
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 691–699,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Syntactic Decision Tree LMs: Random Selection or Intelligent Design?

Denis Filimonov†‡
‡Human Language Technology

Center of Excellence
Johns Hopkins University
den@cs.umd.edu

Mary Harper†
†Department of Computer Science

University of Maryland, College Park
mharper@umd.edu

Abstract

Decision trees have been applied to a vari-
ety of NLP tasks, including language mod-
eling, for their ability to handle a variety of
attributes and sparse context space. More-
over, forests (collections of decision trees)
have been shown to substantially outperform
individual decision trees. In this work, we in-
vestigate methods for combining trees in a for-
est, as well as methods for diversifying trees
for the task of syntactic language modeling.
We show that our tree interpolation technique
outperforms the standard method used in the
literature, and that, on this particular task, re-
stricting tree contexts in a principled way pro-
duces smaller and better forests, with the best
achieving an 8% relative reduction in Word
Error Rate over an n-gram baseline.

1 Introduction

Language Models (LMs) are an essential part of
NLP applications that require selection of the most
fluent word sequence among multiple hypotheses.
The most prominent applications include Automatic
Speech Recognition (ASR) and Machine Transla-
tion (MT).

Statistical LMs formulate the problem as the
computation of the model’s probability to gener-
ate the word sequence w1, w2, . . . , wm (denoted as
wm
1), assuming that higher probability corresponds

to more fluent hypotheses. LMs are often repre-
sented in the following generative form:

p(wm
1) =

m∏

i=1

p(wi|wi−1
1)

Note the context space for this function, wi−1
1 is ar-

bitrarily long, necessitating some independence as-
sumption, which usually consists of reducing the rel-
evant context to n−1 immediately preceding tokens:

p(wi|wi−1
1) ≈ p(wi|wi−1

i−n+1) (1)

These distributions are typically estimated from ob-
served counts of n-grams wi

i−n+1 in the training
data. The context space is still far too large1; there-
fore, the models are recursively smoothed using
lower order distributions. For instance, in a widely
used n-gram LM, the probabilities are estimated as
follows:

p̃(wi|wi−1
i−n+1) = ρ(wi|wi−1

i−n+1) + (2)

γ(wi−1
i−n+1) · p̃(wi|wi−1

i−n+2)

where ρ is a discounted probability2.
Note that this type of model is a simple Markov

chain lacking any notion of syntax. It is widely
accepted that languages do have some structure.
Moreover, it has been shown that incorporating syn-
tax into a language model can improve its perfor-
mance (Bangalore, 1996; Heeman, 1998; Chelba
and Jelinek, 2000; Filimonov and Harper, 2009). A
straightforward way of incorporating syntax into a
language model is by assigning a tag to each word
and modeling them jointly; then to obtain the proba-

1O(|V |n−1) in n-gram model with typical order n =
3 . . . 5, and a vocabulary size of |V | = 104 . . . 106.

2We refer the reader to (Chen and Goodman, 1996) for a
survey of the discounting methods for n-gram models.

691

bility of a word sequence, the tags must be marginal-
ized out:

p(wm
1) =

∑

t1...tm

p(wm
1 t

m
1) =

∑

t1...tm

m∏

i=1

p(witi|wi−1
1 ti−1

1)

An independence assumption similar to Eq. 1 can be
made:

p(witi|wi−1
1 ti−11) ≈ p(witi|wi−1

i−n+1t
i−1
i−n+1) (3)

A primary goal of our research is to build strong
syntactic language models and provide effective
methods for constructing them to the research com-
munity. Note that the tags in the context of the joint
model in Eq. 3 exacerbate the already sparse prob-
lem in Eq. 1, which makes the probability estima-
tion particularly challenging. We utilize decision
trees for joint syntactic language models to clus-
ter context because of their strengths (reliance on
information theoretic metrics to cluster context in
the face of extreme sparsity and the ability to in-
corporate attributes of different types3), and at the
same time, unlike log-linear models (Rosenfeld et
al., 1994), computationally expensive probability
normalization does not have to be postponed until
runtime.

