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Abstract

We propose an approach to adjective-noun
composition (AN) for corpus-based distribu-
tional semantics that, building on insights
from theoretical linguistics, represents nouns
as vectors and adjectives as data-induced (lin-
ear) functions (encoded as matrices) over
nominal vectors. Our model significantly out-
performs the rivals on the task of reconstruct-
ing AN vectors not seen in training. A small
post-hoc analysis further suggests that, when
the model-generated AN vector is not simi-
lar to the corpus-observed AN vector, this is
due to anomalies in the latter. We show more-
over that our approach provides two novel
ways to represent adjective meanings, alter-
native to its representation via corpus-based
co-occurrence vectors, both outperforming the
latter in an adjective clustering task.

1 Introduction

An influential approach for representing the mean-
ing of a word in NLP is to treat it as a vector
that codes the pattern of co-occurrence of that word
with other expressions in a large corpus of language
(Sahlgren, 2006; Turney and Pantel, 2010). This
approach to semantics (sometimes called distribu-
tional semantics) naturally captures word cluster-
ing, scales well to large lexicons and doesn’t re-
quire words to be manually disambiguated (Schütze,
1997). However, until recently it has been limited to
the level of content words (nouns, adjectives, verbs),
and it hasn’t tackled in a general way compositional-
ity (Frege, 1892; Partee, 2004), that crucial property
of natural language which allows speakers to de-
rive the meaning of a complex linguistic constituent

from the meaning of its immediate syntactic subcon-
stituents.

Formal semantics (FS), the research program
stemming from Montague (1970b; 1973), has oppo-
site strengths and weaknesses. Its core semantic no-
tion is the sentence, not the word; at the lexical level,
it focuses on the meaning of function words; one
of its main goals is to formulate recursive composi-
tional rules that derive the quantificational properties
of complex sentences and their antecedent-pronoun
dependencies.

Given its focus on quantification, FS treats the
meanings of nouns and verbs as pure extensions:
nouns and (intransitive) verbs are properties, and
thus denote sets of individuals. Adjectives are also
often assumed to denote properties: in this view
redadj would be the set of ‘entities which are red’,
plasticadj , the set of ‘objects made of plastic’, and
so forth. In the simplest case, the meaning of an at-
tributive adjective-noun (AN) constituent can be ob-
tained as the intersection of the adjective and noun
extensions A∩N:

[ red car ] = {. . . red objects. . . } ∩ {. . . cars. . . }
However, the intersective method of combination

is well-known to fail in many cases (Kamp, 1975;
Montague, 1970a; Siegel, 1976): for instance, a
fake gun is not a gun. Even for red, the manner in
which the color combines with a noun will be dif-
ferent in red Ferrari (the outside), red watermelon
(the inside), red traffic light (the signal). These prob-
lems have prompted a more flexible FS representa-
tion for attributive adjectives — functions from the
meaning of a noun onto the meaning of a modified
noun (Montague, 1970a). This mapping could now
be sensitive to the particular noun the adjective re-
ceives, and it does not need to return a subset of the

1183



original noun denotation (as in the case of fake N).
However, FS has nothing to say on how these func-
tions should be constructed.

In the last few years there have been attempts to
build compositional models that use distributional
semantic representations as inputs (see Section 2 be-
low), most of them focusing on the combination of a
verb and its arguments. This paper addresses instead
the combination of nouns and attributive adjectives.
This case was chosen as an interesting testbed be-
cause it has the property of recursivity (it applies in
black dog, but also in large black dog, etc.), and be-
cause very frequent adjectives such as different are
at the border between content and function words.
Following the insight of FS, we treat attributive ad-
jectives as functions over noun meanings; however,
noun meanings are vectors, not sets, and the func-
tions are learnt from corpus-based noun-AN vector
pairs.

Original contribution We propose and evaluate a
new method to derive distributional representations
for ANs, where an adjective is a linear function from
a vector (the noun representation) to another vector
(the AN representation). The linear map for a spe-
cific adjective is learnt, using linear regression, from
pairs of noun and AN vectors extracted from a cor-
pus.

Outline Distributional approaches to composi-
tionality are shortly reviewed in Section 2. In Sec-
tion 3, we introduce our proposal. The experimen-
tal setting is described in Section 4. Section 5 pro-
vides some empirical justification for using corpus-
harvested AN vectors as the target of our function
learning and evaluation benchmark. In Section 6, we
show that our model outperforms other approaches
at the task of approximating such vectors for unseen
ANs. In Section 7, we discuss how adjectival mean-
ing can be represented in our model and evaluate this
representation in an adjective clustering task. Sec-
tion 8 concludes by sketching directions for further
work.

