
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 674–683,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Top-Down Nearly-Context-Sensitive Parsing

Eugene Charniak

Brown Laboratory for Linguistic Information Processing (BLLIP)
Brown University, Providence, RI 02912

ec@cs.brown.edu

Abstract

We present a new syntactic parser that
works left-to-right and top down, thus
maintaining a fully-connected parse tree
for a few alternative parse hypotheses. All
of the commonly used statistical parsers
use context-free dynamic programming al-
gorithms and as such work bottom up on
the entire sentence. Thus they only find
a complete fully connected parse at the
very end. In contrast, both subjective
and experimental evidence show that peo-
ple understand a sentence word-to-word as
they go along, or close to it. The con-
straint that the parser keeps one or more
fully connected syntactic trees is intended
to operationalize this cognitive fact. Our
parser achieves a new best result for top-
down parsers of 89.4%,a 20% error reduc-
tion over the previous single-parser best
result for parsers of this type of 86.8%
(Roark, 2001). The improved performance
is due to embracing the very large feature
set available in exchange for giving up dy-
namic programming.

1 Introduction

We present a new syntactic parser that works
top-down and left-to-right, maintaining a fully-
connected parse tree for a few alternative parse
hypotheses. It is a Penn treebank (Marcus et al.,
1993) parser in that it is capable of parsing the
Penn treebank test sets, and is trained on the
now standard training set. It achieves a new
best result for this parser type.

All of the commonly used statistical parsers
available on the web such as the Collins(/Bikel)

(Collins, 2003) Charniak-Johnson(Charniak and
Johnson, 2005), and Petrov-Klein (Petrov et
al., 2006), parsers use context-free dynamic pro-
gramming algorithms so they work bottom up
on the entire sentence. Thus they only find a
complete fully-connected parse at the very end.

In contrast human syntactic parsing must be
fully connected (or close to it) as people are
able to apply vast amounts of real-world knowl-
edge to the process as it proceeds from word-to-
word(van Gompel and Pickering, 2007). Thus
any parser claiming cognitive plausibility must,
to a first approximation, work in this left-to-
right top-down fashion.

Our parser obtains a new best result for top-
down parsers of 89.4% (on section 23 of the Penn
Treebank). This is a 20% error reduction over
the previous best single-parser result of 86.8%,
achieved by Rork(Roark, 2001).

Our model is in the tradition of this lat-
ter parser. The current work’s superior per-
formance is not due to any innovation in ar-
chitecture but in how probability distributions
are computed. It differs from Roark in its ex-
plicit recognition that by giving up context-free
dynamic programming we may embrace near
context sensitivity and condition on many di-
verse pieces of information. (It is only “near”
because we still only condition on a finite
amount of information.) This is made possi-
ble by use of random-forests (Amit and Geman,
1997; Breiman, 2004; Xu and Jelinek, 2004) to
choose features, provide smoothing, and finally
do the probability computation. To the best
of our knowledge ours is the first application of
random-forests to parsing.

674



Section two describes previous work on this
type of parser, and in particular gives details on
the Roark architecture we use. Section three de-
scribes how random forests allow us to integrate
the diverse information sources that context-
sensitive parsing allows. Section four gives im-
plementation details. Section five is devoted to
the main experimental finding of the paper along
with subsidiary results showing the effects of the
large feature set we now may use. Finally, sec-
tion six suggests that because this parser type is
comparatively little explored one may hope for
further substantial improvements, and proposes
avenues to be explored.

2 Previous Work on Top-Down

Parsing and the Roark Model

We care about top-down incremental parsing be-
cause it automatically satisfies the criteria we
have established for cognitive plausibility. Be-
fore looking at previous work on this type model
we briefly discuss work that does not meet the
criteria we have set out, but which people often
assume does so.

We are using the terms “top-down” and “left-
to-right” following e.g., (Abney and Johnson,
1991; Roark, 2001). In particular

In top-down strategies a node is enu-
merated before any of its descen-
dents.(Abney and Johnson, 1991)

In this era of statistical parsers it is useful to
think in terms of possible conditioning informa-
tion. In typical bottom up CKY parsing when
creating, say, a constituent X from positions i

to j we may not condition on its parent. That
the grammar is “context-free” means that this
constituent may be used anywhere.

