
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 1212–1221,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Fully Lexicalising CCGbank with Hat Categories

Matthew Honnibal and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{mhonn,james}@it.usyd.edu.au

Abstract

We introduce an extension to CCG that al-
lows form and function to be represented
simultaneously, reducing the proliferation
of modifier categories seen in standard
CCG analyses.

We can then remove the non-combinatory
rules CCGbank uses to address this prob-
lem, producing a grammar that is fully lex-
icalised and far less ambiguous.

There are intrinsic benefits to full lexi-
calisation, such as semantic transparency
and simpler domain adaptation. The clear-
est advantage is a 52-88% improvement
in parse speeds, which comes with only a
small reduction in accuracy.

1 Introduction

Deep grammars return parses that map transpar-
ently to semantic analyses, allowing information
extraction systems to deal directly with content
representations. Usually, this mapping is lexically
specified, by linking lexical entries to semantic
analyses. This property, lexicalisation, is central to
some of the linguistic theories behind deep gram-
mars, particularly Combinatory Categorial Gram-
mar (Steedman, 2000) and Lexicalised Tree Ad-
joining Grammar (Joshi, 1999).

Lexicalisation can also help deep grammars
achieve satisfactory parse times. Lexicalised
grammars use few rules, which simply manipu-
late the lexical categories. The categories can be
quickly assigned in a supertagging pre-process,
dramatically reducing the search space the parser
must explore (Bangalore and Joshi, 1999).

Combinatory Categorial Grammar (CCG) is
well suited to this strategy, and Clark and Curran
(2007) have highlighted the division of labour be-
tween the parser and the supertagger as one of the

critical aspects of their approach to statistical CCG

parsing. In their system, the division is managed
with parameters that control how many categories
the parser’s chart is seeded with. But even if the
parser is only given one category per word, it still
has a lot of freedom — because the grammar it
uses is not fully lexicalised.

In a fully lexicalised CCG grammar, modifier
categories refer to the category of their head. This
category does not necessarily represent the head’s
constituent type. For instance, the category of an
adverb like still depends on whether it is modify-
ing a predicate verb (1), or a clausal adjunct (2):

(1) The lion
NP

was
VP/VP

lying
VP

still
VP\VP

(2) The lion
NP

waited,
VP

lying
VP\VP

still
(VP\VP)\(VP\VP)

Analyses like these are problematic because the
training data is unlikely to include examples of
each word in every syntactic environment that re-
quires a new category. Hockenmaier and Steed-
man’s (2007) solution was to add category spe-
cific phrase-structure rules to the grammar, which
disrupts the linguistic principles of the formalism,
and introduces over-generation and ambiguity as
shown in Figure 1.

This paper proposes a new way to balance lex-
ical and grammatical ambiguity in CCG. We in-
troduce an extension to the formalism that allows
type-changing rules to be lexically specified. The
extension adds a new field to the category objects,
and one additional rule to utilise it. This allows the
formalism to express type-changing operations in
a theoretically desirable way.

Lexically specifying the type-changing rules re-
duces the ambiguity in the grammar substantially,
which leads to substantial improvements in pars-
ing efficiency. After modifying the C&C parser and
CCGbank, the parser runs almost twice as quickly,
with only a 0.5% reduction in accuracy.

1212

Jamie Pat Robin loves

NP NP NP (S[dcl]\NP)/NP
PSG >T

S/(S/NP) S/(S\NP)
>B

S[dcl]/NP
PSG >

S[dcl]
PSG

NP\NP
<

NP

Figure 1: Over-generation by CCGbank rules.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a lexicalised grammar formalism
based on categorial grammar (Bar-Hillel, 1953).
CCG can be distinguished from other CG exten-
sions, such as categorial type-logic (Moortgat,
1997) by its attention to linguistic minimalism.
One aim of the theory is to explain universal con-
straints on natural language syntax, so the genera-
tive power of the formalism is intended to closely
match what natural language seems to require.

Steedman and Baldridge (2007) argue that the
requirements can be fulfilled almost entirely by
two basic rule types: application and composition.
Direction specific instances of these types yields a
grammar that consists of just six rules.

Initially, it seemed that some of the rules
had to be restricted to certain contexts, particu-
larly in languages that did not allow scrambling.
Baldridge and Kruijff (2003) have since shown
that rules could be restricted lexically, using a hier-
archy of slash subtypes. This relieved the need for
any language specific meta-rules, allowing CCG to
offer a completely universal grammar, and there-
fore a theory of the innate human language faculty.

