
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 505–513,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Model Adaptation via Model Interpolation and Boosting
for Web Search Ranking

Jianfeng Gao*, Qiang Wu*, Chris Burges*, Krysta Svore*,
Yi Su#, Nazan Khan$, Shalin Shah$, Hongyan Zhou$

*Microsoft Research, Redmond, USA
{jfgao; qiangwu; cburges; ksvore}@microsoft.com

#Johns Hopkins University, USA
suy@jhu.edu

$Microsoft Bing Search, Redmond, USA
{nazanka; a-shas; honzhou}@microsoft.com

Abstract

This paper explores two classes of model adapta-
tion methods for Web search ranking: Model In-
terpolation and error-driven learning approaches
based on a boosting algorithm. The results show
that model interpolation, though simple, achieves
the best results on all the open test sets where the
test data is very different from the training data.
The tree-based boosting algorithm achieves the
best performance on most of the closed test sets
where the test data and the training data are sim-
ilar, but its performance drops significantly on
the open test sets due to the instability of trees.
Several methods are explored to improve the
robustness of the algorithm, with limited success.

1 Introduction

We consider the task of ranking Web search
results, i.e., a set of retrieved Web documents
(URLs) are ordered by relevance to a query is-
sued by a user. In this paper we assume that the
task is performed using a ranking model (also
called ranker for short) that is learned on labeled
training data (e.g., human-judged
query-document pairs). The ranking model acts
as a function that maps the feature vector of a
query-document pair to a real-valued score of
relevance.

Recent research shows that such a learned
ranker is superior to classical retrieval models in
two aspects (Burges et al., 2005; 2006; Gao et al.,
2005). First, the ranking model can use arbitrary
features. Both traditional criteria such as TF-IDF
and BM25, and non-traditional features such as
hyperlinks can be incorporated as features in the
ranker. Second, if large amounts of high-quality
human-judged query-document pairs were
available for model training, the ranker could
achieve significantly better retrieval results than
the traditional retrieval models that cannot ben-
efit from training data effectively. However,
such training data is not always available for

many search domains, such as non-English
search markets or person name search.

One of the most widely used strategies to re-
medy this problem is model adaptation, which
attempts to adjust the parameters and/or struc-
ture of a model trained on one domain (called the
background domain), for which large amounts of
training data are available, to a different domain
(the adaptation domain), for which only small
amounts of training data are available. In Web
search applications, domains can be defined by
query types (e.g., person name queries), or lan-
guages, etc.

In this paper we investigate two classes of
model adaptation methods for Web search
ranking: Model Interpolation approaches and
error-driven learning approaches. In model
interpolation approaches, the adaptation data is
used to derive a domain-specific model (also
called in-domain model), which is then com-
bined with the background model trained on the
background data. This appealingly simple con-
cept provides fertile ground for experimentation,
depending on the level at which the combination
is implemented (Bellegarda, 2004). In er-
ror-driven learning approaches, the background
model is adjusted so as to minimize the ranking
errors the model makes on the adaptation data
(Bacchiani et al., 2004; Gao et al. 2006). This is
arguably more powerful than model interpola-
tion for two reasons. First, by defining a proper
error function, the method can optimize more
directly the measure used to assess the final
quality of the Web search system, e.g., Normalized
Discounted Cumulative Gain (Javelin & Kekalainen,
2000) in this study. Second, in this framework,
the model can be adjusted to be as fine-grained as
necessary. In this study we developed a set of
error-driven learning methods based on a
boosting algorithm where, in an incremental
manner, not only each feature weight could be

505

changed separately, but new features could be
constructed.

We focus our experiments on the robustness
of the adaptation methods. A model is robust if it
performs reasonably well on unseen test data
that could be significantly different from training
data. Robustness is important in Web search
applications. Labeling training data takes time.
As a result of the dynamic nature of Web, by the
time the ranker is trained and deployed, the
training data may be more or less out of date.
Our results show that the model interpolation is
much more robust than the boosting-based me-
thods. We then explore several methods to im-
prove the robustness of the methods, including
regularization, randomization, and using shal-
low trees, with limited success.