In Section 2, we describe the details of the syntac-
tic decision tree LM. Construction of a single-tree
model is difficult due to the inevitable greediness
of the tree construction process and its tendency to
overfit the data. This problem is often addressed by
interpolating with lower order decision trees. In Sec-
tion 3, we point out the inappropriateness of backoff
methods borrowed from n-gram models for decision
tree LMs and briefly describe a generalized interpo-
lation for such models. The generalized interpola-
tion method allows the addition of any number of
trees to the model, and thus raises the question: what
is the best way to create diverse decision trees so that
their combination results in a stronger model, while
at the same time keeping the total number of trees in
the model relatively low for computational practical-
ity. In Section 4, we explore and evaluate a variety

3For example, morphological features can be very helpful
for modeling highly inflectional languages (Bilmes and Kirch-
hoff, 2003).

of methods for creating different trees. To support
our findings, we evaluate several of the models on
an ASR rescoring task in Section 5. Finally, we dis-
cuss our findings in Section 6.

2 Joint Syntactic Decision Tree LM

A decision tree provides us with a clustering func-
tion Φ(wi−1

i−n+1t
i−1
i−n+1) → {Φ1, . . . ,ΦN}, where N

is the number of clusters, and clusters Φk are disjoint
subsets of the context space. The probability estima-
tion for a joint decision tree model is approximated
as follows:

p(witi|wi−1
i−n+1t

i−1
i−n+1) ≈ p(witi|Φ(wi−1

i−n+1t
i−1
i−n+1))

(4)

In the remainder of this section, we briefly describe
the techniques that we use to construct such a deci-
sion tree Φ and to estimate the probability distribu-
tion for the joint model in Eq. 4.

2.1 Decision Tree Construction

We use recursive partitioning to grow decision trees.
In this approach, a number of alternative binary
splits of the training data associated with a node are
evaluated using some metric, the best split is chosen,
checked against a stopping rule (which aims at pre-
venting overfitting to the training data and usually
involves a heldout set), and then the two partitions
become the child nodes if the stopping rule does not
apply. Then the algorithm proceeds recursively into
the newly constructed leaves.

Binary splits are often referred to as questions
about the context because a binary partition can
be represented by a binary function that decides
whether an element of context space belongs to one
partition or the other. We utilize univariate questions
where each question partitions the context on one
attribute, e.g., wi−2 or ti−1. The questions about
words and tags are constructed differently:

• The questions q about the words are in the form
q(x) ≡ wi+x ∈ S, where x is an integer be-
tween −n + 1 and −1, and S ⊂ V is a subset
of the word vocabulary V . To construct the set
S, we take the set of words So observed at the
offset x in the training data associated with the

692

current node and split it into two complemen-
tary subsets S ∪ S̄ = So using the Exchange
algorithm (Martin et al., 1998). Because the
algorithm is greedy and depends on the initial-
ization, we construct 4 questions per word po-
sition using different random initializations of
the Exchange algorithm.

Since we need to account for words that were
not observed in the training data, we utilize
the structure depicted in Figure 1. To estimate
the probability at the backoff node (B in Fig-
ure 1), we can either use the probability from its
grandparent nodeA or estimate it using a lower
order tree (see Section 3), or combine the two.
We have observed no noticeable difference be-
tween these methods, which suggests that only
a small fraction of probability is estimated from
these nodes; therefore, for simplicity, we use
the probability estimated at the backoff node’s
grandparent.

• To create questions about tags we create a hi-
erarchical clustering of all tags in the form of
a binary tree. This is done beforehand, using
the Minimum Discriminating Information al-
gorithm (Zitouni, 2007) with the entire train-
ing data set. In this tree, each leaf is an in-
dividual tag and each internal node is associ-
ated with the subset of tags that the node dom-
inates. Questions about tags are constructed in
the form q(x, k) ≡ ti+x ∈ Tk, where k is a
node in the tag tree and Tk is the subset of tags
associated with that node. The rationale behind
constructing tag questions in this form is that
it enables a more efficient decoding algorithm
than standard HMM decoding (Filimonov and
Harper, 2009).