Using our definition, the Earley parsing al-
gorithm(Earley, 1970), which is often cited as
“top-down,” is no such thing. In fact, it is long
been noted that the Earley algorithm is “almost
identical”(Graham et al., 1980) to CKY. Again,
when Earley posits an X it may not condition
on the parent.

Similarly, consider the more recent work of
Nivre(Nivre, 2003) and Henderson(Henderson,

parse (w0,n−1)
1 C[0](= h =< q, r, t >)←< 1, 1, ROOT >

2 for i = 0, n

3 do while ABOVE-THRESHOLD (h, C, N)
4 remove h from C

5 for all x such that p(x | t) > 0
6 let h′ =< q′, r′, t′ >

7 where q′ = q ∗ p(x | t),
r′ = LAP(t′, w′),
and t′ = t ◦ x

8 if(x = w) then w′ = wi+1

insert h′ in N

9 else w′ = w

10 insert h′ in C

11 empty C

12 exchange C and N

13 output t(C[0]).

Figure 1: Roark’s Fully-Connected Parsing Algo-
rithm

2003). The reason these are not fully-connected
is the same. While they are incremental parsers,
they are not top down — both are shift-reduce
parsers. Consider a constituency shift-reduce
mechanism. Suppose we have a context-free rule
S→ NP VP. As we go left-to-right various termi-
nal and non-terminals are added to and removed
from the stack until at some point the top two
items are NP and VP. Then a reduce operation
replaces them with S. Note that this means that
none of the words or sub-constituents of either
the NP or VP are integrated into a single overall
tree until the very end. This is clearly not fully
connected. Since Nivre’s parser is a dependency
parser this exact case does not apply (as it does
not use CFG rules), but similar situations arise.
In particular, whenever a word is dependent on
a word that appears later in the string, it re-
mains unconnected on the stack until the sec-
ond word appears. Naturally this is transitive
so that the parser can, and presumably does,
process an unbounded number of words before
connecting them all together.

Here we follow the work of Roark (Roark,
2001) which is fully-connected. The basic al-

675



Current hypotheses Prob of next tree element
1 < 1.4 ∗ 10−3, 5 ∗ 10−2,(S (NP (NNS Terms)> p(x=”)” | t)=.64
2 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>

3 < 9 ∗ 10−4, 8 ∗ 10−2,(S (NP (NNS Terms))> p(x=VP | t) =.88
4 p(x=S | t)= 2 ∗ 10−4

5 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>

6 < 9 ∗ 10−4, 9 ∗ 10−2,(S (NP (NNS Terms)) (VP> p(x=AUX | t)= .38
7 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>
8 < 2 ∗ 10−8, 9 ∗ 10−2,(S (NP (NNS Terms)) (S>

9 < 3 ∗ 10−4, 2 ∗ 10−1,(S (NP (NNS Terms)) (VP (AUX > p(x=”were” | t)= .21
10 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>
11 < 2 ∗ 10−8, 9 ∗ 10−2,(S (NP (NNS Terms)) (S>

12 < 7 ∗ 10−5, 3 ∗ 10−1,(S (NP (NNS Terms)) (VP (AUX were)>

Figure 2: Parsing the second word of “Terms were not disclosed.”

gorithm is given in Figure 1. (Note we have
simplified the algorithm in several ways.) The
input to the parser is a string of n words w0,n−1.
We pad the end of the string with an end-of-
sentence marker wn = ⊳. This has the special
property that p(⊳ | t) = 1 for a complete tree t

of w0,n−1, zero otherwise.

There are two priority queues of hypotheses,
C (current), and N (next). A hypothesis h is a
three-tuple < q, r, t > where q is the probabil-
ity assigned to the current tree t. In Figure 1 h

always denotes C[0] the top-most element of C.
While we call t the “tree”, it is a vector represen-
tation of a tree. For example, the tree (ROOT)
would be a vector of two elements, ROOT and
“)”, the latter indicating that the constituent la-
beled root is completed. Thus elements of the
vector are the terminals, non-terminals, and “)”
— the close parenthesis element. Lastly r is the
“look-ahead probability” or LAP. LAP(w,h) is
(a crude estimate of) the probability that the
next word is w given h. We explain its purpose
below.