2 Ranking Model and Quality
Measure in Web Search

This section reviews briefly a particular example
of rankers, called LambdaRank (Burges et al.,
2006), which serves as the baseline ranker in our
study.

Assume that training data is a set of input/
output pairs (x, y). x is a feature vector extracted
from a query-document pair. We use approx-
imately 400 features, including dynamic ranking
features such as term frequency and BM25, and
statistic ranking features such as PageRank. y is
a human-judged relevance score, 0 to 4, with 4 as
the most relevant.

LambdaRank is a neural net ranker that maps
a feature vector x to a real value y that indicates
the relevance of the document given the query
(relevance score). For example, a linear Lamb-
daRank simply maps x to y with a learned weight

vector w such that 𝑦 = 𝐰 ∙ 𝐱. (We used nonli-
near LambdaRank in our experiments). Lamb-
daRank is particularly interesting to us due to the
way w is learned. Typically, w is optimized w.r.t.
a cost function using numerical methods if the
cost function is smooth and its gradient w.r.t. w
can be computed easily. In order for the ranker
to achieve the best performance in document
retrieval, the cost function used in training
should be the same as, or as close as possible to,
the measure used to assess the quality of the
system. In Web search, Normalized Discounted
Cumulative Gain (NDCG) (Jarvelin and Kekalai-
nen, 2000) is widely used as quality measure. For
a query, NDCG is computed as

𝒩𝑖 = 𝑁𝑖
2𝑟 𝑗 − 1

log 1 + 𝑗

𝐿

𝑗 =1

, (1)

where 𝑟(𝑗) is the relevance level of the j-th doc-
ument, and the normalization constant Ni is
chosen so that a perfect ordering would result in
𝒩𝑖 = 1. Here L is the ranking truncation level at
which NDCG is computed. The 𝒩𝑖 are then av-
eraged over a query set. However, NDCG, if it
were to be used as a cost function, is either flat or
discontinuous everywhere, and thus presents
challenges to most optimization approaches that
require the computation of the gradient of the
cost function.

LambdaRank solves the problem by using an
implicit cost function whose gradients are speci-
fied by rules. These rules are called λ-functions.
Burges et al. (2006) studied several λ-functions
that were designed with the NDCG cost function
in mind. They showed that LambdaRank with
the best λ-function outperforms significantly a
similar neural net ranker, RankNet (Burges et al.,
2005), whose parameters are optimized using the
cost function based on cross-entropy.

The superiority of LambdaRank illustrates the
key idea based on which we develop the model
adaptation methods. We should always adapt
the ranking models in such a way that the NDCG
can be optimized as directly as possible.

3 Model Interpolation

One of the simplest model interpolation methods
is to combine an in-domain model with a back-
ground model at the model level via linear in-
terpolation. In practice we could combine more
than two in-domain/background models. Let-
ting Score(q, d) be a ranking model that maps a
query-document pair to a relevance score, the
general form of the interpolation model is

𝑆𝑐𝑜𝑟𝑒(𝑞, 𝑑) = 𝛼𝑖𝑆𝑐𝑜𝑟𝑒𝑖 𝑞, 𝑑 ,

𝑁

𝑖=1

 (2)

where the ’s are interpolation weights, opti-
mized on validation data with respect to a pre-
defined objective, which is NDCG in our case.
As mentioned in Section 2, NDCG is not easy to
optimize, for which we resort to two solutions,
both of which achieve similar results in our ex-
periments.

The first solution is to view the interpolation
model of Equation (2) as a linear neural net
ranker where each component model Scorei(.) is
defined as a feature function. Then, we can use
the LambdaRank algorithm described in Section
2 to find the optimal weights.

An alternative solution is to view interpola-
tion weight estimation as a multi-dimensional
optimization problem, with each model as a

506

dimension. Since NCDG is not differentiable, we
tried in our experiments the numerical algo-
rithms that do not require the computation of
gradient. Among the best performers is the
Powell Search algorithm (Press et al., 1992). It
first constructs a set of N virtual directions that
are conjugate (i.e., independent with each other),
then it uses line search N times, each on one vir-
tual direction, to find the optimum. Line search
is a one-dimensional optimization algorithm.
Our implementation follows the one described in
Gao et al. (2005), which is used to optimize the
averaged precision.

