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Abstract

We propose a sentence generation strategy
that describes images by predicting the most
likely nouns, verbs, scenes and prepositions
that make up the core sentence structure. The
input are initial noisy estimates of the objects
and scenes detected in the image using state of
the art trained detectors. As predicting actions
from still images directly is unreliable, we use
a language model trained from the English Gi-
gaword corpus to obtain their estimates; to-
gether with probabilities of co-located nouns,
scenes and prepositions. We use these esti-
mates as parameters on a HMM that models
the sentence generation process, with hidden
nodes as sentence components and image de-
tections as the emissions. Experimental re-
sults show that our strategy of combining vi-
sion and language produces readable and de-
scriptive sentences compared to naive strate-
gies that use vision alone.

1 Introduction

What happens when you see a picture? The most
natural thing would be to describe it using words:
using speech or text. This description of an image is
the output of an extremely complex process that in-
volves: 1) perception in the Visual space, 2) ground-
ing to World Knowledge in the Language Space and
3) speech/text production (see Fig. 1). Each of these
components are challenging in their own right and
are still considered open problems in the vision and
linguistics fields. In this paper, we introduce a com-
putational framework that attempts to integrate these
†indicates equal contribution.

Figure 1: The processes involved for describing a scene.

components together. Our hypothesis is based on
the assumption that natural images accurately reflect
common everyday scenarios which are captured in
language. For example, knowing that boats usually
occur over water will enable us to constrain the
possible scenes a boat can occur and exclude highly
unlikely ones – street, highway. It also en-
ables us to predict likely actions (Verbs) given the
current object detections in the image: detecting a
dog with a person will likely induce walk rather
than swim, jump, fly. Key to our approach is
the use of a large generic corpus such as the English
Gigaword [Graff, 2003] as the semantic grounding
to predict and correct the initial and often noisy vi-
sual detections of an image to produce a reasonable
sentence that succinctly describes the image.

In order to get an idea of the difficulty of this
task, it is important to first define what makes up
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Figure 2: Illustration of various perceptual challenges for
sentence generation for images. (a) Different images with
semantically the same content. (b) Pose relates ambigu-
ously to actions in real images. See text for details.

a description of an image. Based on our observa-
tions of annotated image data (see Fig. 4), a de-
scriptive sentence for an image must contain at min-
imum: 1) the important objects (Nouns) that partic-
ipate in the image, 2) Some description of the ac-
tions (Verbs) associated with these objects, 3) the
scene where this image was taken and 4) the prepo-
sition that relates the objects to the scene. That is, a
quadruplet of T = {n, v, s, p} (Noun-Verb-Scene-
Preposition) that represents the core sentence struc-
ture. Generating a sentence from this quadruplet is
obviously a simplification from state of the art gen-
eration work, but as we will show in the experimen-
tal results (sec. 4), it is sufficient to describe im-
ages. The key challenge is that detecting objects, ac-
tions and scenes directly from images is often noisy
and unreliable. We illustrate this using example im-
ages from the Pascal-Visual Object Classes (VOC)
2008 challenge [Everingham et al., 2008]. First,
Fig. 2(a) shows the variability of images in their raw
image representations: pixels, edges and local fea-
tures. This makes it difficult for state of the art ob-
ject detectors [Felzenszwalb et al., 2010; Schwartz
et al., 2009] to reliably detect important objects in
the scene: boat, humans and water – average preci-
sion scores reported in [Felzenszwalb et al., 2010]
manages around 42% for humans and only 11% for
boat over a dataset of almost 5000 images in 20 ob-
ject categories. Yet, these images are semantically
similar in terms of their high level description. Sec-
ond, cognitive studies [Urgesi et al., 2006; Kourtzi,
2004] have proposed that inferring the action from
static images (known as an “implied action”) is of-

ten achieved by detecting the pose of humans in the
image: the position of the limbs with respect to one
another, under the assumption that a unique pose oc-
curs for a unique action. Clearly, this assumption
is weak as 1) similar actions may be represented by
different poses due to the inherent dynamic nature of
the action itself: e.g. walking a dog and 2) different
actions may have the same pose: e.g. walking a dog
versus running (Fig. 2(b)). The missing component
here is whether the key object (dog) under interac-
tion is considered. Recent works [Yao and Fei-Fei,
2010; Yang et al., 2010] that used poses for recog-
nition of actions achieved 70% and 61% accuracy
respectively under extremely limited testing condi-
tions with only 5-6 action classes each. Finally, state
of the art scene detectors [Oliva and Torralba, 2001;
Torralba et al., 2003] need to have enough represen-
tative training examples of scenes from pre-defined
scene classes for a classification to be successful –
with a reported average precision of 83.7% tested
over a dataset of 2600 images.