Questions are evaluated in two steps. First the
context attribute x is selected using a metric simi-
lar to information gain ratio proposed by (Quinlan,
1986):

M = 1− H(wi)−H(wi|x)

H(x)
= 1− I(x;wi)

H(x)

where x is one of the context attributes, e.g., wi−2
or ti−1. Then, among the questions about attribute

wi−2∈S

Backoff leaf

yes

yesno

no

A

B

wi−2∈S

Figure 1: A fragment of the decision tree with a backoff
node. S ∪ S̄ is the set of words observed in the training
data at the node A. To account for unseen words, we add
the backoff node B.

x, we select the question that maximizes the entropy
reduction.

Instead of dedicating an explicit heldout set for
the stopping criterion, we utilize a technique simi-
lar to cross validation: the training data set is par-
titioned into four folds, and the best question is re-
quired to reduce entropy on each of the folds.

Note that the tree induction algorithm can also be
used to construct trees without tags:

p(wi|wi−1
i−n+1) ≈ p(wi|Φ(wi−1

i−n+1))

We refer to this model as the word-tree model. By
comparing syntactic and word-tree models, we are
able to separate the effects of decision tree modeling
and syntactic information on language modeling by
comparing both models to an n-gram baseline.

2.2 In-tree Smoothing
A decision tree offers a hierarchy of clusterings that
can be exploited for smoothing. We can interpo-
late the observed distributions at leaves recursively
with their parents, as in (Bahl et al., 1990; Heeman,
1998):

p̃k(witi) = λkpML(witi) + (1− λk)p̃k′(witi) (5)

where pML is the observed distribution at node k
and k′ is the parent of k. The coefficients λk are
estimated using an EM algorithm.

We can also combine p(witi|Φ(wi−1
i−n+1t

i−1
i−n+1))

with lower order decision trees, i.e.,
693

p(witi|Φ(wi−1
i−n+2t

i−1
i−n+2)), and so on up until

p(witi) which is a one-node tree (essentially a
unigram model). Although superficially similar to
backoff in n-gram models, lower order decision
trees differ substantially from lower order n-gram
models and require different interpolation methods.
In the next section, we discuss this difference and
present a generalized interpolation that is more
suitable for combining decision tree models.

3 Interpolation with Backoff Tree Models

In this section, for simplicity of presentation, we fo-
cus on the equations for word models, but the same
equations apply equally to joint models (Eq. 3) with
trivial transformations.

3.1 Backoff Property
Let us rewrite the interpolation Eq. 2 in a more
generic way:

p̃(wi|wi−1
1) = ρn(wi|Φn(wi−1

1)) + (6)
γ(Φn(wi−1

1)) · p̃(wi|BOn−1(wi−1
1))

where, ρn is a discounted distribution, Φn is a clus-
tering function of order n, and γ(Φn(wi−1

1)) is the
backoff weight chosen to normalize the distribution.
BOn−1 is the backoff clustering function of order
n − 1, representing a reduction of context size. In
the case of an n-gram model, Φn(wi−1

1) is the set
of word sequences where the last n − 1 words are
wi−1
i−n+1. Similarly, BOn−1(w

i−1
1) is the set of se-

quences ending with wi−1
i−n+2. In the case of a de-

cision tree model, the same backoff function is typ-
ically used, but the clustering function can be arbi-
trary.

The intuition behind Eq. 6 is that the backoff con-
text BOn−1(w

i−1
1) allows for a more robust (but

less informed) probability estimation than the con-
text cluster Φn(wi−1

1). More precisely:

∀wi−1
1 ,W : W ∈ Φn(wi−1

1)⇒W ∈ BOn−1(w
i−1
1)

(7)
that is, every word sequence W that belongs to a
context cluster Φn(wi−1

1), belongs to the same back-
off cluster BOn−1(w

i−1
1) (hence has the same back-

off distribution). For n-gram models, Property 7

Φn

BOn−1 Contexts from the same Φ
n

belong to different BO
n-1

(a) Backoff Property satisfied (b) Backoff Property violated

context space context space

Figure 2: Backoff Property

trivially holds since BOn−1(w
i−1
1) and Φn(wi−1

1)
are defined as sets of sequences ending with wi−1

i−n+2

andwi−1
i−n+1, with the former clearly being a superset

of the latter. However, when Φ can be arbitrary, e.g.,
a decision tree, the property is not necessarily satis-
fied. Figure 2 illustrates cases when the Property 7
is satisfied (a) and violated (b).