With a universal grammar, language specific
variation is confined to the lexicon. A CCG lexi-
cal category is either an atomic type, like N, or a
function that specifies an argument in a particular
direction, and a result, like S\NP (where S is the
result, NP the argument, and \ indicates the argu-
ment must be found to the left).

Hockenmaier and Steedman (2007) showed that
a CCG corpus could be created by adapting the
Penn Treebank (Marcus et al., 1993). CCGbank
has since been used to train fast and accurate CCG

parsers (Clark and Curran, 2007).

3 The Need for Type-changing in CCG

We argue that there is a clear need for some sort of
type-changing mechanism in CCG. The practical
need for this has been known since at least Hock-
enmaier (2003), who introduced a type-changing
mechanism into CCGbank in order to control the
problem referred to as modifier category prolifer-
ation. We briefly describe the problem, and then
the prominent solutions that have been proposed.

Unlike formalisms like LTAG and HPSG, CCG

does not use different grammatical rules for argu-
ments and adjuncts. Instead, modifier categories
take the form X1|X1, where X is the category of
the constituent being modified, and the subscript
indicates that the result should inherit from the ar-
gument via unification. The modifier can then use
the application rule to attach to its head, and return
the head unchanged:

(3) unusually
(S[adj]\NP)/(S[adj]\NP)

resilient
S[adj]\NP

unusually here modifies the predicative adjec-
tive resilient, attaching it as an argument using
forward application. This prevents resilient from
having to subcategorise for adjuncts, since they are
optional. The problem is that unusually must sub-
categorise for the function of its head. If resilient
changes function and becomes a noun modifier, its
modifiers must change category too:

(4) an
NP/N

unusually
(N/N)/(N/N)

resilient
N/N

strain
N

There is often a way to analyse around the need
for type-changing operations in CCG. However,
these solutions tend to cause new difficulties, and
the resulting category ambiguity is quite problem-
atic (Hockenmaier and Steedman, 2002). The fact
is that form-to-function coercions are quite com-
mon in English, so the grammar needs a way to
have a constituent be modified according to its
form, before undergoing a type-change to its func-
tion category.

One way to describe the problem is to say that
CCG categories have an over-extended domain of
locality (Joshi, 1999), the part of the derivation
that it describes. A category should specify all and
only the dependencies it governs, but CCG mod-
ifier categories are often forced to specify their
heads’ dependencies as well. These undesirable
notational dependencies can also prevent modi-
fier categories from factoring recursion away from
their domain of locality.