Addressing all these visual challenges is clearly
a formidable task which is beyond the scope of this
paper. Our focus instead is to show that with the
addition of language to ground the noisy initial vi-
sual detections, we are able to improve the qual-
ity of the generated sentence as a faithful descrip-
tion of the image. In particular, we show that it
is possible to avoid predicting actions directly from
images – which is still unreliable – and to use the
corpus instead to guide our predictions. Our pro-
posed strategy is also generic, that is, we make no
prior assumptions on the image domain considered.
While other works (sec. 2) depend on strong anno-
tations between images and text to ground their pre-
dictions (and to remove wrong sentences), we show
that a large generic corpus is also able to provide
the same grounding over larger domains of images.
It represents a relatively new style of learning: dis-
tant supervision [Liang et al., 2009; Mann and Mc-
callum, 2007]. Here, we do not require “labeled”
data containing images and captions but only sep-
arate data from each side. Another contribution is
a computationally feasible way via dynamic pro-
gramming to determine the most likely quadruplet
T ∗ = {n∗, v∗, s∗, p∗} that describes the image for
generating possible sentences.
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2 Related Work

Recently, several works from the Computer Vision
domain have attempted to use language to aid im-
age scene understanding. [Kojima et al., 2000] used
predefined production rules to describe actions in
videos. [Berg et al., 2004] processed news captions
to discover names associated with faces in the im-
ages, and [Jie et al., 2009] extended this work to as-
sociate poses detected from images with the verbs
in the captions. Both approaches use annotated ex-
amples from a limited news caption corpus to learn
a joint image-text model so that one can annotate
new unknown images with textual information eas-
ily. Neither of these works have been tested on com-
plex everyday images where the large variations of
objects and poses makes it nearly impossible to learn
a more general model. In addition, no attempt was
made to generate a descriptive sentence from the
learned model. The work of [Farhadi et al., 2010] at-
tempts to “generate” sentences by first learning from
a set of human annotated examples, and produc-
ing the same sentence if both images and sentence
share common properties in terms of their triplets:
(Nouns-Verbs-Scenes). No attempt was made to
generate novel sentences from images beyond what
has been annotated by humans. [Yao et al., 2010]
has recently introduced a framework for parsing im-
ages/videos to textual description that requires sig-
nificant annotated data, a requirement that our pro-
posed approach avoids.

Natural language generation (NLG) is a long-
standing problem. Classic approaches [Traum et al.,
2003] are based on three steps: selection, planning
and realization. A common challenge in generation
problems is the question of: what is the input? Re-
cently, approaches for generation have focused on
formal specification inputs, such as the output of the-
orem provers [McKeown, 2009] or databases [Gol-
land et al., 2010]. Most of the effort in those ap-
proaches has focused on selection and realization.
We address a tangential problem that has not re-
ceived much attention in the generation literature:
how to deal with noisy inputs. In our case, the inputs
themselves are often uncertain (due to misrecogni-
tions by object/scene detectors) and the content se-
lection and realization needs to take this uncertainty
into account.

3 Our Approach

Our approach is summarized in Fig. 3. The input is a
test image where we detect objects and scenes using
trained detection algorithms [Felzenszwalb et al.,
2010; Torralba et al., 2003]. To keep the framework
computationally tractable, we limit the elements of
the quadruplet (Nouns-Verbs-Scenes-Prepositions)
to come from a finite set of objects N , actions V ,
scenes S and prepositions P classes that are com-
monly encountered. They are summarized in Ta-
ble. 1. In addition, the sentence that is generated
for each image is limited to at most two objects oc-
curring in a unique scene.