Let us consider what happens when we have
two context sequences W and W ′ that belong to
the same cluster Φn(W) = Φn(W ′) but differ-
ent backoff clusters BOn−1(W) 6= BOn−1(W ′).
For example: suppose we have Φ(wi−2wi−1) =
({on}, {may,june}) and two corresponding backoff
clusters: BO′ = ({may}) and BO′′ = ({june}).
Following on, the word may is likely to be a month
rather than a modal verb, although the latter is
more frequent and will dominate in BO′. There-
fore we have much less faith in p̃(wi|BO′) than in
p̃(wi|BO′′) and would like a much smaller weight
γ assigned to BO′. However this would not be pos-
sible in the backoff scheme in Eq. 6, thus we will
have to settle on a compromise value of γ, resulting
in suboptimal performance.

Hence arbitrary clustering (an advantage of deci-
sion trees) leads to a violation of Property 7, which
is likely to produce a degradation in performance if
backoff interpolation Eq. 6 is used.

3.2 Generalized Interpolation

Recursive linear interpolation similar to Jelinek-
Mercer smoothing for n-gram models (Jelinek and
Mercer, 1980) has been applied to decision tree
models:

694

p̃n(wi|wi−1
i−n+1) = λn(φn) · pn(wi|φn) + (8)

(1− λn(φn)) · p̃n−1(wi|wi−1
i−n+2)

where φn ≡ Φn(wi−1
i−n+1), and λn(φn) ∈ [0, 1] are

assigned to each cluster and are optimized on a held-
out set using EM. pn(wi|φn) is the probability dis-
tribution at the cluster φn in the tree of order n. This
interpolation method is particularly useful as, un-
like count-based discounting methods (e.g., Kneser-
Ney), it can be applied to already smoothed distribu-
tions pn.

In (Filimonov and Harper, 2011), we observed
that because of the violation of Property 7 in deci-
sion tree models, the interpolation method of Eq. 8
is not appropriate for such models. Instead we pro-
posed the following generalized form of linear inter-
polation:

p̃n(wi|wi−1
i−n+1) =

∑n
m=1 λm(φm) · pm(wi|φm)∑n

m=1 λm(φm)
(9)

Note that the recursive interpolation of Eq. 8 can
be represented in this form with the additional con-
straint

∑n
m=1 λm(φm) = 1, which is not required in

the generalized interpolation of Eq. 9; thus, the gen-
eralized interpolation, albeit having the same num-
ber of parameters, has more degrees of freedom. We
also showed that the recursive interpolation Eq. 8 is
a special case of Eq. 9 that occurs when the Prop-
erty 7 holds.

4 From Backoff Trees to Forest

Note that, in Eq. 9, individual trees do not have ex-
plicit higher-lower order relations, they are treated
as a collection of trees, i.e., as a forest. Naturally,
to benefit from the forest model, its trees must differ
in some way. Different trees can be created based
on differences in the training data, differences in the
tree growing algorithm, or some non-determinism in
the way the trees are constructed.

(Xu, 2005) used randomization techniques to pro-
duce a large forest of decision trees that were com-
bined as follows:

p(wi|wi−1
i−n+1) =

1

M

M∑

m=1

pm(wi|wi−1
i−n+1) (10)

whereM is the number of decision trees in the forest
(he proposed M = 100) and pm is the m-th tree
model4. Note that this type of interpolation assumes
that each tree model is “equal” a priori and therefore
is only appropriate when the tree models are grown
in the same way (particularly, using the same order
of context). Note that Eq. 10 is a special case of
Eq. 9 when all parameters λ are equal.

(Xu, 2005) showed that, although each individual
tree is a fairly weak model, their combination out-
performs the n-gram baseline substantially. How-
ever, we find this approach impractical for online
application of any sizable model: In our experi-
ments, fourgram trees have approximately 1.8 mil-
lion leaves and the tree structure itself (without prob-
abilities) occupies nearly 200MB of disk space af-
ter compression. It would be infeasible to apply a
model consisting of more than a handful of such
trees without distributed computing of some sort.
Therefore, we pose the following question: If we
can afford to have only a handful of trees in the
model, what would be best approach to construct
those trees?