1213

Shhhhhhhhhhhhh

(((((((((((((
S̀
````̀

      
NP

It

S[dcl]\NPhhhhhhhh
((((((((

(S[dc]\NP)/NP

is

NPXXXXXX
������

NPPPPP
����

NP

the fourth time

NP\NP
bb""

(NP\NP)/N

this

N

week

NP\NP

S[dcl]

it has happened

S\S
aaaa

!!!!
,

,

NPPPPPP
�����

NP/NP

almost

NPPPPP
����

NP
@@��

NP/N

a

N

way

NP\NP
bb""

(NP\NP)/NP

of

NP

N

life

Figure 2: CCGbank derivation showing PSG rules.

4 Problems with Existing Proposals

This section completes the motivation of the pa-
per by arguing that the existing proposals for type-
changing are linguistically unsatisfactory, practi-
cally difficult, or a combination of the two.

4.1 Problems with PSG Rules
Hockenmaier and Steedman (2002) includes a
brief discussion of the modifier category prolif-
eration problem, and introduces unary phrase-
structure rules to address the situation. Figure 2
shows two such rules. The <S[dcl] → NP\NP>1

rule allows the reduced relative clause, it has hap-
pened, to be analysed as a modifier without affect-
ing the category any modifiers that might attach to
it. The other PSG type-changing rule in the deriva-
tion, <, NP→ S\S> enables the extraposition, us-
ing the punctuation to make the rule more precise.

One alternative to type-changing rules here
would be to have time subcategorise for the clause,
with a category like NP/S[dcl]. This would cap-
ture the constraint that only a restricted subset of
nouns can be extracted as adjuncts in this way.
The problem is that the extra argument would in-
terfere with the attachment of adjuncts like this
week to the NP, because the NP\NP category can-
not be allowed to participate in backwards cross-
composition rules (Baldridge and Kruijff, 2003).

There are 204 type-changing PSG rules in the
training partition of CCGbank. 53 of the frequent
rules transform produce modifier categories, 48
of them transforming verbal categories. The PSG

1Phrase-structure rules are presented in bottom-up notation.

rules also handle a variety of other constructions,
such as form/function discrepancies like gerund
nominals. By far the most frequent rule, with
115,333 occurrences, is <N →NP>, which trans-
forms bare nominals into noun phrases.

Steedman and Baldridge (2007) describes the
CCG grammar as consisting of just 6 language uni-
versal combinatory rules, plus two lexical opera-
tions (type raising). Not only do the 204 category
specific type-changing rules in CCGbank make
the grammar ambiguous, they also run contrary to
the design principles of the formalism.

CCG is a linguistically motivated formalism,
which means it is not only interested in providing a
convenient, computable notation for grammar de-
velopment. In addition, it constitutes a hypothesis
about the nature of the human language faculty.
Like other lexicalised formalisms, part of the the-
ory is that it is the grammar that is innate, and the
lexicon is acquired.

If the grammar is innate, it must be language
universal, confining all language specific varia-
tion to the lexicon. Baldridge and Kruijff (2003)
described how the remaining language specific
grammatical constraints described by Steedman
(2000) could be controlled in the lexicon, using
multi-modal slashes that have since become inte-
grated into the main body of the theory (Steedman
and Baldridge, 2007).

In addition to being linguistically undesirable,
the PSG rules in CCGbank produce practical dif-
ficulties. Every additional rule increases ambigu-
ity, motivating the C&C system to choose to im-
plement only the most frequent. This decreases

1214



the parser’s coverage, and introduces another di-
mension of domain sensitivity. For instance, the
type-changing rule that allows gerund nominals,
<S[ng]\NP → NP>, occurs roughly 300 times in
the training data. The parser does not implement
this rule, so if it is ported to a new domain, where
the construction is frequent, the rule will have to
be added. Presumably, the parser would also ben-
efit from the removal of rules which are infrequent
in some new, target domain.

The restricted set of PSG rules the parser does
implement results in considerable added ambigu-
ity to the grammar. Figure 1 shows how the rules
interact to produce over-generation.

The PSG rules are also a barrier to the semantic
transparency of the theory, one of its most attrac-
tive properties for natural language engineering.
CCG derivations are isomorphic to semantic analy-
ses, because the derivation instantiates dependen-
cies between CCG categories that can be paired
with semantic categories. This isomorphism is
disrupted by the addition of PSG rules, since the
grammar is no longer lexicalised. Often, the rules
can be semantically annotated, restoring the iso-
morphism; but sometimes, this cannot be done.

For instance, the extraposition rule in Figure 2
transforms the NP category into S\S. There is no
syntactic argument on the NP category to map the
dependency to, so the dependency cannot be cre-