2 Related work

The literature on compositionality in vector-based
semantics encompasses various related topics, some
of them not of direct interest here, such as how to

encode word order information in context vectors
(Jones and Mewhort, 2007; Sahlgren et al., 2008)
or sophisticated composition methods based on ten-
sor products, quantum logic, etc., that have not yet
been empirically tested on large-scale corpus-based
semantic space tasks (Clark and Pulman, 2007;
Rudolph and Giesbrecht, 2010; Smolensky, 1990;
Widdows, 2008). Closer to our current purposes is
the general framework for vector composition pro-
posed by Mitchell and Lapata (2008), subsuming
various earlier proposals. Given two vectors u and
v, they identify two general classes of composition
models, (linear) additive models:

p = Au + Bv (1)
where A and B are weight matrices, and multiplica-
tive models:

p = Cuv

where C is a weight tensor projecting the uv tensor
product onto the space of p. Mitchell and Lapata de-
rive two simplified models from these general forms.
Their simplified additive model p = αu+βv was a
common approach to composition in the earlier liter-
ature, typically with the scalar weights set to 1 or to
normalizing constants (Foltz et al., 1998; Kintsch,
2001; Landauer and Dumais, 1997). Mitchell and
Lapata also consider a constrained version of the
multiplicative approach that reduces to component-
wise multiplication, where the i-th component of
the composed vector is given by: pi = uivi. The
simplified additive model produces a sort of (sta-
tistical) union of features, whereas component-wise
multiplication has an intersective effect. They also
evaluate a weighted combination of the simplified
additive and multiplicative functions. The best re-
sults on the task of paraphrasing noun-verb combi-
nations with ambiguous verbs (sales slump is more
like declining than slouching) are obtained using the
multiplicative approach, and by weighted combina-
tion of addition and multiplication (we do not test
model combinations in our current experiments).
The multiplicative approach also performs best (but
only by a small margin) in a later application to lan-
guage modeling (Mitchell and Lapata, 2009). Erk
and Padó (2008; 2009) adopt the same formalism
but focus on the nature of input vectors, suggest-
ing that when a verb is composed with a noun, the
noun component is given by an average of verbs that
the noun is typically object of (along similar lines,
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Kintsch (2001) also focused on composite input vec-
tors, within an additive framework). Again, the mul-
tiplicative model works best in Erk and Padó’s ex-
periments.

The above-mentioned researchers do not exploit
corpus evidence about the p vectors that result from
composition, despite the fact that it is straightfor-
ward (at least for short constructions) to extract
direct distributional evidence about the composite
items from the corpus (just collect co-occurrence
information for the composite item from windows
around the contexts in which it occurs). The
main innovation of Guevara (2010), who focuses on
adjective-noun combinations (AN), is to use the co-
occurrence vectors of observed ANs to train a su-
pervised composition model (we became aware of
Guevara’s approach after we had developed our own
model, that also exploits observed ANs for training).
Guevara adopts the full additive composition form
from Equation (1) and he estimates the A and B
weights using partial least squares regression. The
training data are pairs of adjective-noun vector con-
catenations, as input, and corpus-derived AN vec-
tors, as output. Guevara compares his model to
the simplified additive and multiplicative models of
Mitchell and Lapata. Observed ANs are nearer, in
the space of observed and predicted test set ANs, to
the ANs generated by his model than to those from
the alternative approaches. The additive model, on
the other hand, is best in terms of shared neighbor
count between observed and predicted ANs.

In our empirical tests, we compare our approach
to the simplified additive and multiplicative models
of Mitchell and Lapata (the former with normaliza-
tion constants as scalar weights) as well as to Gue-
vara’s approach.

3 Adjectives as linear maps

As discussed in the introduction, we will take ad-
jectives in attributive position to be functions from
one noun meaning to another. To start simple, we
assume here that adjectives in the attributive posi-
tion (AN) are linear functions from n-dimensional
(noun) vectors onto n-dimensional vectors, an oper-
ation that can be expressed as multiplication of the
input noun column vector by a n × n matrix, that
is our representation for the adjective (in the lan-

guage of linear algebra, an adjective is an endomor-
phic linear map in noun space). In the framework of
Mitchell and Lapata, our approach derives from the
additive form in Equation (1) with the matrix multi-
plying the adjective vector (say, A) set to 0:

p = Bv

where p is the observed AN vector, B the weight
matrix representing the adjective at hand, and v a
noun vector. In our approach, the weight matrix B is
specific to a single adjective – as we will see in Sec-
tion 7 below, it is our representation of the meaning
of the adjective.