In the remainder of this section, we will describe
the experimental setup, discuss and evaluate differ-
ent ways of building decision tree forests for lan-
guage modeling, and compare combination methods
based on Eq. 9 and Eq. 10 (when Eq. 10 is applica-
ble).

4.1 Experimental Setup
To train our models we use 35M words of WSJ
94-96 from LDC2008T13. The text was converted
into speech-like form, namely numbers and abbrevi-
ations were verbalized, text was downcased, punctu-
ation was removed, and contractions and possessives
were joined with the previous word (i.e., they ’ll be-
comes they’ll). For the syntactic modeling, we used
tags comprised of the POS tags of the word and it’s
head. Parsing of the text for tag extraction occurred
after verbalization of numbers and abbreviations but

4Note that (Xu, 2005) used lower order models to estimate
pm.

695

before any further processing; we used a latent vari-
able PCFG parser as in (Huang and Harper, 2009).
For reference, we include an n-gram model with
modified interpolated KN discounting. All mod-
els use the same vocabulary of approximately 50k
words.

Perplexity numbers reported in Tables 1, 2, 3,
and 4 are computed on WSJ section 23 (tokenized
in the same way)5.

In Table 1, we show results reported in (Filimonov
and Harper, 2011), which we use as the baseline for
further experiments. We constructed two sets of de-
cision trees (a joint syntactic model and a word-tree
model) as described in Section 2. Each set was com-
prised of a fourgram tree with backoff trigram, bi-
gram, and unigram trees. We combined these trees
using either Eq. 8 or Eq. 9. The λ parameters in
Eq. 8 were estimated using EM by maximizing like-
lihood of a heldout set (we utilized 4-way cross-
validation); whereas, the parameters in Eq. 9 were
estimated using L-BFGS because the denominator
in Eq. 9 makes the maximization step problematic.

4.2 Random Forest

(Xu, 2005) evaluated a variety of randomization
techniques that can be used to build trees. He used
a word-only model, with questions constructed us-
ing the Exchange algorithm, similar to our model.
He tried two methods of randomization: selecting
the positions in the history for question construction
by a Bernoulli trials6, and random initialization of
the Exchange algorithm. He found that when the
Exchange algorithm was initialized randomly, the
Bernoulli trial parameter did not matter; however,
when the Exchange algorithm was initialized deter-
ministically; lower values for the Bernoulli trial pa-
rameter r yielded better overall forest performance.
We implemented a similar method, namely, initial-
izing the Exchange algorithm randomly and using
r = 0.1 for Bernoulli trials7.

There is a key difference between the two ran-

5This section was not used for training the parser or for the
LM training.

6In this method, positions in the history are ignored with
probability 1− r, where r is the Bernoulli trials parameter.

7Note that because in the joint model, the question about
tags are deterministic, we use a lower value of r than (Xu, 2005)
to increase randomness.

domization methods. Since we do not have an a
priori preference for choosing initializations for the
Exchange algorithm, by using random initializations
it is hoped that due to the greedy nature of the al-
gorithm, the constructed trees, while being “unde-
graded,”8 will be sufficiently different so that their
combination improves over an individual tree. By
introducing Bernoulli trials, on the other hand, there
is a choice to purposely degrade the quality of in-
dividual trees in the hope that additional diversity
would enable their combination to compensate for
the loss of quality in individual trees.

Another way of introducing randomness to the
tree construction without apparent degradation of in-
dividual tree quality is through varying the data, e.g.,
using different folds of the training data (see Sec-
tion 2.1).

Let us take a closer look at the effect of differ-
ent types of randomization on individual trees and
their combinations. In the first set of experiments,
we compare the performance of a single undegraded
fourgram tree9 with forests of fourgram trees grown
randomly with Bernoulli trials. Having only same-
order trees in a forest allows us to apply interpola-
tion of Eq. 10 (used in (Xu, 2005)) and compare
with the interpolation method presented in Eq. 9. By
comparing forests of different sizes with the baseline
from Table 1, we are able to evaluate the effect of
randomization in decision tree growing and assess
the importance of the lower order trees.