Figure 3: Overview of our approach. (a) Detect objects
and scenes from input image. (b) Estimate optimal sen-
tence structure quadruplet T ∗. (c) Generating a sentence
from T ∗.

Denoting the current test image as I , the initial
visual processing first detects objects n ∈ N and
scenes s ∈ S using these detectors to compute
Pr(n|I) and Pr(s|I), the probabilities that object
n and scene s exist under I . From the observation
that an action can often be predicted by its key ob-
jects, Nk = {n1, n2, · · · , ni}, ni ∈ N that partici-
pate in the action, we use a trained Language model
Lm to estimate Pr(v|Nk). Lm is also used to com-
pute Pr(s|n, v), the predicted scene using the cor-
pus given the object and verb; and Pr(p|s), the pre-
dicted preposition given the scene. This process is
repeated over all n, v, s, p where we used a modi-
fied HMM inference scheme to determine the most
likely quadruplet: T ∗ = {n∗, v∗, s∗, p∗} that makes
up the core sentence structure. Using the contents
and structure of T ∗, an appropriate sentence is then
generated that describes the image. In the following
sections, we first introduce the image dataset used
for testing followed by details of how these compo-
nents are derived.
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Objects n ∈ N Actions v ∈ V Scenes s ∈ S Preps p ∈ P
’aeroplane’ ’bicycle’ ’bird’
’boat’ ’bottle’ ’bus’ ’car’
’cat’ ’chair’ ’cow’ ’table’
’dog’ ’horse’, ’motorbike’
’person’ ’pottedplant’
’sheep’ ’sofa’ ’train’
’tvmonitor’

’sit’ ’stand’ ’park’
’ride’ ’hold’ ’wear’
’pose’ ’fly’ ’lie’ ’lay’
’smile’ ’live’ ’walk’
’graze’ ’drive’ ’play’
’eat’ ’cover’ ’train’
’close’ ...

’airport’
’field’
’highway’
’lake’ ’room’
’sky’ ’street’
’track’

’in’ ’at’ ’above’
’around’ ’behind’
’below’ ’beside’
’between’
’before’ ’to’
’under’ ’on’

Table 1: The set of objects, actions (first 20), scenes and preposition classes considered

Figure 4: Samples of images with corresponding annota-
tions from the UIUC scene description dataset.

3.1 Image Dataset
We use the UIUC Pascal Sentence dataset, first in-
troduced in [Farhadi et al., 2010] and available on-
line1. It contains 1000 images taken from a sub-
set of the Pascal-VOC 2008 challenge image dataset
and are hand annotated with sentences that describe
the image by paid human annotators using Ama-
zon Mechanical Turk. Fig. 4 shows some sample
images with their annotations. There are 5 anno-
tations per image, and each annotation is usually
short – around 10 words long. We randomly selected
900 images (4500 sentences) as the learning corpus
to construct the verb and scene sets, {V,S} as de-
scribed in sec. 3.3, and kept the remaining 100 im-
ages for testing and evaluation.

3.2 Object and Scene Detections from Images
We use the Pascal-VOC 2008 trained object detec-
tors [Felzenszwalb et al., 2008] of 20 common ev-
eryday object classes that are defined in N . Each of
the detectors are essentially SVM classifiers trained
on a large number of the objects’ image represen-
tations from a large variety of sources. Although
20 classes may seem small, their existence in many

1http://vision.cs.uiuc.edu/pascal-sentences/

(a) (b)

Figure 5: (a) [Top] The part based object detector from
[Felzenszwalb et al., 2010]. [Bottom] The graphical
model representation of an object, for e.g. a bike. (b)
Examples of GIST gradients: (left) an outdoor scene vs
(right) an indoor scene [Torralba et al., 2003].