Like Guevara, we estimate the values in the
weight matrix by partial least squares regression.
In our case, the independent variables for the re-
gression equations are the dimensions of the corpus-
based vectors of the component nouns, whereas the
AN vectors provide the dependent variables. Unlike
Guevara, (i) we train separate models for each adjec-
tive (we learn adjective-specific functions, whereas
Guevara learns a generic “AN-slot” function) and,
consequently, (ii) corpus-harvested adjective vectors
play no role for us (their values would be constant
across the training input vectors).

A few considerations are in order. First, although
we use a supervised learning method (least squares
regression), we do not need hand-annotated data,
since the target AN vectors are automatically col-
lected from the corpus just like vectors for single
words are. Thus, there is no extra “external knowl-
edge” cost with respect to unsupervised approaches.
Second, our approach rests on the assumption that
the corpus-derived AN vectors are interesting ob-
jects that should constitute the target of what a com-
position process tries to approximate. We provide
preliminary empirical support for this assumption in
Section 5 below. Third, we have some reasonable
hope that our functions can capture to a certain ex-
tent the polysemous nature of adjectives: we could
learn, for example, a green matrix with large posi-
tive weights mapping from noun features that per-
tain to concrete objects to color dimensions of the
output vector (green chair), as well as large positive
weights from features characterizing certain classes
of abstract concepts to political/social dimensions in
the output (green initiative). Somewhat optimisti-
cally, we hope that chair will have near-0 values
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on the relevant abstract dimensions, like initiative
on the concrete features, and thus the weights will
not interfere. We do not evaluate this claim specif-
ically, but our quantitative evaluation in Section 6
shows that our approach does best with high fre-
quency, highly ambiguous adjectives. Fourth, the
approach is naturally syntax-sensitive, since we train
it on observed data for a specific syntactic position:
we would train separate linear models for, say, the
same adjective in attributive (AN) and predicative
(N is A) position. As a matter of fact, the current
model is too syntax-sensitive and does not capture
similarities across different constructions. Finally,
although adjective representations are not directly
harvested from corpora, we can still meaningfully
compare adjectives to each other or other words by
using their estimated matrix, or an average vector for
the ANs that contain them: both options are tested
in Section 7 below.

4 Experimental setup

4.1 Corpus

We built a large corpus by concatenating the
Web-derived ukWaC corpus (http://wacky.
sslmit.unibo.it/), a mid-2009 dump of the
English Wikipedia (http://en.wikipedia.
org) and the British National Corpus (http:
//www.natcorp.ox.ac.uk/). This concate-
nated corpus, tokenized, POS-tagged and lemma-
tized with the TreeTagger (Schmid, 1995), contains
about 2.83 billion tokens (excluding punctuation,
digits, etc.). The ukWaC and Wikipedia sections can
be freely downloaded, with full annotation, from the
ukWaC site.

We performed some of the list extraction and
checking operations we are about to describe on a
more manageable data-set obtained by selecting the
first 100M tokens of ukWaC; we refer to this subset
as the sample corpus below.

4.2 Vocabulary

We could in principle limit ourselves to collecting
vectors for the ANs to be analyzed (the AN test set)
and their components. However, to make the anal-
ysis more challenging and interesting, we populate
the semantic space where we will look at the be-
haviour of the ANs with a large number of adjectives

and nouns, as well as further ANs not in the test set.
We refer to the overall list of items we build seman-
tic vectors for as the extended vocabulary. We use
a subset of the extended vocabulary containing only
nouns and adjectives (the core vocabulary) for fea-
ture selection and dimensionality reduction, so that
we do not implicitly bias the structure of the seman-
tic space by our choice of ANs.

To construct the AN test set, we first selected 36
adjectives across various classes: size (big, great,
huge, large, major, small, little), denominal (Amer-
ican, European, national, mental, historical, elec-
tronic), colors (white, black, red, green) positive
evaluation (nice, excellent, important, appropriate),
temporal (old, recent, new, young, current), modal
(necessary, possible), plus some common abstract
antonymous pairs (difficult, easy, good, bad, spe-
cial, general, different, common). We were care-
ful to include intersective cases such as electronic
as well as non-intersective adjectives that are almost
function words (the modals, different, etc.). We ex-
tracted all nouns that occurred at least 300 times
in post-adjectival position in the sample corpus, ex-
cluding some extremely frequent temporal and mea-
sure expressions such as time and range, for a to-
tal of 1,420 distinct nouns. By crossing the selected
adjectives and nouns, we constructed a test set con-
taining 26,440 ANs, all attested in the sample cor-
pus (734 ANs per adjective on average, ranging from
1,337 for new to 202 for mental).