The results are shown in Table 2. Note that, while
an undegraded syntactic tree is better than the word
tree, the situation is reversed when the trees are
grown randomly. This can be explained by the fact
that the joint model has a much higher dimensional-
ity of the context space, and therefore is much more
sensitive to the clustering method.

As we increase the number of random trees in the
forest, the perplexity decreases as expected, with the
interpolation method of Eq. 9 showing improvement
of a few percentile points over Eq. 10. Note that
in the case of the word-tree model, it takes 4 ran-
dom decision trees to reach the performance of a sin-
gle undegraded tree, while in the joint model, even

8Here and henceforth, by “undegraded” we mean “accord-
ing to the algorithm described in Section 2.”

9Since each tree has a smooth distribution based on Eq. 5,
lower order trees are not strictly required.

696

Eq. 8 Eq. 9 (generalized)
order n-gram word-tree syntactic word-tree syntactic

2-gram 261.0 257.8 214.3 258.1 214.6
3-gram 174.3 (33.2%) 168.7 (34.6%) 156.8 (26.8%) 168.4 (34.8%) 155.3 (27.6%)
4-gram 161.7 (7.2%) 164.0 (2.8%) 156.5 (0.2%) 155.7 (7.5%) 147.1 (5.3%)

Table 1: Perplexity results on PTB WSJ section 23. Percentage numbers in parentheses denote the reduction of
perplexity relative to the lower order model of the same type.

word-tree syntactic
Eq. 10 Eq. 9 Eq. 10 Eq. 9

1 × undgr 204.9 189.1
1 × rnd 250.2 289.9
2 × rnd 229.5 221.5 244.6 240.9
3 × rnd 227.5 214.5 226.2 220.0
4 × rnd 219.5 205.0 219.5 212.2
5 × rnd 200.9 184.1 216.5 209.0
baseline N/A 155.7 N/A 147.1

Table 2: Perplexity numbers obtained using fourgram
trees only. Note that “undgr” and “rnd” denote unde-
graded and randomly grown trees with Bernoulli trials,
respectively, and the number indicates the number of
trees in the forest. Also “baseline” refers to the fourgram
models with lower order trees (from Table 1, Eq. 9).

5 trees are much worse than a single decision tree
constructed without randomization. Finally, com-
pare the performance of single undegraded fourgram
trees in Table 2 with fourgram models in Table 1,
which are constructed with lower order trees: both
word-tree and joint models in Table 1 have over
20% lower perplexity compared to the correspond-
ing models consisting of a single fourgram tree.

In Table 3, we evaluate forests of fourgram trees
produced using randomizations without degrading
the tree construction algorithm. That is, we use ran-
dom initializations of the Exchange algorithm and,
additionally, variations in the training data fold. All
forests in this table use the interpolation method
of Eq. 9. Note that, while these perplexity num-
bers are substantially better than trees produced with
Bernoulli trials in Table 2, they are still significantly
worse than the baseline model from Table 1.

These results suggest that, while it is beneficial
to combine different decision trees, we should in-
troduce differences to the tree construction process

word-tree syntactic
trees Exchng. +data Exchng. +data

1 204.9 189.1
2 185.9 186.5 174.5 173.7
3 179.5 179.9 168.8 167.2
4 176.2 176.4 165.1 164.0
5 173.7 172.0 163.0 162.0

baseline 155.7 147.1

Table 3: Perplexity numbers obtained using fourgram
trees produced using random initialization of the Ex-
change algorithm (Exchng. columns) and, additionally,
variations in training data folds (+data columns). Note
that “baseline” refers to the fourgram models with lower
order trees (from Table 1). All models use the interpola-
tion method of Eq. 9.

without degrading the trees when introducing ran-
domness, especially for joint models. In addition,
lower order trees seem to play an important role for
high quality model combination.

4.3 Context-Restricted Forest

As we have mentioned above, combining higher and
lower order decision trees produces much better re-
sults. A lower order decision tree is grown from
a lower order context space, i.e., the context space
where we purposely ignore some attributes. Note
that in this case, rather than randomly ignoring con-
texts via Bernoulli trials at every node in the decision
tree, we discard some context attributes upfront in
a principled manner (i.e., most distant context) and
then grow the decision tree without degradation.