natural images (e.g. humans, cars and plants) makes
them particularly important for our task, since hu-
mans tend to describe these common objects as well.
As object representations, the part-based descriptor
of [Felzenszwalb et al., 2010] is used. This repre-
sentation decomposes any object, e.g. a cow, into
its constituent parts: head, torso, legs, which are
shared by other objects in a hierarchical manner.
At each level, image gradient orientations are com-
puted. The relationship between each parts is mod-
eled probabilistically using graphical models where
parts are the nodes and the edges are the conditional
probabilities that relate their spatial compatibility
(Fig. 5(a)). For example, in a cow, the probability
of finding the torso near the head is higher than find-
ing the legs near the head. This model’s intuition lies
in the assumption that objects can be deformed but
the relative position of each constituent parts should
remain the same. We convert the object detec-
tion scores to probabilities using Platt’s method [Lin
et al., 2007] which is numerically more stable to ob-
tain Pr(n|I). The parameters of Platt’s method are
obtained by estimating the number of positives and
negatives from the UIUC annotated dataset, from
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which we determine the appropriate probabilistic
threshold, which gives us approximately 50% recall
and precision.

For detecting scenes defined in S , we use the
GIST-based scene descriptor of [Torralba et al.,
2003]. GIST computes the windowed 2D Gabor fil-
ter responses of an input image. The responses of
Gabor filters (4 scales and 6 orientations) encode the
texture gradients that describe the local properties
of the image. Averaging out these responses over
larger spatial regions gives us a set of global im-
age properties. These high dimensional responses
are then reprojected to a low dimensional space via
PCA, where the number of principal components are
obtained empirically from training scenes. This rep-
resentation forms the GIST descriptor of an image
(Fig. 5(b)) which is used to train a set of SVM clas-
sifiers for each scene class in S. Again, Pr(s|I) is
computed from the SVM scores using [Lin et al.,
2007]. The set of common scenes defined in S is
learned from the UIUC annotated data (sec. 3.3).

3.3 Corpus-Guided Predictions

Figure 6: (a) Selecting the ROOT verb from the depen-
dency parse ride reveals its subject woman and direct
object bicycle. (b) Selecting the head noun (PMOD)
as the scene street reveals ADV as the preposition on

Predicting Verbs: The key component of our ap-
proach is the trained language model Lm that pre-
dicts the most likely verb v, associated with the ob-
jects Nk detected in the image. Since it is possi-
ble that different verbs may be associated with vary-
ing number of object arguments, we limit ourselves
to verbs that take on at most two objects (or more
specifically two noun phrase arguments) as a sim-
plifying assumption: Nk = {n1, n2} where n2 can
be NULL. That is, n1 and n2 are the subject and
direct objects associated with v ∈ V . Using this as-
sumption, we can construct the set of verbs, V . To
do this, we use human labeled descriptions of the
training images from the UIUC Pascal-VOC dataset

(sec. 3.1) as a learning corpus that allows us to deter-
mine the appropriate target verb set that is amenable
to our problem. We first apply the CLEAR parser
[Choi and Palmer, 2010] to obtain a dependency
parse of these annotations, which also performs
stemming of all the verbs and nouns in the sentence.
Next, we process all the parses to select verbs which
are marked as ROOT and check the existence of a
subject (DEP) and direct object (PMOD, OBJ) that
are linked to the ROOT verb (see Fig. 6(a)). Finally,
after removing common “stop” verbs such as {is,
are, be} we rank these verbs in terms of their oc-
currences and select the top 50 verbs which accounts
for 87.5% of the sentences in the UIUC dataset to be
in V .

Object class n ∈ N Synonyms, 〈n〉
bus autobus charabanc

double-decker jitney
motorbus motorcoach omnibus
passenger-vehicle schoolbus
trolleybus streetcar ...

chair highchair chaise daybed
throne rocker armchair
wheelchair seat ladder-back
lawn-chair fauteuil ...

bicycle bike wheel cycle velocipede
tandem mountain-bike ...

Table 2: Samples of synonyms for 3 object classes.

Next, we need to explain how n1 and n2 are
selected from the 20 object classes defined previ-
ously in N . Just as the 20 object classes are de-
fined visually over several different kinds of spe-
cific objects, we expand n1 and n2 in their tex-
tual descriptions using synonyms. For example,
the object class n1=aeroplane should include
the synonyms {plane, jet, fighter jet,
aircraft}, denoted as 〈n1〉. To do this, we ex-
pand each object class using their corresponding
WordNet synsets up to at most three hyponymns lev-
els. Example synonyms for some of the classes are
summarized in Table 2.