The core vocabulary contains the top 8K most
frequent noun lemmas and top 4K adjective lemmas
from the concatenated corpus (excluding the top 50
most frequent nouns and adjectives). The extended
vocabulary contains this core plus (i) the 26,440
test ANs, (ii) the 16 adjectives and 43 nouns that
are components of these ANs and that are not in the
core set, and (iii) 2,500 more ANs randomly sam-
pled from those that are attested in the sample cor-
pus, have a noun from the same list used for the test
set ANs, and an adjective that occurred at least 5K
times in the sample corpus. In total, the extended
vocabulary contains 40,999 entries: 8,043 nouns,
4,016 adjectives and 28,940 ANs.

4.3 Semantic space construction

Full co-occurrence matrix The 10K lemmas
(nouns, adjectives or verbs) that co-occur with

1186



the largest number of items in the core vocabu-
lary constitute the dimensions (columns) of our co-
occurrence matrix. Using the concatenated corpus,
we extract sentence-internal co-occurrence counts of
all the items in the extended vocabulary with the
10K dimension words. We then transform the raw
counts into Local Mutual Information (LMI) scores
(LMI is an association measure that closely approx-
imates the Log-Likelihood Ratio, see Evert (2005)).

Dimensionality reduction Since, for each test set
adjective, we need to estimate a regression model
for each dimension, we want a compact space with
relatively few, dense dimensions. A natural way to
do this is to apply the Singular Value Decomposi-
tion (SVD) to the co-occurrence matrix, and repre-
sent the items of interest with their coordinates in
the space spanned by the first n right singular vec-
tors. Applying SVD is independently justified be-
cause, besides mitigating the dimensionality prob-
lem, it often improves the quality of the semantic
space (Landauer and Dumais, 1997; Rapp, 2003;
Schütze, 1997). To avoid bias in favour of dimen-
sions that capture variance in the test set ANs, we
applied SVD to the core vocabulary subset of the
co-occurrence matrix (containing only adjective and
noun rows). The core 12K×10K matrix was re-
duced using SVD to a 12K×300 matrix. The other
row vectors of the full co-occurrence matrix (in-
cluding the ANs) were projected onto the same re-
duced space by multiplying them by a matrix con-
taining the first n right singular vectors as columns.
Merging the items used to compute the SVD and
those projected onto the resulting space, we obtain a
40,999×300 matrix representing 8,043 nouns, 4,016
adjectives and 28,940 ANs. This reduced matrix
constitutes a realistically sized semantic space, that
also contains many items that are not part of our test
set, but will be potential neighbors of the observed
and predicted test ANs in the experiments to follow.
The quality of the SVD reduction itself was indepen-
dently validated on a standard similarity judgment
data-set (Rubenstein and Goodenough, 1965), ob-
taining similar (and state-of-the-art-range) Pearson
correlations of vector cosines and human judgments
in both the original (r = .70) and reduced (r = .72)
spaces.

There are several parameters involved in con-

structing a semantic space (choice of full and re-
duced dimensions, co-occurrence span, weighting
method). Since our current focus is on alterna-
tive composition methods evaluated on a shared se-
mantic space, exploring parameters pertaining to the
construction of the semantic space is not one of our
priorities, although we cannot of course exclude that
the nature of the underlying semantic space affects
different composition methods differently.

4.4 Composition methods

In the proposed adjective-specific linear map (alm)
method, an AN is generated by multiplying an adjec-
tive weight matrix with a noun (column) vector. The
j weights in the i-th row of the matrix are the coeffi-
cients of a linear regression predicting the values of
the i-th dimension of the AN vector as a linear com-
bination of the j dimensions of the component noun.
The linear regression coefficients are estimated sep-
arately for each of the 36 tested adjectives from
the corpus-observed noun-AN pairs containing that
adjective (observed adjective vectors are not used).
Since we are working in the 300-dimensional right
singular vector space, for each adjective we have
300 regression problems with 300 independent vari-
ables, and the training data (the noun-AN pairs avail-
able for each test set adjective) range from about
200 to more than 1K items. We estimate the coef-
ficients using (multivariate) partial least squares re-
gression (PLSR) as implemented in the R pls pack-
age (Mevik and Wehrens, 2007). With respect to
standard least squares estimation, this technique is
more robust against over-training by effectively us-
ing a smaller number of orthogonal “latent” vari-
ables as predictors (Hastie et al., 2009, Section 3.4),
and it exploits the multivariate nature of the prob-
lem (different regressions for each AN vector di-
mension to be predicted) when determining the la-
tent dimensions. The number of latent variables to
be used in the core regression are a free parameter of
PLSR. For efficiency reasons, we did not optimize it.
We picked instead 50 latent variables, by the rule-
of-thumb reasoning that for any adjective we can
use at least 200 noun-AN pairs for training, and the
independent-variable-to-training-item ratio will thus
never be above 1/4. We adopt a leave-one-out train-
ing regime, so that each target AN is generated by
an adjective matrix that was estimated from all the
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other ANs with the same adjective, minus the target.