We go through the words one at a time. At
the start of our processing of wi we have hy-
potheses on C ordered by p ·q — the probability
of the hypothesis so far times an estimate q of
the probability cost we encounter when trying

to now integrate wi. We remove each h from C

and integrate a new tree symbol x. If x = wi

it means that we have successfully added the
new word to the tree and this hypothesis goes
into the queue for the next word N . Other-
wise h does not yet represent an extension to
wi and we put it back on C to compete with the
other hypotheses waiting to be extended. The
look-ahead probability LAP(h) = q is intended
to keep a level playing field. If we put h back
onto C it’s probability p is lowered by the factor
p(x | h). On the other hand, if x is the correct
symbol, q should go up, so the two should offset
and h is still competitive.

We stop processing a word and move onto
the next when ABOVE-THRESHOLD returns
false. Without going into details, we have
adopted exactly the decision criteria and asso-
ciated parameters used by Roark so that the
accuracy numbers presumably reflect the same
amount of search. (The more liberal ABOVE-
THRESHOLD, the more search, and presum-
ably the more accurate results, everything else
being equal.)

Figure 2 shows a few points in the process-
ing of the second word of “Terms were not dis-
closed.” Lines one and two show the current
queue at the start of processing. Line one has

676



the ultimately correct partial tree (S (NP (NNS
Terms). Note that the NP is not closed off as
the parser defers closing constituents until nec-
essary. On the right of line 1 we show the pos-
sible next tree pieces that could be added. Here
we simply have one, namely a right parenthesis
to close off the NP. (In reality there would be
many such x’s.) The result is that the hypoth-
esis of line 1 is removed from the queue, and
a new hypothesis is added back on C as this
new hypothesis does not incorporate the second
word.

Lines 3 and 5 now show the new state of C.
Again we remove the top candidate from C. The
right-hand side of lines 3 and 4 show two pos-
sible continuations for the h of line 3, start a
new VP or a new S. With line 3 removed from
the queue, and its two extensions added, we get
the new queue state shown in lines 6,7 and 8.
Line 6 shows the top-most hypothesis extended
by an AUX. This still has not yet incorporated
the next word into the parse, so this extension
is inserted in the current queue giving us the
queue state shown in 9,10,11. Finally line 9 is
extended with the word “were.” This addition
incorporates the current word, and the resulting
extension, shown in line 12 is inserted in N , not
C, ending this example.

3 Random Forests

The Roark model we emulate requires the esti-
mation of two probability distributions: one for
the next tree element (non-terminals,terminals,
and “)”) in the grammar, and one for the look-
ahead probability of the yet-to-be-incorporated
next word. In this section we use the first of
these for illustration.

We first consider how to construct a single
(non-random) decision tree for estimating this
distribution. A tree is a fully-connected directed
acyclic graph where each node has one input arc
(except for the root) and, for reasons we go into
later, either zero or two output arcs — the tree
is binary. A node is a four-tuple < d, s, p, q >,
where d is a set of training instances, p, a prob-
ability distribution of the correct decisions for
all of the examples in d, and q a binary ques-

tion about the conditioning information for the
examples in d. The 0/1 answer to this ques-
tion causes the decision-tree program to follow
the left/right arc out of the node to the children
nodes. If q is null, the node is a leaf node. s

is a strict subset of the domain of the q for the
parent of h.

Decision tree construction starts with the root
node n where d consists of the several million
situations in the training data where the next
tree element needs to be guessed (according to
our probability distribution) based upon previ-
ous words and the analysis so far. At each itera-
tion one node is selected from a queue of unpro-
cessed nodes. A question q is selected, and based
upon its answers two descendents n1 and n2 are
created with d1 and d2 respectively, d1 ∪ d2 = d.
These are inserted in the queue of unprocessed
nodes and the process repeats. Termination can
be handled in multiple ways. We have chosen
to simply pick the number of nodes we create.
Nodes left on the queue are the leaf nodes of
the decision tree. We pick nodes from the heap
based upon how much they increased the prob-
ability of the data.

Still open is the selection of q at each iter-
ation. First pick a query type qt from a user
supplied set. In our case there are 27 types. Ex-
amples include the parent of the non-terminal
to be created, its predecessor, 2 previous, etc.
A complete list is given in Figure 4. Note that
the answers to these queries are not binary.

