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Abstract

Measuring the similarity between two
texts is a fundamental problem in many
NLP and IR applications. Among the ex-
isting approaches, the cosine measure of
the term vectors representing the origi-
nal texts has been widely used, where the
score of each term is often determined
by a TFIDF formula. Despite its sim-
plicity, the quality of such cosine similar-
ity measure is usually domain dependent
and decided by the choice of the term-
weighting function. In this paper, we pro-
pose a novel framework that learns the
term-weighting function. Given the la-
beled pairs of texts as training data, the
learning procedure tunes the model pa-
rameters by minimizing the specified loss
function of the similarity score. Com-
pared to traditional TFIDF term-weighting
schemes, our approach shows a significant
improvement on tasks such as judging the
quality of query suggestions and filtering
irrelevant ads for online advertising.

1 Introduction

Measuring the semantic similarity between two
texts is an important problem that has many use-
ful applications in both NLP and IR communi-
ties. For example, Lin (1998) defined a similar-
ity measure for automatic thesaurus creation from
a corpus. Mihalcea et al. (2006) developed sev-
eral corpus-based and knowledge-based word sim-
ilarity measures and applied them to a paraphrase
recognition task. In the domain of web search, dif-
ferent methods of measuring similarity between
short text segments have recently been proposed
for solving problems like query suggestion and al-
ternation (Jones et al., 2006; Sahami and Heilman,
2006; Metzler et al., 2007; Yih and Meek, 2007).

Among these similarity measures proposed in
various applications, the vector-based methods are
arguably the most widely used. In this approach,
the text being compared with is first represented
by a term vector, where each term is associated
with a weight that indicates its importance. The
similarity function could be cosine (i.e., the inner
product of two normalized unit term vectors, or
equivalently a linear kernel), or other kernel func-
tions such as the Gaussian kernel.

There are essentially two main factors that de-
cide the quality of a vector-based similarity mea-
sure. One is thevector operationthat takes as in-
put the term vectors and computes the final simi-
larity score (e.g., cosine). The other is how these
term vectors are constructed, including the term
selection process and how the weights are deter-
mined. For instance, a TFIDF scheme for mea-
suring document similarity may follow the bag-of-
words strategy to include all the words in the doc-
ument when constructing the term vectors. The
weight of each term is simply the product of its
term frequency (i.e., the number of occurrences
in the document) and inverse document frequency
(i.e., the number of documents in a collection that
contain this term).

Despite its simplicity and reasonable perfor-
mance, such approach suffers from several weak-
nesses. For instance, the similarity measure is not
domain-dependent and cannot be easily adjusted
to better fit the final objective, such as being a
metric value used for clustering or providing better
ranking results. Researchers often need to experi-
ment with variants of TFIDF formulas and differ-
ent term selection strategies (e.g., removing stop-
words or stemming) to achieve acceptable perfor-
mance (Manning et al., 2008). In addition, when
more information is available, such as the position
of a term in the document or whether a term is part
of an anchor text, incorporating it in the similarity
measure in a principled manner may not be easy.
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In this paper, we propose a generalterm-
weighting learning framework, TWEAK, that
learns the term-weighting function for the vector-
based similarity measures. Instead of using a
fixed formula to decide the weight of each term,
TWEAK uses a parametric function of features of
each term, where the model parameters are learned
from labeled data. Although the weight of each
term conceptually represents its importance with
respect to the document, tuning the model param-
eters to optimize for such objectives may not be
the best strategy due to two reasons. While the
label of whether a pair of texts is similar is not dif-
ficult to collect from human annotators1, the label
of whether a term in a document is important is
often very ambiguous and hard to decide. Even
if such annotation issue can be resolved, aligning
the term weights with thetrue importance of each
term may not necessarily lead to our real objec-
tive – deriving a better similarity measure for the
target application. Therefore, our learning frame-
work, TWEAK, assumes that we are given only the
labels of the pairs of texts being compared, such
as whether the two texts are considered similar by
human subjects.