We use PLSR with 50 latent variables also for
our re-implementation of Guevara’s (2010) single
linear map (slm) approach, in which a single re-
gression matrix is estimated for all ANs across ad-
jectives. The training data in this case are given
by the concatenation of the observed adjective and
noun vectors (600 independent variables) coupled
with the corresponding AN vectors (300 dependent
variables). For each target AN, we randomly sam-
ple 2,000 other adjective-noun-AN tuples for train-
ing (with larger training sets we run into memory
problems), and use the resulting coefficient matrix to
generate the AN vector from the concatenated target
adjective and noun vectors.

Additive AN vectors (add method) are obtained
by summing the corresponding adjective and noun
vectors after normalizing them (non-normalized ad-
dition was also tried, but it did not work nearly as
well as the normalized variant). Multiplicative vec-
tors (mult method) were obtained by component-
wise multiplication of the adjective and noun vec-
tors (normalization does not matter here since it
amounts to multiplying the composite vector by a
scalar, and the cosine similarity measure we use is
scale-invariant). Finally, the adj and noun baselines
use the adjective and noun vectors, respectively, as
surrogates of the AN vector.

For the add, mult, adj and noun methods, we ran
the tests of Section 6 not only in the SVD-reduced
space, but also in the original 10K-dimensional co-
occurrence space. Only the mult method achieved
better performance in the original space. We con-
jecture that this is because the SVD dimensions can
have negative values, leading to counter-intuitive re-
sults with component-wise multiplication (multiply-
ing large opposite-sign values results in large nega-
tive values). We tried to alleviate this problem by as-
signing a 0 to composite dimensions where the two
input vectors had different signs. The resulting per-
formance was better but still below that of mult in
original space. Thus, in Section 6 we report mult
results from the full co-occurrence matrix; reduced
space results for all other methods.

5 Study 1: ANs in semantic space

The actual distribution of ANs in the corpus, as
recorded by their co-occurrence vectors, is funda-
mental to what we are doing. Our method relies on
the hypothesis that the semantics of AN composi-
tion does not depend on the independent distribu-
tion of adjectives themselves, but on how adjectives
transform the distribution of nouns, as evidenced by
observed pairs of noun-AN vectors. Moreover, co-
herently with this view, our evaluation below will be
based on how closely the models approximate the
observed vectors of unseen ANs.

That our goal in modeling composition should be
to approximate the vectors of observed ANs is in
a sense almost trivial. Whether we synthesize an
AN for generation or decoding purposes, we would
want the synthetic AN to look as much as possible
like a real AN in its natural usage contexts, and co-
occurrence vectors of observed ANs are a summary
of their usage in actual linguistic contexts. However,
it might be the case that the specific resources we
used for our vector construction procedure are not
appropriate, so that the specific observed AN vectors
we extract are not reliable (e.g., they are so sparse in
the original space as to be uninformative, or they are
strictly tied to the domains of the input corpora). We
provide here some preliminary qualitative evidence
that this is in general not the case, by tapping into
our own intuitions on where ANs should be located
in semantic space, and thus on how sensible their
neighbors are.

First, we computed centroids from normalized
SVD space vectors of all the ANs that share the same
adjective (e.g., the normalized vectors of American
adult, American menu, etc., summed to construct
the American N centroid). We looked at the near-
est neighbors of these centroids in semantic space
among the 41K items (adjectives, nouns and ANs)
in our extended vocabulary (here and in all experi-
ments below, similarity is quantified by the cosine of
the angle between two vectors). As illustrated for a
random sample of 9 centroids in Table 1 (but apply-
ing to the remaining 27 adjectives as well), centroids
are positioned in intuitively reasonable areas of the
space, typically near the adjective itself or the corre-
sponding noun (the noun green near green N), proto-
typical ANs for that adjective (black face), elements
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related to the definition of the adjective (mental ac-
tivity, historical event, green colour, quick and little
cost for easy N), and so on.

American N black N easy N
Am. representative black face easy start
Am. territory black hand quick
Am. source black (n) little cost
green N historical N mental N
green (n) historical mental activity
red road hist. event mental experience
green colour hist. content mental energy
necessary N nice N young N
necessary nice youthful
necessary degree good bit young doctor
sufficient nice break young staff

Table 1: Nearest 3 neighbors of centroids of ANs that
share the same adjective.