Secondly we turn our qt into a binary question
by creating two disjoint sets s1 and s2 s1∪s2 = s

where s is the domain of qt. If a particular his-
tory h ∈ d is such that qt(h) = x and x ∈ s1 then
h is put in d1. Similarly for s2. For example, if
qt is the parent relation, and the parent in h is
NP, then h goes in d1 iff NP ∈ s1. We create the
sets si by initializing them randomly, and then
for each x ∈ s try moving x to the opposite set
si. If this results in a higher data probability we
keep it in its new si, otherwise it reverts to it’s
original si. This is repeated until no switch low-
ers probability. (Or were the a’s are individual
words, until no more than two words switch.)

We illustrate with a concrete example. One
important fact quickly impressed on the cre-

677



No. Q S p(“of”) p(“in”)
0 1
1 1 NN,IN 0.05 0.03
4 1 NNS,IN 0.09 0.06
12 2 RB,IN 0.17 0.11
16 3 PP,WHPP 0.27 0.18
39 20 NP,NX 0.51 0.16
40 20 S,VP 0.0004 0.19

Figure 3: Some nodes in a decision tree for p(wi | t)

ator of parsers is the propensity of preposi-
tional phrases (PP) headed by “of” to attach
to noun phrases (NP) rather than verb phrases
(VP). Here we illustrate how a decision tree for
p(wi | t) captures this. Some of the top nodes in
this decision tree are shown in Figure 3. Each
line gives a node number, Q — the question
asked at that node, examples of answers, and
probabilities for “of” and “in”. Questions are
specified by the question type numbers given in
Figure 4 in the next section. Looking at node 0
we see that the first question type is 1 — par-
ent of the proposed word. The children trees
are 1 and 2. We see that prepositions (IN) have
been put in node 1. Since this is a binary choice,
about half the preterminals are covered in this
node. To get a feel for who is sharing this node
with prepositions each line gives two examples.
For node 1 this includes a lot of very different
types, including NN (common singular noun).

Node 1 again asks about the preterminal,
leading to node 4. At this point NN has split
off, but NNS (common plural noun) is still there.
Node 4 again asks about the preterminal, lead-
ing to node 12. By this point IN is only grouped
with things that are much closer, e.g. RB (ad-
verb).

Also note that at each node we give the prob-
ability of both “of” and “to” given the questions
and answers leading to that node. We can see
that the probability of “of” goes up from 0.05
at node 1 to 0.27 at node 16. The probabili-
ties for “to” go in lockstep. By node 16 we are
concentrating on prepositions heading preposi-
tional phrases, but nothing has been asked that
would distinguish between these two preposi-
tions. However, at node 16 we ask the ques-

tion “who is the grandparent” leading to nodes
39 and 40. Node 39 is restricted to the answer
“noun phrase” and things that look very much
like noun phrases — e.g., NX, a catchall for ab-
normal noun phrases, while 40 is restricted to
PP’s attaching to VP’s and S’s. At this point
note how the probability of “of” dramatically
increases for node 39, and decreases for 40.

That the tree is binary forces the decision
tree to use information about words and non-
terminals one bit at a time. In particular, we
can now ask for a little information about many
different previous words in the sentence.

We go from a single decision tree to a random
forest by creating many trees, randomly chang-
ing the questions used at every node. First note
that in our greedy selection of si’s the outcome
depends on the initial random assignment of a’s.
Secondly, each qt produces its own binary ver-
sion q. Rather than picking the one that raises
the data probability the most, we choose it with
probability m. With probability 1 − m we re-
peat this procedure on the list of q’s minus the
best. Given a forest of f trees we compute the
final probability by taking the average over all
the trees:

p(x | t) =
1

f

∑

j=1,f

pj(x | t)

where pj denotes the probability computed by
tree j.

4 Implementation Details

We have twenty seven basic query types as
shown in Figure 4. Each entry first gives identi-
fication numbers for the query types followed by
a description of types. The description is from
the point of view of the tree entry x to be added
to the tree. So the first line of Figure 4 speci-
fies six query types, the most local of which is
the label of the parent of x. For example, if we
have the local context “(S (NP (DT the)” and
we are assigning a probability to the pretermi-
nal after DT, (e.g., NN) then the parent of x is
NP. Similarly one of the query types from line
two is one-previous, which is DT. Two previous
is ǫ, signifying nothing in this position.