We can now compute from the Gigaword cor-
pus [Graff, 2003] the probability that a verb ex-
ists given the detected nouns, Pr(v|n1, n2). We do
this by computing the log-likelihood ratio [Dunning,
1993] , λnvn, of trigrams (〈n1〉 , v, 〈n2〉), computed
from each sentence in the English Gigaword corpus
[Graff, 2003]. This is done by extracting only the
words in the corpus that are defined inN and V (in-
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cluding their synonyms). This forms a reduced cor-
pus sequence from which we obtain our target tri-
grams. For example, the sentence:

the large brown dog chases a small young cat

around the messy room, forcing the cat to run

away towards its owner.

will be reduced to the stemmed sequence dog

chase cat cat run owner2 from which we ob-
tain the target trigram relationships: {dog chase
cat}, {cat run owner} as these trigrams re-
spect the (n1, v, n2) ordering. The log-likelihood ra-
tios, λnvn, computed for all possible (〈n1〉 , v, 〈n2〉)
are then normalized to obtain Pr(v|n1, n2). An ex-
ample of ranked λnvn in Fig. 7(a) shows that λnvn
predicts v that makes sense: with the most likely
predictions near the top of the list.

Predicting Scenes: Just as an action is strongly
related to the objects that participate in it, a
scene can be predicted from the objects and verbs
that occur in the image. For example, detect-
ing Nk={boat, person} with v={row} would
have predicted the scene s={coast}, since boats
usually occur in water regions. To learn this rela-
tionship from the corpus, we use the UIUC dataset
to discover what are the common scenes that should
be included in S. We applied the CLEAR depen-
dency parse [Choi and Palmer, 2010] on the UIUC
data and extracted all the head nouns (PMOD) in
the PP phrases for this purpose and excluded those
nouns with prepositions (marked as ADV) such as
{with, of} which do not co-occur with scenes in
general (see Fig. 6(b)). We then ranked the remain-
ing scenes in terms of their frequency to select the
top 8 scenes used in S.

To improve recall and generalization, we expand
each of the 8 scene classes using their WordNet
synsets 〈s〉 (up to a max of three hyponymns levels).
Similar to the procedure of predicting the verbs de-
scribed above, we compute the log-likelihood ratio
of ordered bigrams, {n, 〈s〉} and {v, 〈s〉}: λns and
λvs, by reducing the corpus sentence to the target
nouns, verbs and scenes defined inN ,V and S. The
probabilities Pr(s|n) and Pr(v|n) are then obtained
by normalizing λns and λvs. Under the assumption
that the priors Pr(n) and Pr(v) are independent and
applying Bayes rule, we can compute the probabil-

2stemming is done using [Choi and Palmer, 2010]

ity that a scene co-occurs with the object and action,
Pr(s|n, v) by:

Pr(s|n, v) =
Pr(n, v|s)Pr(s)

Pr(n, v)

=
Pr(n|s)Pr(v|s)Pr(s)

Pr(n)Pr(v)

∝ Pr(s|n)× Pr(s|v) (1)

where the constant of proportionality is justified un-
der the assumption that Pr(s) is equiprobable for all
s. (1) is computed for all nouns in Nk. As shown
in Fig. 7(b), we are able to predict scenes that co-
locate with reasonable correctness given the nouns
and verbs.

Predicting Prepositions: It is straightforward to
predict the appropriate prepositions associated with
a given scene. When we construct S from the UIUC
annotated data, we simply collect and rank all the as-
sociated prepositions (ADV) in the PP phrase of the
dependency parses. We then select the top 12 prepo-
sitions used to define P . Using P , we then compute
the log-likelihood ratio of ordered bigrams, {p, 〈s〉}
for prepositions that co-locate with the scene syn-
onyms over the corpus. Normalizing λps yields
Pr(p|s), the probability that a preposition co-locates
with a scene. Examples of ranked λps are shown in
Fig. 7(c). Again, we see that reasonable predictions
of p can be found.

Figure 7: Example of how ranked log-likelihood values
(in descending order) suggest a possible T : (a) λnvn for
n1 = person, n2 = bus predicts v = ride. (b) λns
and λvs for n = bus, v = ride then jointly predicts
s = street and finally (c) λps with s = street pre-
dicts p = on.