How about the neighbors of specific ANs? Ta-
ble 2 reports the nearest 3 neighbors of 9 randomly
selected ANs involving different adjectives (we in-
spected a larger random set, coming to similar con-
clusions to the ones emerging from this table).

bad electronic historical
luck communication map
bad elec. storage topographical
bad weekend elec. transmission atlas
good spirit purpose hist. material
important route nice girl little war
important transport good girl great war
important road big girl major war
major road guy small war
red cover special collection young husband
black cover general collection small son
hardback small collection small daughter
red label archives mistress

Table 2: Nearest 3 neighbors of specific ANs.

The nearest neighbors of the corpus-based AN
vectors in Table 2 make in general intuitive sense.
Importantly, the neighbors pick up the composite
meaning rather than that of the adjective or noun
alone. For example, cover is an ambiguous word,
but the hardback neighbor relates to its “front of a
book” meaning that is the most natural one in com-
bination with red. Similarly, it makes more sense
that a young husband (rather than an old one) would
have small sons and daughters (not to mention the

mistress!).
We realize that the evidence presented here is

of a very preliminary and intuitive nature. Indeed,
we will argue in the next section that there are
cases in which the corpus-derived AN vector might
not be a good approximation to our semantic in-
tuitions about the AN, and a model-composed AN
vector is a better semantic surrogate. One of the
most important avenues for further work will be to
come to a better characterization of the behaviour of
corpus-observed ANs, where they work and where
the don’t. Still, the neighbors of average and AN-
specific vectors of Tables 1 and 2 suggest that, for
the bulk of ANs, such corpus-based co-occurrence
vectors are semantically reasonable.

6 Study 2: Predicting AN vectors

Having tentatively established that the sort of vec-
tors we can harvest for ANs by directly collecting
their corpus co-occurrences are reasonable represen-
tations of their composite meaning, we move on to
the core question of whether it is possible to recon-
struct the vector for an unobserved AN from infor-
mation about its components. We use nearness to
the corpus-observed vectors of held-out ANs as a
very direct way to evaluate the quality of model-
generated ANs, since we just saw that the observed
ANs look reasonable (but see the caveats at the end
of this section). We leave it to further work to as-
sess the quality of the generated ANs in an applied
setting, for example adapting Mitchell and Lapata’s
paraphrasing task to ANs. Since the observed vec-
tors look like plausible representations of compos-
ite meaning, we expect that the closer the model-
generated vectors are to the observed ones, the better
they should also perform in any task that requires ac-
cess to the composite meaning, and thus that the re-
sults of the current evaluation should correlate with
applied performance.

More in detail, we evaluate here the composition
methods (and the adjective and noun baselines) by
computing, for each of them, the cosine of the test
set AN vectors they generate (the “predicted” ANs)
with the 41K vectors representing our extended vo-
cabulary in semantic space, and looking at the posi-
tion of the corresponding observed ANs (that were
not used for training, in the supervised approaches)
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in the cosine-ranked lists. The lower the rank, the
better the approximation. For efficiency reasons, we
flatten out the ranks after the top 1,000 neighbors.

The results are summarized in Table 3 by the me-
dian and the other quartiles, calculated across all
26,440 ANs in the test set. These measures (unlike
mean and variance) are not affected by the cut-off
after 1K neighbors. To put the reported results into
perspective, a model with a first quartile rank of 999
does very significantly better than chance (the bino-
mial probability of 1/4 or more of 26,440 trials be-
ing successful with π = 0.024 is virtually 0, where
the latter quantity is the probability of an observed
AN being at rank 999 or lower according to a geo-
metric distribution with π=1/40999).

method 25% median 75%
alm 17 170 ≥1K
add 27 257 ≥1K
noun 72 448 ≥1K
mult 279 ≥1K ≥1K
slm 629 ≥1K ≥1K
adj ≥1K ≥1K ≥1K

Table 3: Quartile ranks of observed ANs in cosine-ranked
lists of predicted AN neighbors.