TWEAK is flexible in choosing various loss
functions that are close to the true objectives,
while still maintaining the simplicity of the vector-
based similarity measures. For example, a system
that implements the TFIDF cosine measure can
easily replace the original term-weighting scores
with the ones output by TWEAK without changing
other portions of the algorithm. TWEAK is also
novel compared to other existing learning meth-
ods for similarity measures. For instance, we do
not learn the scores of all the terms in the vocab-
ulary directly, which is one of the methods pro-
posed by Bilenko and Mooney (2003). Because
the vocabulary size is typically large in the text
domain (e.g., all possible words in English), learn-
ing directly the term-weighting scores may suffer
from the data sparsity issue and cannot general-
ize well in practice. Instead, we focus on learning
the model parameters for features that each term
may have, which results in a much smaller fea-
ture space. TWEAK also differs from the model
combination approach proposed by Yih and Meek
(2007), where the output scores of different simi-
larity measures are combined via a learned linear

1As argued in (Sheng et al., 2008), low-cost labels may
nowadays be provided by outsourcing systems such as Ama-
zon’s Mechanical Turk or online ESP games.

function. In contrast, TWEAK effectively learns
a new similarity measure by tuning the term-
weighting function and can potentially be comple-
mentary to the model combination approach.

As will be demonstrated in our experiments, in
applications such as judging the relevance of dif-
ferent query suggestions and determining whether
a paid-search ad is related to the user query,
TWEAK can incorporate various kinds of term–
document information and learn a term-weighting
function that significantly outperforms the tradi-
tional TFIDF scheme in several evaluation met-
rics, when using the same vector operation (i.e.,
cosine) and the same set of terms.

We organize the rest of the paper as follows.
Sec. 2 first gives a high-level view of our term-
weighting learning framework. We then formally
define our model and present the loss functions
that can be optimized for in Sec. 3. Experiments
on target applications are presented in Sec. 4. Fi-
nally, we compare our approach with some related
work in Sec. 5 and conclude the paper in Sec. 6.

2 Problem Statement

To simplify the description, assume that the texts
we are comparing are two documents. A general
architecture of vector-based similarity measures
can be formally described as follows. Given two
documentsDp andDq, a similarity function maps
them to a real-valued number, where a higher
value indicates these two documents are seman-
tically more related, considered by the measure.

Suppose a pre-defined vocabulary setV =
{t1, t2, · · · , tn} consists of all possible terms (e.g.,
tokens, words) that may occur in the documents.
Each documentDp is represented by a term vector
of lengthn: vp = (s1

p, s
2
p, · · · , sn

p ), wheresi
p ∈ R

is the weight of termti, and is determined by the
term-weighting functiontw that depends on the
term and the document (i.e.,si

p ≡ tw(ti, Dp)).
The similarity between documentsDp and Dq

is then computed by a vector operation function
fsim : (vp,vq) → R, illustrated in Fig. 1.

Determining the specific functionsfsim andtw
effectively decides the final similarity measure.
For example, the functions that construct the tra-
ditional TFIDF cosine similarity can be:

fsim(vp,vq) ≡ vp · vq

||vp|| · ||vq|| (1)

tw(ti, Dp) ≡ tf(ti, Dp) · log
(

N

df(ti)

)
(2)
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Figure 1: A general architecture of vector-based
similarity measures

whereN is the size of the document collection for
deriving document frequencies,tf anddf are the
functions computing the term frequency and doc-
ument frequency, respectively.

In contrast, TWEAK also takes a specified vec-
tor functionfsim but assumes a parametric term-
weighting functiontww. Given the training data,
it learns the model parametersw that optimize for
the designated loss function.