678



1-6 The non-terminal of the parent, grandpar-
ent, parent3, up to parent6

7-10 The previous non-terminal, 2-previous, up
to 4-previous

11-14 The non-terminal just prior to the par-
ent, 2-prior, up to 4 prior

15-16 The non-terminal and terminals of the
head of the previous constituent

17-18 Same, but 2 previous

19-20 Same but previous to the parent

21-22 Same but 2 previous to the parent

23-24 The non-terminal and terminal symbols
just prior to the start of the current parent
constituent

25 The non-terminal prior to the grandparent

26 Depth in tree, binned logarithmically

27 Is a conjoined phrase prior to parent.

Figure 4: Question types

Random forests, at least in obvious imple-
mentations, are somewhat time intensive. Thus
we have restricted their use to the distribution
p(x | t). The forest size we picked is 4400 nodes.
For the look-ahead probability, LAP, we use a
single decision tree with greedy optimal ques-
tions and 1600 nodes.

We smooth our random forest probabilities
by successively backing off to distributions three
earlier in the decision tree. We use linear inter-
polation so

pl(x | t) = λ(cl)∗p̂l(x | t)+(1−λ(cl))∗pl−3(x | t)

Here pl is the smoothed distribution for level l

of the tree and p̂l is the maximum likelihood (un-
smoothed) distribution. We use Chen smooth-
ing so the linear interpolation parameters λ are
functions of the Chen number of the level l node.
See (Chen and Goodman, 1996). We could back
off to l − 1, but this would slow the algorithm,
and seemed unnecessary.

Following (Klein and Manning, 2003) we han-
dle unknown and rare words by replacing them
with one of about twenty unknown word types.
For example, “barricading” would be replaced
by UNK-ING, denoting an unknown word end-
ing in “ing.” Any word that occurs less than
twenty times in the training corpus is consid-
ered rare. The only information that is retained
about it is the parts of speech with which it has
appeared. Future uses are restricted to these
pre-terminals.

Because random forests have so much latitude
in picking combinations of words for specific sit-
uations we have the impression that it can over-
fit the training data, although we have not done
an explicit study to confirm this. As a mild cor-
rective we only allow verbs appearing 75 times or
more, and all other words appearing 250 times or
more, to be conditioned upon in question types
16, 18, 20, 22, and 27. Because the inner loop of
random-forest training involves moving a condi-
tioning event to the other decedent node to see
if this raises training data probability, this also
substantially speeds up training time.

Lastly Roark obtained the results we quote
here with selective use of left-corner transforms
(Demers, 1977; Johnson and Roark, 2000). We
also use this technique but the details differ.
Roark uses left-corner transforms only for im-
mediately recursive NP’s, the most common sit-
uation by far. As it was less trouble to do
so, we use them for any immediately recursive
constituent. However, we are also aware that
in some respects left-corner transforms work
against the fully-connected tree rule as opera-
tionalizing the “understand as you go along”
cognitive constraint. For example, the normal
sentence initial NP serves as the subject of the
sentence. However in Penn-treebank grammar
style an initial NP could also be a possessive
NP as in (S (NP (NP (DT The) (NN dog)
(POS ’s)))) Clearly this NP is not the subject.
Thus using left corner transforms on all NP’s
allows the parser to conflate differing semantic
situations into a single tree. To avoid this we
have added the additional restriction that we
only allow left-corner treatment when the head
words (and thus presumably the meaning) are

679



Precision Recall F
Collins 2003 88.3 88.1 88.2
Charniak 2000 89.6 89.5 89.6
C/J 2005 91.2 90.9 91.1
Petrov et.al. 2006 90.3 90.0 90.2

Roark 2001 87.1 86.6 86.8
C/R Perceptron 87.0 86.3 86.6
C/R Combined 89.1 88.4 88.8

This paper 89.8 89.0 89.4

Figure 5: Precision/Recall measurements, Penn
Treebank Section 23, Sentence length ≤ 100

the same. (Generally head-word rules dictate
that the POS is the head of the possessive NP.)

5 Results and Analysis

We trained the parser on the standard sections
2-21 of the Penn Tree-bank, and tested on all
sentences of length ≤ 100 of section 23. We
used section 24 for development.

