing the different query selection approaches in active learning via Tri-NMF with dual supervision.
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Figure 3: Comparing the unified and interleaving scheme based on reconstruction error.

construction-error which computes the utility of a
query using the reconstruction error, but uses inter-
leaving scheme to decide which type of query to
select. We experiment with different interleaving
probability values ranging from 0.2 to 0.8, which
lead to quite different performance results. From
Figure 3, the optimal interleaving probability value
varies on different datasets. For example, the proba-
bility value of 0.8 is among the optimal interleaving
probability values on baseball-hockey dataset but
performs poorly on ibm-mac dataset. This obser-
vation also illustrates the need for a unified scheme,
because of the difficulty in choosing the optimal in-
terleaving probability value. Although the proposed
unified scheme is not significantly better than its in-
terleaving counterparts for all interleaving probabil-
ity values on all datasets, it avoids the bad choices.

Figure 5 presents the sequence of different query
types selected by our unified scheme and it clearly
demonstrates the distribution patterns of different
query types. At the beginning phase of active learn-
ing, word queries have much higher probabilities to
be selected, which is consistent with the result of
previous work: feature labels can be more effec-
tive than examples in text classification (Druck et
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Figure 5: Example of query sequence.

al., 2008). And in the later learning phase, docu-
ments are more likely to be selected, since the num-
ber of words that can benefit the classification is
much smaller than the effective documents.

Reconstruction Error vs. Interleaving uncer-
tainty using GRADS It should be pointed out that
our unified scheme for query selection based on re-
construction error does not rely on the estimation
of model performance on training data and can be
easily integrated with other dual supervision mod-
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Figure 4: GRADS with reconstruction error and interleaving uncertainty.

els such as GRADS (Sindhwani et al., 2008). Fig-
ure 4 shows the comparison of GRADS using the
interleaved scheme with an interleaving probability
of 0.5, and using our unified scheme based on recon-
struction error. Among the 3 datasets we used, the
reconstruction error based approach outperforms the
interleaving scheme on baseball-hockey and ibm-
mac, and has similar performance with the interleav-
ing scheme on med-space.
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Figure 6: Comparing active dual supervision using ma-
trix factorization with GRADS on sentiment analysis.

Comparing Active Dual Supervision Using Ma-
trix Factorization with GRADS on Sentiment
Analysis The sentiment analysis experiment is
conducted on the movies review dataset (Pang et al.,
2002), containing 1000 positive and 1000 negative
movie reviews. The results are shown in Figure 6.
The experimental results clearly demonstrate the ef-
fectiveness of our approach, denoted as Tri-NMF-
Reconstruction-Error.

7 Conclusions

In this paper, we study the problem of active dual
supervision, and propose a matrix tri-factorization
based approach to address the issue, how to evaluate
labeling benifit of different types of queries (exam-
ples or features) in the same scale. Following ex-
tending the nonnegative matrix tri-factorization to
the active dual supervision setting, we use the recon-
struction error to evaluate the value of feature and
example labels. Experimental results show that our
proposed approach outperforms existing methods.
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