3 Model

As a specific instantiation of our learning frame-
work, the term-weighting function used in this pa-
per is a linear combination of features extracted
from the input term and document. In particular,
the weight of termti with respect to documentDp

is

si
p = tww(ti, Dp) ≡

∑
j

wjφj(ti, Dp), (3)

whereφj is thej-th feature function andwj is the
corresponding model parameter.

As for the vector operation functionfsim, we
use the same cosine function (Eq. 1). Notice that
we choose these functional forms for their sim-
plicity and good empirical performance shown in
preliminary experiments. However, other smooth
functions can certainly be used.

The choice of loss function for training model
parameters depends on the true objective in the
target application. In this work, we consider two
different learning settings: learning directly the
similarity metric and learning thepreference or-
dering, and compare several loss functions exper-
imentally.

3.1 Learning Similarity Metric

In this setting, we assume that the learning al-
gorithm is given a set of document pairs. Each
of them is associated with a label that indicates
whether these two documents are similar (e.g., a
binary label where 1 means similar and 0 oth-
erwise) or the degree of similarity (e.g., a real-
valued label ranges from 0 to 1), considered by the
human subjects. A training set ofm examples can
be denoted as{(y1, (Dp1 , Dq1)), (y2, (Dp2 , Dq2)),
· · ·, (ym, (Dpm , Dqm))}, where yk is the label
and(Dpk

, Dqk
) is the pair of documents to com-

pare. Following the vector construction described
in Eq. 3, letvp1 ,vq1 , · · · ,vpm ,vqm be the corre-
sponding term vectors of these documents.

We consider two commonly used loss functions,
sum-of-squares errorandlog loss2:

Lsse(w) =
1
2

m∑
k

(yk − fsim(vpk
,vqk

))2 (4)

Llog(w) =
m∑
k

−yk log(fsim(vpk
,vqk

))

−(1− yk) log(1− fsim(vpk
,vqk

)) (5)

Eq. 4 and Eq. 5 can further be regularized by
adding α

2 ||w||2 in the loss function, which may
improve the performance empirically and also
constrain the range of the final term-weighting
scores. Learning the model parameters for min-
imizing these loss functions can be done us-
ing standard gradient-based optimization methods.
We choose the L-BFGS (Nocedal and Wright,
2006) method in our experiments for its guaran-
tee to find a local minimum and fast convergence.
The derivation of gradients is fairly straightfor-
ward, which we skip here.

Notice that other loss functions can also be used
in this framework. Interested readers can refer to,
say, (Bishop, 1995), for other loss functions and
their theoretical justifications.

3.2 Learning Preference Ordering

In many applications where the similarity measure
is applied, the goal is to obtain arankedlist of the
candidate elements. For example, in the task of

2Although in theory the cosine function may return a neg-
ative value and make the log-loss uncomputable, this can
be easily avoided in practice by selecting appropriate ini-
tial model parameters and by constraining the term-weighting
scores to be non-negative.
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filtering irrelevant ads, a good similarity measure
is expected to rank appropriate ads higher than
the irrelevant ones. A desired trade-off of false-
positive (mistakenly filtered good ads) and false-
negative (unfiltered bad ads) can be achieved by
selecting a decision threshold. The exact value
of the similarity measure, in this case, is not cru-
cial. For these applications, it is more important if
the model parameters can better predict thepair-
wise preference. Learning preference ordering is
also motivated by the observation that preference
annotations are generally more reliable than cat-
egorical similarity labels (Carterette et al., 2008)
and has been advocated recently by researchers
(e.g., Burges et al. (2005)).

In the setting of learning preference ordering,
we assume that each training example consists
of two pairs of documents, associated with a la-
bel indicating which pair of documents is consid-
ered more preferable. A training set ofm exam-
ples can be formally denoted as{(y1, (xa1 , xb1)),
(y2, (xa2 , xb2)), · · ·, (ym, (xam , xbm))}, where
xak

= (Dpak
, Dqak

) andxbk
= (Dpbk

, Dqbk
) are

two pairs of documents andyk ∈ {0, 1} indicates
the pairwise order preference, where1 meansxak

should be ranked higher thanxbk
and0 otherwise.