ated (and is in fact missing from CCGbank).

4.2 Lexical Rules and Zero Morphemes
The CCGbank PSG extension is closely related to
the zero morpheme categories proposed by Aone
and Wittenburg (1990), which they suggest be
compiled into unary type-changing rules for pro-
cessing. At first glance, it seems that conceptual-
ising the rules as zero morphemes offers a way to
locate them in the lexicon, avoiding the linguistic
difficulties of having a language-specific grammar.
However, CCG aims to provide a transparent inter-
face between the surface form and the semantic
analysis, so epsilon categories, traces, movement
rules and other unrealised structures are explicitly
banned (Steedman, 2000).

From a processing standpoint, if zero mor-
pheme categories are not compiled into phrase-
structure rules, then they will complicate the cate-
gory assignment phase considerably, since we can
no longer assume that exactly one category will be
assigned per word. We are not aware of any pro-

posal for how this difficulty might be overcome.
Carpenter (1992) provides a different sugges-

tion for how sparse modifier categories can be ac-
commodated. His solution is to use meta-rules
that systematically expand the lexicon, much like
the lexical rules used in HPSG (Flickinger, 1987),
which exploit structural regularities to ensure that
the lexicon is more complete.

The problem with this is that it does not actu-
ally make the category set less sparse, so the su-
pertagger’s task is just as difficult. The only ad-
vantage is that its dictionary will be more com-
plete. This is important, but does not solve the
underlying inefficiency in the grammar: CCG cat-
egories have an over-extended domain of locality,
because they cannot represent form and function
simultaneously. This is why some type-changing
mechanism is required.

5 Lexically Specified Type-Changing

This section describes our mechanism for lexi-
cally specifying the PSG rules in CCGbank. Figure
3 shows an example of a reduced relative clause
analysed using our extension, hat categories.

CCGbank deploys a solution that achieves form
transparency at the expense of type transparency,
by allowing type-changing rules that are not lexi-
cally specified. One way to recover the lost type
transparency would be to demand that lexical cat-
egories specify what type changing rule (if any)
the category can eventually undergo. For instance,
imagine we have two type-changing rules we wish
to include in our grammar:

a) S[ng]\NP ⇒ NP\NP

b) S[ng]\NP ⇒ VP\VP2

With these two rules, there will be three ways
the S[ng]\NP category might behave in a deriva-
tion. What we need are two extra categories to
control this:

1. S[ng]\NP only allows combinatory rules.

2. (S[ng]\NP)a allows rule a, but not rule b.

3. (S[ng]\NP)b allows rule b, but not rule a.

Instead of encoding a reference to a rule, we
encode the production rule itself in the category.

2S\NP is occasionally abbreviated as VP.

1215



asbestos once used in cigarette filters

NNP VP/VP (S[pss]\NP)(NP\NP) (VP\VP)/NP N/N NNP
H > >

NP (S[pss]\NP)(NP\NP) N
H

NP
>

VP\VP
<

S[pss](NP\NP)
H

NP\NP
<

NP

Figure 3: Analysis of a reduced relative clause with lexicalised type-changing.



CAT (S[ng]\NP)NP\NP/NP

RES



CAT (S[ng]\NP)NP\NP

RES

[
CAT S
FEAT ng

]
ARG NP1

DIR \
HAT NP\NP1


ARG NP
DIR /

HAT [-]


Figure 4: AVM of a hat category.

This allows us to remove the rule from the gram-
mar. Since the bottom of the production will al-
ways be the category itself, we can just specify
how the category can be rewritten:

1. S[ng]\NP can be combined, but not rewritten.

2. (S[ng]\NP)NP\NP can be rewritten as NP\NP.

3. (S[ng]\NP)VP\VP can be rewritten as VP\VP.

We refer to the superscript category as a hat cat-
egory, as a reference to the notation, but also to
denote the fact that it allows the category to per-
form a different function, or put a different ‘hat’
on. Categories that have a hat specified are re-
ferred to as hatted categories.

5.1 Changes to Category Objects
Figure 4 shows an AVM representation of the
(S[ng]\NP)NP\NP/NP category. A field, labelled
hat, has been added to store the destination cate-
gory of the result, NP\NP. The NP argument in
the hat category is co-indexed with the NP argu-
ment in the hatted category. The NP argument is
also co indexed with the result of the destination

category, reflecting the fact that the NP\NP cate-
gory is a modifier, whose head will be the head of
its argument.

Hat categories are handled the same as any other
field during unification. If the two hat fields can-
not be unified, unification fails; and if one hat field
has an empty value, it inherits the value of the hat
field of the other category when unification suc-
ceeds. CCG already requires a unification process
for agreement features (Hockenmaier and Steed-
man, 2007); the hat categories we have introduced
behave identically.