Since the joint model, having more context at-
tributes, affords a larger variety of different contexts,
we use this model in the remaining experiments.

In Table 4, we present the perplexity numbers for
our standard model with additional trees. We de-
note context-restricted trees by their Markovian or-

697

Model size PPL
1w1t + 2w2t + 3w3t + 4w4t (*) 294MB 147.1
(*) + 4w3t + 3w2t 579MB 143.5
(*) + 4w3t + 3w4t 587MB 144.9
(*) + 4w3t + 3w4t + 3w2t + 2w3t 699MB 140.7
(*) + 1 × bernoulli-rnd 464MB 149.7
(*) + 2 × bernoulli-rnd 632MB 150.4
(*) + 3 × bernoulli-rnd 804MB 151.1
(*) + 1 × data-rnd 484MB 147.0
(*) + 2 × data-rnd 673MB 145.0
(*) + 3 × data-rnd 864MB 145.2

Table 4: Perplexity results using the standard syntactic
model with additional trees. “bernoulli-rnd” and “data-
rnd” indicate fourgram trees randomized using Bernoulli
trials and varying training data, respectively. The second
column shows the combined size of decision trees in the
forest.

ders (words w and tags t independently), so 3w2t
indicates a decision tree implementing the probabil-
ity function: p(witi|wi−1wi−2ti−1). The fourgram
joint model presented in Table 1 has four trees and
is labeled with the formula “1w1t + 2w2t + 3w3t +
4w4t” in Table 4. The randomly grown trees (de-
noted “bernoulli-rnd”) are grown utilizing the full
context 4w4t using the methods described in Sec-
tion 4.2. All models utilize the generalized interpo-
lation method described in Section 3.2.

As can be seen in Table 4, adding undegraded
trees consistently improves the performance of an
already strong baseline, while adding random trees
only increases the perplexity because their quality
is worse than undegraded trees’. Trees produced
by data randomization (denoted “data-rnd”) also im-
prove the performance of the model; however, the
improvement is not greater than that of additional
lower order trees, which are considerably smaller in
size.

5 ASR Rescoring Results

In order to verify that the improvements in perplex-
ity that we observe in Tables 1 and 4 are sufficient
for an impact on a task, we measure Word Error
Rate (WER) of our models on an Automatic Speech
Recognition (ASR) rescoring task using the Wall
Street Journal corpus (WSJ) for evaluation. The test
set consists of 4,088 utterances of WSJ0. We opti-

Model PPL WER
n-gram 161.7 7.81%
1w1t + 2w2t + 3w3t + 4w4t (Eq.8) 156.5 7.57%
1w1t + 2w2t + 3w3t + 4w4t (*) 147.1 7.32%
(*) + 4w3t + 3w4t + 3w2t + 2w3t 140.7 7.20%

Table 5: Perplexity and WER results. Note that the last
two rows are syntactic models using the interpolation
method of Eq. 9.

mized the weights for the combination of acoustic
and language model scores on a separate develop-
ment set comprised of 1,243 utterances from Hub2
5k closed vocabulary and the WSJ1 5k open vocab-
ulary sets.

The ASR system used to produce lattices is based
on the 2007 IBM Speech transcription system for the
GALE Distillation Go/No-go Evaluation (Chen et
al., 2006). The acoustic models are state-of-the-art
discriminatively trained models which are trained on
Broadcast News (BN) Hub4 acoustic training data.
Lattices were produced using a trigram LM trained
on the same data as the models we evaluate, then
1,000 best unique hypotheses were extracted from
the lattices. WER of the 1-best hypothesis on the
test set is 8.07% and the oracle WER is 3.54%.

In Table 5, we present WER results along with
the corresponding perplexity numbers from Ta-
bles 1 and 4 for our lowest perplexity syntactic
model, as well as the baselines (modified KN n-gram
model and standard decision tree models using in-
terpolation methods of Eq. 8 and Eq. 9). The in-
terpolation method of Eq. 9 substantially improves
performance over the interpolation method of Eq. 8,
reducing WER by 0.25% absolute (p < 10−5).
Adding four trees utilizing context restricted in dif-
ferent ways further reduces WER by 0.12%, which
is also a statistically significant (p < 0.025) im-
provement over the baseline models labeled (*). Al-
together, the improvements over the n-gram baseline
add up to 0.61% absolute (8% relative) WER reduc-
tion.