Our proposed method, alm, emerges as the best
approach. The difference with the second best
model, add (the only other model that does better
than the non-trivial baseline of using the compo-
nent noun vector as a surrogate for AN), is highly
statistically significant (Wilcoxon signed rank test,
p< 0.00001). If we randomly downsample the AN
set to keep an equal number of ANs per adjective
(200), the difference is still significant with p below
the same threshold, indicating that the general result
is not due to a better performance of alm on a few
common adjectives.1

Among the alternative models, the fact that the
performance of add is decidedly better than that of
mult is remarkable, since earlier studies found that

1The semantic space in which we rank the observed ANs
with respect to their predicted counterparts also contain the ob-
served vectors of nouns and ANs that were used to train alm.
We do not see how this should affect performance, but we nev-
ertheless repeated the evaluation leaving out, for each AN, the
observed items used in training, and we obtained the same re-
sults reported in the main text (same ordering of method perfor-
mance, and very significant difference between alm and add).

multiplicative models are, in general, better than ad-
ditive ones in compositionality tasks (see Section 2
above). This might depend on the nature of AN
composition, but there are also more technical is-
sues at hand: (i) we are not sure that previous stud-
ies normalized before summing like we did, and
(ii) the multiplicative model, as discussed in Section
4, does not benefit from SVD reduction. The sin-
gle linear mapping model (slm) proposed by Gue-
vara (2010) is doing even worse than the multiplica-
tive method, suggesting that a single set of weights
does not provide enough flexibility to model a vari-
ety of adjective transformations successfully. This
is at odds with Guevara’s experiment in which slm
outperformed mult and add on the task of ranking
predicted ANs with respect to a target observed AN.
Besides various differences in task definition and
model implementation, Guevara trained his model
on ANs that include a wide variety of adjectives,
whereas our training data were limited to ANs con-
taining one of our 36 test set adjectives. Future work
should re-evalute the performance of Guevara’s ap-
proach in our task, but under his training regime.

Looking now at the alm results in more detail, the
best median ranks are obtained for very frequent ad-
jectives. The top ones are new (median rank: 34),
great (79), American (82), large (82) and different
(97). There is a high inverse correlation between
median rank and adjective frequency (Spearman’s
ρ =−0.56). Although from a statistical perspec-
tive it is expected that we get better results where
we have more data, from a linguistic point of view it
is interesting that alm works best with extremely fre-
quent, highly polysemous adjectives like new, large
and different, that border on function words – a do-
main where distributional semantics has generally
not been tested.

Although, in relative terms and considering the
difficulty of the task, alm performs well, it is still far
from perfect – for 27% alm-predicted ANs, the ob-
served vector is not even in the top 1K neighbor set!
A qualitative look at some of the most problematic
examples indicates however that a good proportion
of them might actually not be instances where our
model got the AN vector wrong, but cases of anoma-
lous observed ANs. The left side of Table 4 com-
pares the nearest neighbors (excluding each other)
of the observed and alm-predicted vectors in 10 ran-
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SIMILAR DISSIMILAR

adj N obs. neighbor pred. neighbor adj N obs. neighbor pred. neighbor
common understanding common approach common vision American affair Am. development Am. policy

different authority diff. objective diff. description current dimension left (a) current element
different partner diff. organisation diff. department good complaint current complaint good beginning
general question general issue same great field excellent field gr. distribution

historical introduction hist. background same historical thing different today hist. reality
necessary qualification nec. experience same important summer summer big holiday

new actor new cast same large pass historical region large dimension
recent request recent enquiry same special something little animal special thing

small drop droplet drop white profile chrome (n) white show
young engineer young designer y. engineering young photo important song young image

Table 4: Left: nearest neighbors of observed and alm-predicted ANs (excluding each other) for a random set of ANs
where rank of observed w.r.t. predicted is 1. Right: nearest neighbors of predicted and observed ANs for random set
where rank of observed w.r.t. predicted is ≥ 1K.

domly selected cases where the observed AN is the
nearest neighbor of the predicted one. Here, the
ANs themselves make sense, and the (often shared)
neighbors are also sensible (recent enquiry for re-
cent request, common approach and common vision
for common understanding, etc.). Moving to the
right, we see 10 random examples of ANs where the
observed AN was at least 999 neighbors apart from
the alm prediction. First, we notice some ANs that
are difficult to interpret out-of-context (important
summer, white profile, young photo, large pass, . . . ).
Second, at least subjectively, we find that in many
cases the nearest neighbor of predicted AN is actu-
ally more sensible than that of observed AN: cur-
rent element (vs. left) for current dimension, histori-
cal reality (vs. different today) for historical thing,
special thing (vs. little animal) for special some-
thing, young image (vs. important song) for young
photo. In the other cases, the predicted AN neighbor
is at least not obviously worse than the observed AN
neighbor.