As Figure 4 shows, hat categories can be added
to inner results, allowing arguments to be applied
before the type-changing rule. We add a restriction
that prevents categories with an outermost hat field
from applying arguments — essentially equiva-
lent to stipulating that the slash in a category like
S[ng]\NP must have a null mode.

We also stipulate that only adjuncts may ap-
ply hatted arguments, which can also be lexically
represented by assuming that all non-adjunct cate-
gories have a null value in their hat field, causing
unification with a hatted category to fail.

Together, these restrictions ensure that the unary
rule is used. The hatted category cannot function
as a non-hatted category, because it cannot use its
own arguments, and cannot be used as an argu-
ment of another category. This prevents hat cate-
gories from forming categories that are function-
ally disjunctive: the notation cannot be used to
simulate something like an optional argument.

5.2 The Type-Change Rule
To replace the 204 PSG rules in CCGbank, we only
need to introduce one extra schematic rule into the
grammar:

XY ⇒ Y (5)

This rule simply unpacks the category, performing
the lexically specified type-change.

1216



5.3 Generative Power
Because hat fields are only transmitted when cate-
gories are successfully unified, there is no way to
produce a novel X ⇒ Y unary production during a
derivation. This means that any derivation that can
be produced using the schematic type-change rule
we have added to the grammar can be produced by
adding a set of unary phrase-structure rules instead
— ensuring that we do not require any extra gen-
erative power than is required to parse CCGbank.

The hat categories do increase the strong gen-
erative power of a CCG grammar that does
not include the CCGbank type-changing rules.
We suggest that this is desirable, in line with
Joshi’s (1999) argument that formalisms should be
designed to have the maximum expressivity while
maintaining the minimum weak generative power
necessary to produce the constructions that have
been observed in natural language.

6 Lexicalising Type-raising

So far, we have focused on replacing the phrase-
structure rules added to CCGbank, which are not
part of the CCG linguistic theory. However, the
theory does include some type-changing rules, re-
ferred to as type-raising. Forward and backward
type-raising are used to transform a category X
into the logically equivalent categories T/(T\X)
and T\(T/X) respectively.

Type-raising is generally described as a lexical
operation, rather than a grammatical rule, because
only certain language specific combinations of T
and X produce valid type-raise categories. How-
ever, no specific mechanism for controlling type-
raising has been proposed.

Hat categories are an obvious candidate for this,
so we perform an additional set of experiments
which lexicalise the type-raising rules in CCG-
bank, in addition to the PSG rules.

7 Adapting CCGbank

This section describes how we converted CCG-
bank’s PSG rules into analyses that used hat cat-
egories. Most of the PSG rules are unary, which
meant that our changes were limited to adding hat
categories to the child of the unary production and
its subtree. The binary PSG rules that we con-
verted effectively just used punctuation as a cue
for a unary type-change, as seen in the extrapo-
sition rule in Figure 2. These were handled by

adding an extra node for the punctuation applica-
tion, leaving a unary production:

S\S
ee%%

, NP

−→ S\S
ee%%

, S\S

NP

(6)

An alternative analysis would be to assign the
punctuation mark a category to perform the type-
change — in this case, (S\S)/NP. However, this
analysis will be unreliable for many genres, where
punctuation is used inconsistently, so we preferred
that hat category analysis, which we found pro-
duced slightly better results.

We used the same method to convert cases
where CCGbank used conjunctions to cue a type-
change, where the Penn Treebank conversion pro-
cess produced a derivation where two sides of a
coordination had different categories. There were
90 such conjunction coercion rules, which we have
not counted amongst the 204 PSG rules, since they
are ultimately caused by conversion noise.

The main complication when adapting CCG-
bank was the fact that CCG node labels are inter-
dependent through a derivation. If one node label
is changed, its immediate children have to change
node label too, and the changes must be propa-
gated further from there.

Since the dependency between the parent and its
two children is different for each combinator, our
node change rules determine the rule used for the
original production, and then invoke the appropri-
ate replacement rule. In general, the rules find the
result (Ar) and argument (Aa) of the original parent
A and replace them with the appropriate part of the
new parent B. If one of the children is an adjunct
category, a different rule is used. The node change