We use a loss function that is very similar to
the one proposed by Dekel et al. (2004) for label
ranking. Let∆k be the difference of the similarity
scores of these two document pairs. Namely,

∆k = fsim(vpak
,vqak

)− fsim(vpbk
,vqbk

)

The loss functionL, which can be shown to upper
bound the pairwise accuracy (i.e., the 0-1 loss of
the pairwise predictions), is:

L(w) =
m∑

k=1

log(1+exp(−yk·∆k−(1−yk)·(−∆k)))

(6)
Similarly, Eq. 6 can be regularized by adding
α
2 ||w||2 in the loss function.

4 Experiments

We demonstrate how to apply our term-weighting
learning framework, TWEAK, to measuring sim-
ilarity for short text segments and to judging
the relevance of an ad landing page given an
query. In addition, we compare experimentally the
performance of using different training settings,
loss functions and features against the traditional
TFIDF term-weighting scheme.

4.1 Similarity for Short Text Segments

Judging the similarity between two short text seg-
ments is a crucial problem for many search and on-
line advertising applications. For instance,query
reformulationor query substitutionneeds to mea-
sure the similarity between two queries. A prod-
uct keyword recommendation system needs to de-
termine whether the given product name and the
suggested keyword is related.

Because the length of the text segment is typi-
cally short, ranging from a single word to a dozen
words, naively applying methods based on word
overlapping such as the Jaccard coefficient leads
to poor results (Sahami and Heilman, 2006; Yih
and Meek, 2007). To overcome this difficulty, Sa-
hami and Heilman (2006) proposes a Web-kernel
function, which first expands the short text seg-
ment by issuing it to a search engine as the query,
and then collectes the snippets of the top results to
construct a pseudo-document. TFIDF term vectors
of the pseudo-documents are used to represent the
original short text segments and the cosine score
of these two vectors is used as the similarity mea-
sure.

In this section, we apply TWEAK to this
problem by replacing the TFIDF term-weighting
scheme with the learned term-weighting function,
when constructing the vectors from the pseudo-
documents. Our target application isquery sug-
gestion– automatically presenting queries that are
related to the one issued by the user. In particu-
lar, we would like to use our similarity measure
as a filter to determine whether queries suggested
by various algorithms and heuristics are indeed
closely related to the target query.

4.1.1 Task & Data

Our query suggestion dataset has been previously
used in (Metzler et al., 2007; Yih and Meek, 2007)
and is collected in the following way. From the
search logs of a commercial search engine, a ran-
dom sample of 363 thousand queries from the top
1 million most frequent queries in late 2005 were
first taken as the query and suggestion candidates.
Among them, 122 queries were chosen randomly
as our target queries; each of them had up to 100
queries used as suggestions, generated by various
query suggestion mechanisms.

Given these pairs of query and suggestions, hu-
man annotators judged the level of similarity using
a 4-point scale –Excellent, Good, Fair andBad,

796



where Excellent and Good suggestions are consid-
ered clearly related to the query intent, while the
other two categories mean the suggestions are ei-
ther too general or totally unrelated. In the end,
4,852 query/suggestion pairs that had effective an-
notations were collected. The distribution of the
four labels is: Excellent - 5%, Good - 12%, Fair -
44% and Bad - 39%.

For the simplicity of both presentation and im-
plementation, query/suggestion pairs labeled as
Excellent or Good are treated as positive examples
and the rest as negative ones. Notice that TWEAK

is not restricted in using only binary labels. For
instance, the pairwise preference learning setting
only needs to know which pair of objects being
compared is more preferred. The model and algo-
rithm do not have to change regardless of whether
the label reflects the degree of similarity (e.g, the
original 4-scale labels) or binary categories. For
the metric learning setting, an ordinal regression
approach (e.g, (Herbrich et al., 2000)) can be ap-
plied for multi-category labels.