3.4 Determining T ∗ using HMM inference
Given the computed conditional probabilities:
Pr(n|I) and Pr(s|I) which are observations
from an input test image with the param-
eters of the trained language model, Lm:
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Pr(v|n1, n2), Pr(s|n, v), Pr(p|s), we seek to
find the most likely sentence structure T ∗ by:

T ∗ = argmax
n,v,s,p

Pr(T |n, v, s, p)

= argmax
n,v,s,p

{Pr(n1|I)Pr(n2|I)Pr(s|I)×

Pr(v|n1, n2)Pr(s|n, v)Pr(p|s)} (2)

where the last equality holds by assuming indepen-
dence between the visual detections and corpus pre-
dictions. Obviously a brute force approach to try all
possible combinations to maximize eq. (2) will not
be feasible due to the large number of possible com-
binations: (20∗21∗8)∗(50∗20∗20)∗(8∗20∗50)∗
(12 ∗ 8) ≈ 5× 1013. A better solution is needed.

Figure 8: The HMM used for optimizing T . The relevant
transition and emission probabilities are also shown. See
text for more details.

Our proposed strategy is to pose the optimiza-
tion of T as a dynamic programming problem, akin
to a Hidden Markov Model (HMM) where the hid-
den states are related to the (simplified) sentence
structure we seek: T = {n1, n2, s, v, p}, and the
emissions are related to the observed detections:
{n1, n2, s} in the image if they exist. To sim-
plify our notations, as we are concerned with ob-
ject pairs we will write NN as the hidden states for
all n1, n2 pairs and nn as the corresponding emis-
sions (detections); and all object+verb pairs as hid-
den states NV. The hidden states are therefore de-
noted as: {NN,NV,S,P} with values taken from
their respective word classes from Table 1. The

emission states are {nn,s} with binary values: 1
if the detections occur or 0 otherwise. The full
HMM is summarized in Fig. 8. The rationale for
using a HMM is that we can reuse all previous com-
putation of the probabilities at each level to com-
pute the required probabilities at the current level.
From START, we assume all object pair detections
are equiprobable: Pr(NN|START) = 1

|N |∗(|N |+1)
where we have added an additional NULL value for
objects (at most 1). At each NN, the HMM emits
a detection from the image and by independence
we have: Pr(nn|NN) = Pr(n1|I)Pr(n2|I). Af-
ter NN, the HMM transits to the corresponding verb
at state NV with Pr(NV|NN) = Pr(v|n1, n2) ob-
tained from the corpus statistic3. As no action detec-
tions are performed on the image, NV has no emis-
sions. The HMM then transits from NV to S with
Pr(S|NV) = Pr(s|n, v) computed from the corpus
which emits the scene detection score from the im-
age: Pr(s|S) = Pr(s|I). From S, the HMM transits
to P with Pr(P|S) = Pr(p|s) before reaching the
END state.

Comparing the HMM with eq. (2), one can see
that all the corpus and detection probabilities are
accounted for in the transition and emission prob-
abilities respectively. Optimizing T is then equiv-
alent to finding the best (most likely) path through
the HMM given the image observations using the
Viterbi algorithm which can be done in O(105) time
which is significantly faster than the naive approach.
We show in Fig. 9 (right-upper) examples of the top
viterbi paths that produce T ∗ for four test images.

Note that the proposed HMM is suitable for gen-
erating sentences that contain the core components
defined in T which produces a sentence of the form
NP-VP-PP, which we will show in sec. 4 is suf-
ficient for the task of generating sentences for de-
scribing images. For more complex sentences with
more components: such as adjectives or adverbs, the
HMM can be easily extended with similar computa-
tions derived from the corpus.

3.5 Sentence Generation

Given the selected sentence structure T =
{n1, n2, v, s, p}, we generate sentences using the

3each verb, v, in NV will have 2 entries with the same value,
one for each noun.
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Figure 9: Four test images (left) and results. (Right-
upper): Sentence structure T ∗ predicted using Viterbi
and (Right-lower): Generated sentences. Words marked
in red are considered to be incorrect predictions. Com-
plete results are available at http://www.umiacs.umd.

edu/˜yzyang/sentence_generateOut.html.

following strategy for each component:
1) We add in appropriate determiners and cardi-

nals: the, an, a, CARD, based on the content
of n1,n2 and s. For e.g., if n1 = n2, we will use
CARD=two, and modify the nouns to be in the plu-
ral form. When several possible choices are avail-
able, a random choice is made that depends on the
object detection scores: the is preferred when we
are confident of the detections while an, a is pre-
ferred otherwise.