rules for forward combinators are:

App A/Y Y ⇒ B/Y Y
Comp Ar/Y Y/Aa ⇒ Br/Y Y/Ba
Adj. app A/A A ⇒ B/B B
Adj. comp Ar/Ar Ar/Aa ⇒ Br/Br Br/Ba

The translation rules for backward and crossed
combinators are directly analogous, with the
slashes permuted appropriately.

8 Adapting the CCG Parser

We took the standard 1.02 release of the C&C

parser Clark and Curran (2007) and implemented
the changes required for lexically specified type-
changing.

1217



Section 00 Section 23
LP LR LF LFauto sent cat cov LP LR LF LFauto sent cat cov

CCGbank derivs 87.18 86.31 86.74 84.78 35.15 94.04 99.06 87.76 86.99 87.38 84.84 37.03 94.26 99.63
Hat derivs 86.64 86.91 86.77 84.44 35.03 93.27 99.53 86.94 87.26 87.10 84.76 36.62 93.35 99.71
Hat+TR derivs 86.58 86.87 86.73 84.16 34.47 93.10 99.63 86.83 87.16 87.00 84.67 36.73 93.17 99.75
CCGbank hybrid 88.07 86.49 87.27 85.30 35.94 94.16 99.06 88.36 87.02 87.68 85.27 36.74 94.33 99.63
Hat hybrid 87.30 86.94 87.12 84.85 35.40 93.31 99.53 87.26 87.03 87.15 84.79 36.25 93.24 99.71
Hat+TR hybrid 85.79 85.30 85.55 83.13 31.90 92.48 99.63 85.93 85.65 85.79 83.39 32.03 92.46 99.75

Table 1: Labelled Precision, Recall and F-measure, coverage results on Section 00 and Section 23.

The most significant change was building hat
passing and unification into the existing unifica-
tion engine. For many parsers, this would have
been straightforward since they already support
unification with complex feature structures. How-
ever, one of the advantages of CCGbank is that
the unification required is quite simple, which is
one of the reasons why the C&C parser is very fast.
We would estimate that adding hat passing dou-
bled the complexity of the unification engine.

The second step was to add support for hat pass-
ing to all of the existing combinators, because they
do not use the unification engine to construct the
result category. Since each of the combinators
is hard-coded for speed, this was time-consuming
and error prone. However, we created a detailed
set of regression tests for the new versions which
greatly reduced our development time.

Finally, we needed to turn off the existing unary
rules in the parser, and add the simple additional
type-change rule.

9 Setting Dictionary Thresholds

The main parameterisation we performed on the
development section was to tune the K parame-
ter of the parser, which controls the frequency at
which a word’s tag dictionary is used during su-
pertagging. For words more frequent than K, the
supertagger is restricted to choosing between cat-
egories that have been assigned to the word in the
training data. Otherwise, the POS dictionary is
used instead. The K parameter has multiple val-
ues, because the supertagger and parser are inte-
grated such that the supertagger initially supplies
only a narrow beam of categories to the parser,
which is widened if parsing fails.

Since we have made the category set larger, the
default values of K = 20,20,20,20,150 produces
poor performance, up to 1.5% lower than the fig-
ures we report in Table 1. We set the K parameter

Section 00 Section 23
Training Gold Auto Gold Auto
CCGbank derivs 399 413 639 544
Hat derivs 552 566 1070 827
Hat+TR derivs 718 677 1072 906
CCGbank hybrid 369 379 564 480
Hat hybrid 505 513 921 678
Hat+TR hybrid 645 601 913 785

Table 2: Parse speeds in words per second.

Original Hat
Types Frequency Types Frequency

Binary CCG 2,714 1,097,809 3,840 1,097,358
Type-raise 52 3,998 52 3,996
Unhat 0 0 241 161,069
Binary PSG 215 1,615 74 172
Unary PSG 157 159,663 0 0

Table 3: Production types and frequencies.

to 50,300,80,80,3000. We investigated the effect
of this setting on the original model, and found
that it had little effect, so we continued using the
default values for the original model.

We also experimented with altering the β values
for the hat parser, which did not improve the per-
formance of the state-of-the-art parsing models.

10 Parsing Results

The left side of Table 1 shows our performance
on the development data, Section 00. All of the
dependency results we report refer to the original
dependencies distributed with CCGbank. To en-
sure our results were comparable, we produced a
mapping table of dependency labels from sections
02-21, used for parser training. The table maps
the dependency labels in our corpus to the most
frequent label assigned to matching dependencies
in CCGbank. The correct label is assigned 99.94%
of the time. The hat categories move to the the lex-
icon information that used to be represented in the
grammar, resulting in a larger, more informative

1218



category set, making the category accuracies (the
cat column in the table) not comparable.

We experimented with two of the parsing mod-
els described by Clark and Curran (2007). The
derivs model uses features calculated over the
derivations, while the hybrid model uses features
calculated on the dependency structures. How-