We used the same query expansion method as
described in (Sahami and Heilman, 2006). Each
query/suggestion was first issued to a commercial
search engine. The result page with up to 200
snippets (i.e., titles and summaries) was used as
the pseudo-document to create the term vector that
represents the original query/suggestion. As de-
scribed earlier in Eq. 3, the weight of each term
is a linear function of a set of predefined features,
which are described next.

4.1.2 Features

Because the pseudo-documents are constructed
using the search result snippets instead of regular
web documents, special formatting or link infor-
mation provided by HTML is not very meaning-
ful. Therefore, we focused on using features that
are available for plain-text documents, including:

• Bias: 1 for all examples.

• TF: We usedlog(tf + 1) as theterm fre-
quencyfeature, wheretf is the number of
times the term occurs in the original pseudo-
document.

• DF: We usedlog(df + 1) as thedocument
frequencyfeature, wheredf is the number of
documents in our collection that contain this
term.

• QF: The search engine query log reflects the
distribution of the words/phrases in which
people are interested (Goodman and Car-
valho, 2005; Yih et al., 2006). We took a log
file with the most frequent 7.5 million queries
and usedlog(qf + 1) as feature, whereqf is
the query frequency.

• Cap: A capitalized word may indicate being
part of a proper noun or being more impor-
tant. When the term is capitalized in at least
one occurrence in the pseudo-document, the
value of this feature is 1; otherwise, it is 0.

• Loc & Len: The beginning of a regular doc-
ument often contains a summary with impor-
tant words. In the pseudo-documents cre-
ated using search snippets, words that occur
in the beginning come from the top results,
which are potentially more relevant to the
original query/suggestion. We created two
specific features using this location informa-
tion. Letloc be the word position of the target
term andlen be the total number of words of
this pseudo-document. The logarithmic value
log(loc + 1) and the ratioloc/len were both
used as features. In order for the learning pro-
cedure to adjust the scaling, the logarithmic
value of the document length,log(len + 1),
was also used.

4.1.3 Results

We conducted the experiments using 10-fold
cross-validation. The whole query/suggestion
pairs were first split into 10 subsets of roughly
equal sizes. Pairs with the same target query were
put in the same subset. In each round, one subset
was used for testing. 95% of the remaining data
was used for training the model and 5% was used
as the development set. We trained six models
with different values of the regularization hyper-
parameterα ∈ {0.003, 0.01, 0.03, 0.1, 0.3, 1} and
determined which model to use based on its per-
formance on the development set, although the re-
sult actually did not vary a lot asα changed.

We compared three learning configurations
– metric learning with sum-of-squares error
(Metricsse) and log loss (Metriclog) and the
pairwise preference learning (Preference). The
learned term-weighting functions were used to
compare with the Web-kernel similarity function,
which implemented the TFIDF term-weighting
scheme using Eq. 2.
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Table 1: The AUC scores, mean averaged preci-
sion and precision at 3 of similarity measures us-
ing different term-weighting functions. The num-
bers with the† sign are statistically significantly
better compared to the Web-kernel method.

Method AUC MAP Prec@3

Web-kernel 0.732 0.540 0.556
Metricsse 0.775† 0.590 0.553
Metriclog 0.781† 0.585 0.545
Preference 0.782† 0.597† 0.570

We evaluated these models using three different
evaluation metrics: the AUC score, precision at
k and MAP (mean averaged precision). The area
under the ROC curve (AUC) is typically used to
judge the overall quality of a ranking function. It
has been shown equivalent to the averaged accu-
racy of the pairwise preference predictions of all
possible element pairs in the sequence, and can be
calculated by the the following Wilcoxon-Mann-
Whitney statistic (Cortes and Mohri, 2004):

A(f ;x,y) =
∑

i,j:yi>yj

If(xi)>f(xj)+
1
2
If(xi)=f(xj),

where f is the similarity measure,x is the se-
quence of compared elements andy is the labels.