2) We predict the most likely preposition inserted
between the verbs and nouns learned from the Giga-
word corpus via Pr(p|v, n) during sentence genera-
tion. For example, our method will pick the prepo-
sition at between verb sit and noun table.

3) The verb v is converted to a form that agrees
with in number with the nouns detected. The
present gerund form is preferred such as eating,
drinking, walking as it conveys that an ac-
tion is being performed in the image.

4) The sentence structure is therefore of the form:
NP-VP-PP with variations when only one object
or multiple detections of the same objects are de-
tected. A special case is when no objects are de-
tected (below the predefined threshold). No verbs
can be predicted as well. In this case, we sim-
ply generate a sentence that describes the scene
only: for e.g. This is a coast, This is
a field. Such sentences account for 20% of the

entire UIUC testing dataset which are scored lower
in our evaluation metrics (sec. 4.1) since they do not
fully describe the image content in terms of the ob-
jects and actions.

Some examples of sentences generated using this
strategy are shown in Fig. 9(right-lower).

4 Experiments

We performed several experiments to evaluate our
proposed approach. The different metrics used for
evaluation and comparison are also presented, fol-
lowed by a discussion of the experimental results.

4.1 Sentence Generation Results

Three experiments are performed to evaluate the ef-
fectiveness of our approach. As a baseline, we sim-
ply generated T ∗ directly from images without using
the corpus. There are two variants of this baseline
where we seek to determine if listing all objects in
the image is crucial for scene description. Tb1 is a
baseline that uses all possible objects and scene de-
tected: Tb1 = {n1, n2, · · · , nm, s} and our sentence
will be of the form: {Object 1, object 2 and

object 3 are IN the scene.} and we simply
selected IN as the only admissible preposition. For
the second baseline, Tb2, we limit the number of ob-
jects to just any two: Tb2 = {n1, n2, s} and the
sentence generated will be of the form {Object
1 and object 2 are IN the scene}. In the
second experiment, we applied the HMM strategy
described above but made all transition probabilities
equiprobable, removing the effects of the corpus,
and producing a sentence structure which we denote
as T ∗eq. The third experiment produces the full T ∗
with transition probabilities learned from the corpus.
All experiments were performed on the 100 unseen
testing images from the UIUC dataset and we used
only the most likely (top) sentence generated for all
evaluation.

We use two evaluation metrics as a measure of the
accuracy of the generated sentences: 1) ROUGE-1
[Lin and Hovy, 2003] precision scores and 2) Rel-
evance and Readability of the generated sentences.
ROUGE-1 is a recall based metric that is commonly
used to measure the effectiveness of text summariza-
tion. In this work, the short descriptive sentence of
an image can be viewed as summarizing the image
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content and ROUGE-1 is able to capture how well
this sentence can describe the image by comparing it
with the human annotated ground truth of the UIUC
dataset. Due to the short sentences generated, we
did not consider other ROUGE metrics (ROUGE-2,
ROUGE-SU4) which captures fluency and is not an
issue here.

Experiment R1,(length) Relevance Readability
Baseline 1, T ∗b1 0.35,(8.2) 2.84± 1.40 3.64± 1.20

Baseline 2, T ∗b2 0.39,(6.8) 2.14± 1.13 3.94± 0.91

HMM no cor-
pus, T ∗eq

0.42,(6.5) 2.44± 1.25 3.88± 1.18

Full HMM, T ∗ 0.44,(6.9) 2.51± 1.30 4.10± 1.03

Human Anno-
tation

0.68,(10.1) 4.91± 0.29 4.77± 0.42

Table 3: Sentence generation evaluation results with hu-
man gold standard. Human R1 scores are averaged over
the 5 sentences using a leave one out procedure. Values
in bold are the top scores.