ever, unlike the deps model Clark and Curran
(2007) describe, the hybrid model uses two sets
of derivation-based constraints. One set are the
normal form constraints, as described by Eisner
(1996). It also uses constraints that prevent the
parser from using productions that were not seen
in the training data. The hybrid model is slightly
more accurate, but also slightly slower, because
the dependency-based decoding is less efficient.

All of the systems were within 0.5% in accuracy
on the development set, with one exception. The
HAT+TR version performed very poorly with the
hybrid model, while its performance with the de-
rivs model was comparable to the other systems.
The same drop in performance occurs on the eval-
uation set. We do not currently have a convincing
explanation for this, but we presume it is the re-
sult of some unforeseen interaction between the
removal of the type-raising rules from the gram-
mar and the dependency-based features.

The accuracy results on the test data, Section
23, saw similar trends, except that the gap be-
tween the hat systems and the original CCGbank
increased slightly. The CCGbank hybrid model
was only 0.1% more accurate than the HAT hybrid
model on Section 00, but is 0.5% more accurate
on Section 23.

Table 2 compares the parse speeds for the lexi-
calised hat corpora against a parser trained on the
original CCGbank, using the two models. Exactly
the same settings were used to obtain parse times
as were used in the accuracy experiments. The
experiments were all performed on a single core
2.6GHz Pentium 4 Xeon. Speeds are reported as
words parsed per second.

On both Section 00 and Section 23, with both
the derivs and hybrid models, the HAT system was
substantially faster than the original parser. The
HAT+TR system was faster than the HAT system
using automatic POS tags, and slightly faster on
Section 00.

The hat categories allow quite favourable trade-
offs between speed and accuracy to be made. The
original models allow us to parse with automatic

POS tags at 480 words per second with 85.27%
accuracy with the hybrid model, or at 544 words
per second with 84.86% accuracy using the derivs
model. Using the HAT derivs model, we could in-
stead parse at 827 words per second with 84.76%
accuracy, or at 906 words per second and 84.67%
accuracy using the HAT+TR system.

In summary, the HAT and CCGbank derivs mod-
els are equivalent in accuracy, but the HAT ver-
sion is 52% faster. The CCGbank hybrid model
remains the most accurate, but there will also be
many tasks where the 88% improvement in speed
will make it worth using the HAT+TR derivs parser
instead of the CCGbank hybrid model, at a cost of
0.6% accuracy.

11 Corpus Statistics

Table 3 shows the number of types and the number
of occurrences of CCG combinatory rules and PSG

rules occurred in CCGbank and the hat corpus.
The hat corpus removes almost all unlicensed

productions, leaving only a long tail of rare pro-
ductions that are the result of noisy derivations.
These productions are generally symptomatic of
problematic analyses, and are difficult to address
automatically because they do not conform to any
consistent pattern. We have omitted the hat+TR
corpus in these figures, because it only differs
from the the hat corpus with respect to type-raising
productions.

Lexicalising the corpus increases the number of
categories required substantially. There are 407
categories that occur 10 or more times in the train-
ing section of CCGbank. The equivalent figure for
the HAT corpus is 507, and for the HAT+TR corpus
it is 540.

12 Cleaner Analyses with Hat Categories

The lexicalised type-changing scheme we have
proposed offers many opportunities for favourable
analyses, because it allows form and function to
be represented simultaneously. However, we have
limited our changes to replacing the existing CCG-
bank non-combinatory rules. This allows us to
compare the two strategies for controlling modi-
fier category proliferation more closely, but still
offers some improved analyses.

The most frequent unary production in CCG-
bank, the N⇒NP rule, ensures that nominals can
always take the N category, so adjectives sel-
dom need to be assigned NP/NP. Because ad-

1219



jectives and nouns are open class, and bare noun
phrases are fairly common, this reduction in cate-
gory sparseness is quite important.

Lexicalising the type changing rule forces the
head noun to acquire a different category, but does
ensure that its modifiers can attach at the N level
— which is also more linguistically desirable:

service lift maintenance contracts

N/N NN/N NN/N N
>

NN/N

H
N/N

>

NN/N

H
N/N

>
N

This analysis also prevents the extreme category
proliferation problem caused by left-branching
noun phrases:

service lift maintenance contracts
((N/N)...(N/N)) (N/N)/(N/N) N/N N

>
(N/N)/(N/N)

>
N/N

>
N

Figure 3 shows a more typical example of an
improved analysis. The non-finite clause is func-