Another metric that is commonly used in a rank-
ing scenario isprecision atk, which computes
the accuracy of the top-rankedk elements and ig-
nores the rest. We usedk = 3 in our task, which
means that for each target query, we selected three
suggestions with the highest similarity scores and
computed the averaged accuracy.

One issue of precision atk is that it does not
provide an overall quality measure of the ranking
function. Therefore, we also present MAP (mean
averaged precision), which is a single number that
summarizes the performance of the ranking func-
tion by considering both precision and recall, and
has been shown reliable in evaluating various in-
formation retrieval tasks (Manning et al., 2008).
Suppose there arem relevant elements in a se-
quence, wherer1, r2, · · · , rm are their locations.
The averaged precision is then:

AP =
1
m

m∑
j=1

Prec(rj),

wherePrec(rj) is the precision atrj . We com-
puted the averaged precision values of the 10 test

sets in our cross-validation setting and report their
mean value.

As shown in Table 1, all three learned term-
weighting functions lead to better similarity mea-
sures compared to the TFIDF scheme in terms of
the AUC and MAP scores, where the preference
order learning setting performs the best. However,
for the precision at 3 metric, only the preference
learning setting has a higher score than the TFIDF
scheme, but the difference is not statistically sig-
nificant3. This is somewhat understandable since
the design of our loss function focuses on the over-
all quality instead of only the performance of the
top ranked elements.

4.2 Query/Page Similarity

Measuring whether a page is relevant to a given
query is the main problem in information retrieval
and has been studied extensively. Instead of re-
trieving web pages that are relevant to the query
according to the similarity measure, our goal is
to implement a paid-search ad filter for commer-
cial search engines. In this scenario, textual ads
with bid keywords that match the query can en-
ter the auction and have a chance to be shown on
the search result page. However, as the advertisers
may bid on keywords that are not related to their
advertisements, it is important for the system to fil-
ter irrelevant ads to ensure that users only receive
useful information. For this purpose, we measure
the similarity between the query and the ad land-
ing page (i.e., the page pointed by the ad) and re-
move the ad when the score of its landing page is
below a pre-selected threshold4.

Given a pair of query and ad landing page,
while thequery term vector is constructed using
the same query expansion technique described in
Sec. 4.1, thepageterm vector can be created di-
rectly from the web page since it is a regular doc-
ument that contains enough content. As usual,
our goal is to produce a better similarity measure
by learning the term-weighting functions for these
two types of vectors jointly.

3We conducted a paired-t test on the 10 individual
scores from the cross-validation results of each learned term-
weighting function versus the Web-kernel method. The re-
sults are considered statistically significant when the p-value
is lower than 0.05.

4One may argue that the filter should measure the simi-
larity between the query and ad-text. However, an ad will
not provide useful information to the user if the final destina-
tion page is not relevant to the query, even if its ad-text looks
appealing.
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4.2.1 Data

We first collected a random sample of queries and
paid-search ads shown on a commercial search en-
gine during 2008, as well as the ad landing pages.
Judged by several human annotators, each page
was labeled as relevant or not compared to the is-
sued query. After removing some pairs where the
query intent was not clear or the landing page was
no longer available, we managed to collect 13,341
query/page pairs with reliable labels. Among
them, 8,309 were considered relevant and 5,032
were labeled irrelevant.

4.2.2 Features

In this experiment, we tested the effect of using
different features and experimented with three fea-
ture sets:TF&DF, Plain-textandHTML. TF&DF
contains onlylog(tf +1), log(df +1) and the bias
feature. The goal of using this feature set is to
test whether we can learn a better term-weighting
function given thesameamount of information as
the TFIDF scheme has. The second feature set,
Plain-text, consists of all the features described in
Sec. 4.1.2. As mentioned earlier, this set of fea-
tures can be used for regular text documents that
do not have special formatting information. Fi-
nally, feature setHTML is composed of all the
features used inPlain-textplus features extracted
from some special properties of web documents,
including:

• Hypertext: The anchor text in an HTML
document usually provides important infor-
mation. If there is at least one occurrence of
the term that appears in some anchor text, the
value of this feature is 1; otherwise, it is 0.