Figure 5 shows the performance of our model
(last line, in bold) along with the performance
of other parsers. The first group of results show
the performance of standard parsers now in use.
While our performance of 89.4% f-measure needs
improvement before it would be worth-while us-
ing this parser for routine work, it has moved
past the accuracy of the Collins-Bikel (Collins,
2003; Bikel, 2004) parser and is not statistically
distinguishable from (Charniak, 2000).

The middle group of results in Figure 5 show
a very significant improvement over the original
Roark parser, (89.4% vs.86.8%). Although we
have not discussed it to this point, (Collins and
Roark, 2004) present a perceptron algorithm for
use with the Roark architecture. As seen above
(C/R Perceptron), this does not give any im-
provement over the original Roark model. As
is invariably the case, when combined the two
models perform much better than either by it-
self (C/R Combined — 88.8%). However we still
achieve a 0.6% improvement over that result.
Naturally, a new combination using our parser
would almost surely register another significant
gain.

Conditioning Conditioning F-measure
Non-terminals Terminals
8 1 86.6
10 2 88.0
13 3 88.3
17 4 88.8
21 6 89.0

Figure 6: Labeled precision-recall results on section
24 of the Penn Tree-bank. All but one sentence of
length ≤ 100. (Last one not parsed).

In Figure 6 we show results illustrating how
parser performance improves as the probability
distributions are conditioned on more diverse in-
formation from the partial trees. The first line
has results when we condition on only the “clos-
est” eight non-terminal and the previous word.
We successively add more distant conditioning
events. The last line (89.0% F-measure) corre-
sponds to our complete model but since we are
experimenting here on the development set the
result is not the same as in Figure 5. (The result
is consistent with the parsing community’s ob-
servation that the test set is slightly easier than
the development set — e.g., average sentence
length is less.)

One other illustrative result: if we keep all
system settings constant and replace the random
forest mechanism by a single greedy optimal de-
cision tree for probability computation, perfor-
mance is reduced to 86.3% f-measure. While this
almost certainly overstates the performance im-
provement due to many random trees (the sys-
tem parameters could be better adjusted to the
one-tree case), it strongly suggests that nothing
like our performance could have been obtained
without the forests in random forests.

6 Conclusions and Future Work

We have presented a new top-down left-to-right
parsing model. Its performance of 89.4% is a
20% error reduction over the previous single-
parser performance, and indeed is a small im-
provement (0.6%) over the best combination-
parser result. The code is publically available.1

1http://bllip.cs.brown.edu/resources.shtml#software

680



PP

IN

than

NP

NNP NNP

General Motors

Figure 7: The start of an incorrect analysis for “than
General Motors is worth”

IN

than NP VP

S

General Motors is NP

worth

SBAR

Figure 8: The correct analysis for “than General Mo-
tors is worth”

Furthermore, as models of this sort have re-
ceived comparatively little attention, it seems
reasonable to think that significant further im-
provements may be found.

One particular topic in need of more study is
search errors. Consider the following example:

The government had to spend more
than General Motors is worth.

which is difficult for our parser. The problem is
integrating the words starting with “than Gen-
eral Motors.” Initially the parser believes that
this is a prepositional phrase as shown in Fig-
ure 7. However, the correct tree-bank parse in-
corporates a subordinate sentential clause“than
General Motors is worth”, as in Figure 8. Un-
fortunately, before it gets to “is” which disam-
biguates the two alternatives, the subordinate
clause version has fallen out of the parser’s beam
(unless, of course, one sets the beam-width to an
unacceptably high level). Furthermore, it does
not seem that there is any information available

IN

than NP VP

S

General Motors

SBAR

-NONE-

Figure 9: Alternative analysis for “than General Mo-
tors”

when one starts working on “than” to allow a
person to immediately pick the correct continu-
ation. It is also the case that the parsing model
gives the correct parse a higher probability if it
is available, showing that this is a search error,
not a model error.

If there is no information that would allow
a person to make the correct decision in time,
perhaps people do not need to make this deci-
sion. Rather the problem could be in the tree-
bank representation itself. Suppose we reana-
lyzed “than General Motors” in this context as
in Figure 9. Here we would not need to guess
anything in advance of the (missing) VP. Fur-
thermore, we can make this change without loos-
ing the great benefit of the treebank for training
and testing. The change is local and determin-
istic. We can tree-transform the training data
and then untransform before scoring. It is our
impression that a few examples like this would
remove a large set of current search errors.