6 Conclusion

In this paper, we investigate various aspects of com-
bining multiple decision trees in a single language
model. We observe that the generalized interpola-

698

tion (Eq. 9) for decision tree models proposed in
(Filimonov and Harper, 2011) is in fact a forest in-
terpolation method rather than a backoff interpola-
tion because, in Eq. 9, models do not have explicit
higher-lower order relation as they do in backoff in-
terpolation (Eq. 6). Thus, in this paper we investi-
gate the question of how to construct decision trees
so that their combination results in improved per-
formance (under the assumption that computational
tractability allows only a handful of decision trees
in a forest). We compare various techniques for
producing forests of trees and observe that methods
that diversify trees by introducing random degrada-
tion of the tree construction algorithm perform more
poorly (especially with joint models) than methods
in which the trees are constructed without degrada-
tion and with variability being introduced via param-
eters that are inherently arbitrary (e.g., training data
fold differences or initializations of greedy search
algorithms). Additionally, we observe that simply
restricting the context used to construct trees in dif-
ferent ways, not only produces smaller trees (be-
cause of the context reduction), but the resulting
variations in trees also produce forests that are at
least as good as forests of larger trees.

7 Acknowledgments

We would like to thank Ariya Rastrow for providing
word lattices for the ASR rescoring experiments.

References
Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and

Robert L. Mercer. 1990. A tree-based statistical lan-
guage model for natural language speech recognition.
Readings in speech recognition, pages 507–514.

Srinivas Bangalore. 1996. ‘Almost parsing’ technique
for language modeling. In Proceedings of the Inter-
national Conference on Spoken Language Processing,
volume 2, pages 1173–1176.

Jeff Bilmes and Katrin Kirchhoff. 2003. Factored lan-
guage models and generalized parallel backoff. In
Proceedings of HLT/NAACL, pages 4–6.

Ciprian Chelba and Frederick Jelinek. 2000. Structured
language modeling for speech recognition. CoRR.

Stanley F. Chen and Joshua Goodman. 1996. An empiri-
cal study of smoothing techniques for language model-
ing. In Proceedings of the 34th annual meeting on As-
sociation for Computational Linguistics, pages 310–
318.

S. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
H. Soltau, and G. Zweig. 2006. Advances in speech
transcription at IBM under the DARPA EARS pro-
gram. IEEE Transactions on Audio, Speech and Lan-
guage Processing, pages 1596–1608.

Denis Filimonov and Mary Harper. 2009. A joint lan-
guage model with fine-grain syntactic tags. In Pro-
ceedings of the EMNLP 2009.

Denis Filimonov and Mary Harper. 2011. Generalized
interpolation in decision tree LM. In Proceedings of
the 49st Annual Meeting of the Association for Com-
putational Linguistics.

Peter Heeman. 1998. POS tagging versus classes in lan-
guage modeling. In Sixth Workshop on Very Large
Corpora.

Zhongqiang Huang and Mary Harper. 2009. Self-
Training PCFG grammars with latent annotations
across languages. In Proceedings of the EMNLP 2009.

Frederick Jelinek and Robert L. Mercer. 1980. Inter-
polated estimation of markov source parameters from
sparse data. In Proceedings of the Workshop on Pat-
tern Recognition in Practice, pages 381–397.

Sven Martin, Jorg Liermann, and Hermann Ney. 1998.
Algorithms for bigram and trigram word clustering. In
Speech Communication, pages 1253–1256.

J. R. Quinlan. 1986. Induction of decision trees. Ma-
chine Learning, 1(1):81–106.

Ronald Rosenfeld, Jaime Carbonell, and Alexander Rud-
nicky. 1994. Adaptive statistical language modeling:
A maximum entropy approach. Technical report.

Peng Xu. 2005. Random Forests and Data Sparseness
Problem in Language Modeling. Ph.D. thesis, Balti-
more, Maryland, April.

Imed Zitouni. 2007. Backoff hierarchical class n-
gram language models: effectiveness to model unseen
events in speech recognition. Computer Speech &
Language, 21(1):88–104.

699