• URL: A web document has a uniquely useful
property – the name of the document, which
is its URL. If the term is a substring of the
URL, then the value of this feature is 1; oth-
erwise, it is 0.

• Title: The value of this feature is 1 when the
term is part of the title; otherwise, it is 0.

• Meta: Besides Title, several meta tags used
in the HTML header explicitly show the im-
portant words selected by the page author.
Specifically, whether the term is part of a
meta-keyword is used as a binary feature.
Whether the term is in the meta-description
segment is also used.

Table 2: The AUC scores, true-positive rates at
false-positive rates 0.1 and 0.2 of the ad filter
based on different term-weighting functions. The
difference between any pair of numbers of the
same evaluation metric is statistically significant.

Method AUC TPRfnr=0.1 TPRfnr=0.2

TFIDF 0.794 0.527 0.658
TF&DF 0.806 0.430 0.639

Plain-text 0.832 0.503 0.704
HTML 0.855 0.568 0.750

Because the term vector that represents the
query is created from the pseudo-document (i.e., a
collection of search snippets), the values of these
HTML-specific features are all 0 for the query
term vector. This set of features are only useful for
deciding the weights of the terms in a page term
vector.

4.2.3 Results

We split our data into 10 subsets and conducted
the experiments using the same 10-fold cross-
validation setting described in Sec. 4.1.3, includ-
ing how we used the development set to select the
regularization hyper-parameterα. The pairs that
have the same target query were again put in the
same subsets. We used only the preference or-
dering learning setting for its good performance
shown in the previous set of experiments. Models
compared here were learned from the three dif-
ferent sets of features, as well as the same fixed
TFIDF term-weighting formula (i.e., Eq. 2) used
in Sec. 4.1. Table 2 reports the averaged results
of the 10 testing sets in AUC, as well as the true-
positive rates at two low false-positive rate points
(FPR=0.1 and FPR=0.2). The difference between
any pair of numbers of the same evaluation metric
is statistically significant5.

As we can see from the table, having more fea-
tures does lead to a better term-weighting func-
tion. With all features (i.e.,HTML), the model
achieves the highest AUC score among all con-
figurations. Features available in plain-text doc-
uments (i.e.,Plain-text) other than term frequency
and document frequency can still improve the per-
formance significantly. When only the TF and DF
features are available, the learned term-weighting
function still outperforms the TFIDF scheme, al-

5We conduct paired-t tests as described in Sec. 4.1.3. All
the p-values after Bonferroni correction are less than 0.01.
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Figure 2: ROC Curves of the ad filters using dif-
ferent term-weighting functions
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though the improvement gain is much smaller
compared to the other two settings.

Notice that the behaviors of these models at dif-
ferent false-positive regions varies from the tra-
ditional TFIDF scheme. At a low false-positive
point (e.g., FPR=10%), only the model that uses
all features performs better than TFIDF. This phe-
nomenon can be clearly observed from the ROC
curves plotted in Fig. 2, where the models were
trained using half of the data and applied to the
other half to generate the similarity scores. If only
the performance at a very low false-positive rate
matters, TWEAK can still be easily adjusted by
modifying the loss function using techniques such
as training with utility (Domingos, 1999; Morik et
al., 1999).