A main shortcoming of using ROUGE-1 is that
the generated sentences are compared only to a fi-
nite set of human labeled ground truth which ob-
viously does not capture all possible sentences that
one can generate. In other words, ROUGE-1 does
not take into account the fact that sentence genera-
tion is innately a creative process, and a better re-
call metric will be to ask humans to judge these
sentences. The second evaluation metric: Rele-
vance and Readability is therefore proposed as an
empirical measure of how much the sentence: 1)
conveys the image content (relevance) in terms of
the objects, actions and scene predicted and 2) is
grammatically correct (readability). We engaged the
services of Amazon Mechanical Turks (AMT) to
judge the generated sentences based on a discrete
scale ranging from 1–5 (low relevance/readability
to high relevance/readability). The averaged results
of ROUGE-1, R1 and mean length of the sentences
with the Relevance+Readability scores for all exper-
iments are summarized in Table 3. For comparison,
we also asked the AMTs to judge the ground truth
sentences as well.

4.2 Discussion
The results reported in Table 3 reveals both the
strengths and some shortcomings of the approach
which we will briefly discuss here. Firstly, the R1

scores indicate that based on a purely summariza-
tion (unigram-overlap) point of view, the proposed
approach of using the HMM to predict T ∗ achieves
the best results compared to all other approaches
with R1 = 0.44. This means that our sentences are
the closest in agreement with the human annotated
ground truth, correctly predicting the sentence struc-
ture components. In addition sentences generated by
T ∗ are also succinct: with an average length of 6.9
words per sentence. However, we are still some way
off the human gold standard since we do not predict
other parts-of-speech such as adjectives and adverbs.
Given this fact, our proposed approach performance
is comparable to other state of the art summarization
work in the literature [Bonnie and Dorr, 2004].

Next, we consider the Relevance+Readability
metrics based on human judges. Interestingly, the
first baseline, T ∗b1 is considered the most relevant de-
scription of the image and the least readable at the
same time. This is most likely due to the fact that
this recall oriented strategy will almost certainly de-
scribe some objects but the lack of any verb descrip-
tion; and longer sentences that average 8.2 words per
sentence, makes it less readable. It is also possible
that humans tend to penalize less irrelevant objects
compared to missing objects, and further evaluations
are necessary to confirm this. Since T ∗b2 is limited
to two objects just like the proposed HMM, it is a
more suitable baseline for comparison. Clearly, the
results show that adding the HMM to predict the op-
timal sentence structure increases the relevance of
the produced sentence. Finally, in terms of read-
ability, T ∗ generates the most readable sentences,
and this is achieved by leveraging on the corpus to
guide our predictions of the most reasonable nouns,
verbs, scenes and prepositions that agree with the
detections in the image.

5 Future Work

In this work, we have introduced a computationally
feasible framework that integrates visual perception
together with semantic grounding obtained from a
large textual corpus for the purpose of generating a
descriptive sentence of an image. Experimental re-
sults show that our approach produces sentences that
are both relevant and readable. There are, however,
instances where our strategy fails to predict the ap-
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propriate verbs or nouns (see Fig. 9). This is due
to the fact that object/scene detections can be wrong
and noise from the corpus itself remains a problem.
Compared to human gold standards, therefore, much
work still remains in terms of detecting these objects
and scenes with high precision. Currently, at most
two object classes are used to generate simple sen-
tences which was shown in the results to have penal-
ized the relevance score of our approach. This can
be addressed by designing more complex HMMs to
handle larger numbers of object and verb classes.
Another interesting direction of future work would
be to detect salient objects, learned from training
image+corpus or eye-movement data, and to verify
if these objects aid in improving the descriptive sen-
tences we generate. Another potential application

Figure 10: Images retrieved from 3 verbal search terms:
ride,sit,fly.

of representing images using T ∗ is that we can eas-
ily sort and retrieve images that are similar in terms
of their semantic content. This would enable us to
retrieve, for example, more relevant images given a
verbal search query such as {ride,sit,fly}, re-
turning images where these verbs are found in T ∗.
Some results of retrieved images based on their ver-
bal components are shown in Fig. 10: many images
with dissimilar visual content are correctly classified
based on their semantic meaning.
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