Three other kinds of information are often
added as additional annotations to syntactic
trees: Penn-Treebank form-function tags, trace
elements, and semantic roles. Most research
on such annotation takes the parsing process as
fixed and is solely concerned with improving the
retrieval of the annotation in question. When
they have been integrated with parsing, finding
the parse and the further annotation jointly has
not improved the parse. While it is certainly
possible that this would prove to be the same for
this new model, the use of random forests to in-
tegrate more diverse information sources might
help us to reverse this state of affairs.

Finally there is no reason why we even need

681



to stop our collection of features at sentence
boundaries — information from previous sen-
tences is there for our perusal. There are
many known intra-sentence correlations, for ex-
ample “sentences” that are actually fragments
are much more common if the previous sentence
is a question. The tense of sequential sentences
main verbs are correlated. Main clause sub-
jects are more likely to be co-referent. Certainly
the “understanding” humans pick up helps them
assign structure to subsequent phrases. How
much, if any, of this meaning we can glean given
our current (lack-of) understanding of semantics
and pragmatics is an interesting question.

7 Acknowledgements

Thanks to members of BLLIP and Mark John-
son who read earlier drafts of this paper. Also
thanks to Brian Roark and Mark Johnson for
pointers to previous work.

References

Stephen Abney and Mark Johnson. 1991. Mem-
ory requirements and local ambiguities of parsing
strategies. Journal of Psycholinguistic Research,
20(3):233–250.

Y. Amit and D. Geman. 1997. Shape quantization
and recognition with randomized trees. Neural
Computation, 9:1545–1588.

Dan Bikel. 2004. On the Parameter Space of Lex-
icalized Statistical Parsing Models. Ph.D. thesis,
University of Pennsylvania.

Leo Breiman. 2004. Random forests. Machine
Learning, 45(1):5–32.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discrimina-
tive reranking. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics, pages 173–180, Ann Arbor, Michigan,
June. Association for Computational Linguistics.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In The Proceedings of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 132–139.

Stanley F. Chen and Joshua Goodman. 1996. An
empirical study of smoothing techniques for lan-
guage modeling. In Arivind Joshi and Martha
Palmer, editors, Proceedings of the Thirty-Fourth

Annual Meeting of the Association for Computa-
tional Linguistics, pages 310–318, San Francisco.
Morgan Kaufmann Publishers.

Michael Collins and Brian Roark. 2004. Incremen-
tal parsing with the perceptron algorithm. In Pro-
ceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), Main Vol-
ume, pages 111–118, Barcelona, Spain, July.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. Computational
Linguistics, 29(4):589–638.

A. Demers. 1977. Generalized left-corner parsing.
In Conference Record of the Fourth ACM Sym-
posium on Principles of Programming Languages,
1977 ACM SIGACT/SIGPLAN, pages 170–182.

Jay Earley. 1970. An efficient contex-free parsing al-
gorithm. Communications of the ACM, 6(8):451–
445.

Suzan L. Graham, Michael Harrison, and Walter L.
Ruzzo. 1980. An improved context-free recog-
nizer. ACM Transations on Programming Lan-
guages and Systems, 2(3):415–462.

James Henderson. 2003. Inducing history represen-
tations for broad coverage statistical parsing. In
Proceedings of HLT-NAACL 2003.

Mark Johnson and Brian Roark. 2000. Compact
non-left-recursive grammars using the selective
left-corner transform and factoring. In Proceed-
ings of COLING-2000.

Dan Klein and Christopher Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics.

Michell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a
large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):313–
330.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing.

Slav Petrov, Leon Barrett, Romain Thibaux, and
Dan Klein. 2006. Learning accurate, compact,
and interpretable tree annotation. In Proceedings
of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pages
433–440, Sydney, Australia, July. Association for
Computational Linguistics.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguis-
tics, 27(2):249–276.

682



Roger van Gompel and Martin J. Pickering. 2007.
Syntactic parsing. In G. Gatskil, editor, The Ox-
ford handbook of psycholinguistics. Oxford Univer-
sity Press.

Peng Xu and Frederick Jelinek. 2004. Random
forests in language modeling. In Proceedings of
the 2004 Empirical Methods in Natural Language
Processing Conference. The Association for Com-
putational Linguistics.

683