5 Related Work

Our term-weighting learning framework can be
analogous to the “Siamese” architecture for learn-
ing jointly two neural networks that share the same
set of model weights (Bromley et al., 1993). For
instance, a term vector can be viewed as a very
large single-layer neural network, where each term
in the vocabulary is a node that takes as input the
features and outputs the learned term-weighting
score. Previous applications of this learning ma-
chine are typically problems in image processing
or computer vision. For example, Chopra et al.
(2005) designed an algorithm to learn a similar-
ity metric for face verification, which is based on
the difference between two vectors. In our earlier
experiments (not reported in this paper) of using
vector difference instead of cosine, we did not ob-
serve positive outcomes. We hypothesize that be-
cause the length of the term vector in our problem

can be extremely large (i.e., the size of the vocab-
ulary), a similarity measure based on vector differ-
ence can easily be affected by terms that do not oc-
cur in both documents, even when the co-occurred
terms have very large weights.

Learning similarity measures for text has also
been proposed by several researchers. For in-
stance, Bilenko and Mooney (2003) applied SVMs
to directly learn the weights of co-occurred words
in two text records, which are then used for
measuring similarity for duplicate detection. Al-
though this approach worked moderately well in
the database domain, it may not be suitable to han-
dle general text similarity problems for two rea-
sons. First, the vocabulary size is typically large,
which results in a very high dimensional feature
space for the learning problem. It is very likely
that some rarely used and yet important terms oc-
cur in the testing documents but not in the training
data. The weights of those terms may not be reli-
able or even be learned. Second, this learning ap-
proach can only learn the importance of the terms
from the labels of whether two texts are considered
similar, how to incorporate the basic information
of these terms such as the position or query log
frequency is not clear.

An alternative learning approach is to combine
multiple similarity measures with learned coeffi-
cients (Yih and Meek, 2007), or to apply the tech-
nique ofkernel alignment(Cristianini et al., 2002)
to combining a set of kernel functions for tun-
ing a more appropriate kernel based on labeled
data. This type of approaches can be viewed
as constructing an ensemble of different existing
similarity measures without modifying the term
weighting function, and may not generate math-
ematically equivalent similarity functions as de-
rived by TWEAK. Although learning in this ap-
proach is usually very fast due to the model form
and the small number of parameters to learn, its
improvement is limited by the quality of the in-
dividual similarity measures. In spite of the fun-
damental difference between our approach and
this combination method, it is worth noticing that
these two approaches are in fact complementary
to each other. Having a newly learned term-
weighting function effectively provides a new sim-
ilarity measure and therefore can be combined
with other measures.
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6 Conclusions

In this paper, we presented a novel term-weighting
learning framework, TWEAK, for improving sim-
ilarity measures based on term vectors. Given the
labels of text pairs for training, our method learns
the model parameters to calculate the score of each
term, optimizing the desired loss function that is
suitable for the target application. As we demon-
strated in the experiments, TWEAK with differ-
ent features and training settings significantly out-
performs the traditional TFIDF term-weighting
scheme.

TWEAK also enjoys several advantages com-
pared to existing methods. From an engineer-
ing perspective, adopting the new term-weighting
scores produced by our model is straightforward.
If a similarity measure has been implemented,
the algorithm need not be changed – only the
term vectors need to be updated. From the learn-
ing perspective, additional information regard-
ing each term with respect to the document can
now be incorporated easily via feature functions.
Weights (i.e., model parameters) of these features
are learned in a principled way instead of being
adjusted manually. Finally, TWEAK is potentially
complementary to other methods for improving
the similarity measure, such as model combination
of various types of similarity measures (Yih and
Meek, 2007) or different term vector construction
methods such as Latent Semantic Analysis (Deer-
wester et al., 1990).

In the future, we plan to explore more vector op-
erations other than the inner-product (i.e., cosine)
as well as different functional forms of the term-
weighting function (e.g. log-linear instead of lin-
ear). Designing new loss functions to better fit the
true objectives in various target applications and
studying the quality of a similarity measure based
on both term-weighting learning and model com-
bination are also on our agenda. In terms of appli-
cations, we would like to apply TWEAK in other
problems such as paraphrase recognition and near-
duplicate detection.
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