tioning as an adnominal, but its modifier is able to
select its canonical category.

One of the advantages of the CCGbank phrase-
structure rules is that they allow the corpus to in-
clude derivations for which no valid CCG parse can
be formed. The C&C parser has difficulty taking
advantage of these extra sentences, however, be-
cause only so many of the arbitrary binary PSG

rules can be added to the grammar without making
it too ambiguous. Once these rules are lexicalised,
the categories that produce them can be added to
the lexicon as unexceptional, albeit rare, cases.

13 Conclusion

Lexicalised grammars represent most of the infor-
mation in a derivation with a sequence of lexi-
cal categories. Traditional CCG analyses require
redundancy between categories whenever there
is nested modification, which suggests that such
analyses will encounter sparse data problems.

While the addition of phrase-structure rules pre-
vents this proliferation of modifier categories, it
does so at a high price. The bulk of the type-
changing rules in CCGbank are not implemented

in the C&C parser, because to do so would increase
the ambiguity in the grammar enormously.

CCG parsers must carefully manage ambiguity,
because there are many ways to bracket the same
CCG derivation. Even with a restricted set of PSG

rules, the C&C parser experiences very large chart
sizes. In addition to making the grammar more
ambiguous, the PSG rules make it less theoreti-
cally sound, and more difficult to produce seman-
tic analyses from the parser’s output.

We have show how CCG analyses can be fully
lexicalised in a way that closely mirrors the in-
troduction of phrase-structure rules. The result is
a corpus that produces faster, accurate parsers, is
well suited for domain adaptation, and allows for
more transparent semantic analysis. We can also
use the same mechanism to lexically specify type-
raising, the first concrete proposal to handle type-
raising as a lexical transformation we are aware of.

From an immediate, empirical perspective, we
have substantially improved the parsing speed of
what is already the fastest deep parser available.
Improvements in parsing efficiency are important
in making parsing a practical technology, since the
volume of text we have available for processing is
growing even faster than the processing resources
we have available.

Acknowledgements

We would like to thank Stephen Clark and the
anonymous reviewers for EMNLP and the Gram-
mar Engineering Across Frameworks workshop
for their valuable feedback. This work was sup-
ported by the Australian Research Council under
Discovery Project DP0665973.

References

Chinatsu Aone and Kent Wittenburg. 1990. Zero
morphemes in unification-based combinatory
categorial grammar. In ACL, pages 188–193.

Jason Baldridge and Geert-Jan Kruijff. 2003.
Multi-Modal Combinatory Categorial Gram-
mar. In Proceedings of the European Associ-
ation of Computational Linguistics (EACL).

Srinivas Bangalore and Aravind Joshi. 1999. Su-
pertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Yehoshua Bar-Hillel. 1953. A quasi-arithmetical
notation for syntactic description. Language,
29:47–58.

1220



Bob Carpenter. 1992. Categorial grammars, lex-
ical rules, and the English predicative, chap-
ter 3. Oxford University Press.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguis-
tics, 33(4):493–552.

Jason Eisner. 1996. Efficient normal-form parsing
for Combinatory Categorial Grammar. In Pro-
ceedings of the 34th Annual Meeting of the As-
sociation for Computational Linguistics (ACL-
96), pages 79–86. Santa Cruz, CA, USA.

Dan Flickinger. 1987. Lexical Rules in the Hierar-
chical Lexicon. Ph.D. thesis, Stanford Univer-
sity, Stanford, CA.

Julia Hockenmaier. 2003. Data and Models for
Statistical Parsing with Combinatory Catego-
rial Grammar. Ph.D. thesis, University of Ed-
inburgh.

Julia Hockenmaier and Mark Steedman. 2002. Ac-
quiring compact lexicalized grammars from a
cleaner treebank. In Third LREC, pages 1974–
1981.

Julia Hockenmaier and Mark Steedman. 2007.
CCGbank: a corpus of CCG derivations
and dependency structures extracted from the
Penn Treebank. Computational Linguistics,
33(3):355–396.

Aravind K. Joshi. 1999. Explorations of a domain
of locality: Lexicalized tree-adjoining gram-
mar. In CLIN.

Mitchell Marcus, Beatrice Santorini, and Mary
Marcinkiewicz. 1993. Building a large anno-
tated corpus of English: The Penn Treebank.
Computational Linguistics, 19(2):313–330.

Michael Moortgat. 1997. Categorial type logics.
In Johan van Benthem and Alice ter Meulen, ed-
itors, Handbook of Logic and Language, chap-
ter 2, pages 93–177. Elsevier, Amsterdam and
MIT Press, Cambridge MA.

Mark Steedman. 2000. The Syntactic Process. The
MIT Press, Cambridge, MA.

Mark Steedman and Jason Baldridge. 2007.
Combinatory categorial grammar. In Robert
Borsley and Kersti Borjars, editors, Non-
Transformational Syntax. Blackwells.

1221