There is a high inverse correlation between the
frequency of occurrence of an AN and the rank of
the observed AN with respect to the predicted one
(ρ =−0.48), suggesting that our model is worse at
approximating the observed vectors of rare forms,
that might, in turn, be those for which the corpus-
based representation is less reliable. In these cases,
dissimilarities between observed and expected vec-
tors, rather than signaling problems with the model,
might indicate that the predicted vector, based on a
composition function learned from many examples,

is better than the one directly extracted from the cor-
pus. The examples in the right panel of Table 4 bring
some preliminary support to this hypothesis, to be
systematically explored in future work.

7 Study 3: Comparing adjectives

If adjectives are functions, and not corpus-derived
vectors, is it still possible to compare them mean-
ingfully? We explore two ways to accomplish this
in our framework: one is to represent adjectives by
the average of the AN vectors that contain them
(the centroid vectors whose neighbors are illustrated
in Table 1 above), and the other to compare them
based on the 300×300 weight matrices we esti-
mate from noun-AN pairs (we unfold these matri-
ces into 90K-dimensional vectors). We compare the
quality of these representations to that of the stan-
dard approach in distributional semantics, i.e., rep-
resenting the adjectives directly with their corpus
co-occurrence profile vectors (in our case, projected
onto the SVD-reduced space).

We evaluate performance on the task of cluster-
ing those 19 adjectives in our set that can be rel-
atively straightforwardly categorized into general
classes comprising a minimum of 4 items. The
test set built according to these criteria contains 4
classes: color (white, black, red, green), positive
evaluation (nice, excellent, important, major, ap-
propriate), time (recent, new, current, old, young),
and size (big, huge, little, small, large). We clus-
ter with the CLUTO toolkit (Karypis, 2003), us-
ing the repeated bisections with global optimization
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method, accepting all of CLUTO’s default values
for this choice. Cluster quality is evaluated by per-
centage purity (Zhao and Karypis, 2003). If ni

r is
the number of items from the i-th true (gold stan-
dard) class assigned to the r-th cluster, n is the to-
tal number of items and k the number of clusters,
then: Purity = 1

n

∑k
r=1 max

i
(ni

r). We calculate

empirical 95% confidence intervals around purity by
a heuristic bootstrap procedure based on 10K resam-
plings of the data set (Efron and Tibshirani, 1994).
The random baseline distribution is obtained by 10K
random assignments of adjectives to the clusters, un-
der the constraint that no cluster is empty.

Table 5 shows that all methods are significantly
better than chance. Our two “indirect” represen-
tations achieve similar performance, and they are
(slightly) better than the traditional method based on
adjective co-occurrence vectors. We conclude that,
although our approach does not provide a direct en-
coding of adjective meaning in terms of such inde-
pendently collected vectors, it does have meaningful
ways to represent their semantic properties.

input purity
matrix 73.7 (68.4-94.7)
centroid 73.7 (63.2-94.7)
vector 68.4 (63.2-89.5)
random 45.9 (36.8-57.9)

Table 5: Percentage purity in adjective clustering with
bootstrapped 95% confidence intervals.

8 Conclusion

The work we reported constitutes an encouraging
start for our approach to modeling (AN) composi-
tion. We suggested, along the way, various direc-
tions for further studies. We consider the following
issues to be the most pressing ones.

We currently train each adjective-specific model
separately: We should explore hierarchical model-
ing approaches that exploit similarities across adjec-
tives (and possibly syntactic constructions) to esti-
mate better models.

Evaluation-wise, the differences between ob-
served and predicted ANs must be analyzed more
extensively, to support the claim that, when their
vectors differ, model-based prediction improves on
the observed vector. Evaluation in a more applied

task should also be pursued – in particular, we will
design a paraphrasing task similar to the one pro-
posed by Mitchell and Lapata to evaluate noun-verb
constructions.

Since we do not collect vectors for the “functor”
component of a composition process (for AN con-
structions, the adjective), our approach naturally ex-
tends to processes that involve bound morphemes,
such as affixation, where we would not need to col-
lect independent co-occurrence information for the
affixes. For example, to account for re- prefixation
we do not need to collect a re- vector (required by all
other approaches to composition), but simply vec-
tors for a set of V/reV pairs, where both members of
the pairs are words (e.g., consider/reconsider).

Our approach can also deal, out-of-the-box, with
recursive constructions (sad little red hat), and can
be easily extended to more abstract constructions,
such as determiner N (mapping dog to the/a/one
dog). Still, we need to design a good testing scenario
to evaluate the quality of such model-generated con-
structions.

Ultimately, we want to compose larger and larger
constituents, up to full sentences. It remains to be
seen if the approach we proposed will scale up to
such challenges.
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K. Erk and S. Padó. 2008. A structured vector space
model for word meaning in context. In Proceedings of
EMNLP, pages 897–906.
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