The performance of model interpolation de-
pends to a large degree upon the quality and the
size of adaptation data. First of all, the adaptation
data has to be “rich” enough to suitably charac-
terize the new domain. This can only be
achieved by collecting more in-domain data.
Second, once the domain has been characterized,
the adaptation data has to be “large” enough to
have a model reliably trained. For this, we de-
veloped a method, which attempts to augment
adaptation data by gathering similar data from
background data sets.

The method is based on the k-nearest-neighbor
(kNN) algorithm, and is inspired by Bishop
(1995). We use the small in-domain data set D1
as a seed, and expand it using the large back-
ground data set D2. When the relevance labels
are assigned by humans, it is reasonable to as-
sume that queries with the lowest information
entropy of labels are the least noisy. That is, for
such a query most of the URLs are labeled as
highly relevant/not relevant documents rather
than as moderately relevance/not relevant
documents.

Due to computational limitations of
kNN-based algorithms, a small subset of queries
from D1 which are least noisy are selected. This
data set is called S1. For each sample in D2, its
3-nearest neighbors in S1 are found using a co-
sine-similarity metric. If the three neighbors are
within a very small distance from the sample in
D2, and one of the labels of the nearest neighbors
matches exactly, the training sample is selected
and is added to the expanded set E2, in its own
query. This way, S1 is used to choose training
data from D2, which are found to be close in
some space.

This process effectively creates several data
points in close neighborhood of the points in the
original small data set D1, thus expanding the
set, by jittering each training sample a little. This
is equivalent to training with noise (Bishop,
1995), except that the training samples used are

actual queries judged by a human. This is found
to increase the NDCG in our experiments.

4 Error-Driven Learning

Our error-drive learning approaches to ranking
modeling adaptation are based on the Stochastic
Gradient Boosting algorithm (or the boosting
algorithm for short) described in Friedman
(1999). Below, we follow the notations in Fried-
man (2001).

Let adaptation data (also called training data in
this section) be a set of input/output pairs {xi, yi},
i = 1…N. In error-driven learning approaches,
model adaptation is performed by adjusting the
background model into a new in-domain model
𝐹: 𝑥 → 𝑦 that minimizes a loss function L(y, F(x))
over all samples in training data

𝐹∗ = argmin
𝐹

 𝐿(𝑦𝑖 , 𝐹(𝐱𝑖))

𝑁

𝑖=1

. (3)

We further assume that F(x) takes the form of
additive expansion as

𝐹 𝐱 = 𝛽𝑚ℎ 𝐱; 𝐚𝑚

𝑀

𝑚=0

, (4)

where h(x; a) is called basis function, and is
usually a simple parameterized function of the
input x, characterized by parameters a. In what
follows, we drop a, and use h(x) for short. In
practice, the form of h has to be restricted to a
specific function family to allow for a practically
efficient procedure of model adaptation. β is a
real-valued coefficient.

Figure 1 is the generic algorithm. It starts
with a base model F0, which is a background
model. Then for m = 1, 2, …, M, the algorithm
takes three steps to adapt the base model so as to
best fit the adaptation data: (1) compute the re-
sidual of the current base model (line 3), (2) select
the optimal basis function (line 4) that best fits
the residual, and (3) update the base model by
adding the optimal basis function (line 5). The
two model adaptation algorithms that will be
described below follow the same 3-step adapta-
tion procedure. They only differ in the choice of
h. In the LambdaBoost algorithm (Section 4.1) h

1 Set F0(x) be the background ranking model
2 for m = 1 to M do

3 𝑦𝑖
′ = −

𝜕𝐿 𝑦 𝑖 ,𝐹 𝐱𝑖

𝜕𝐹 𝐱𝑖

𝐹 𝐱 =𝐹𝑚 −1 𝐱

, for i = 1… N

4 (ℎ𝑚 , 𝛽𝑚) = argmin
ℎ ,𝛽

 𝑦𝑖
′ − 𝛽ℎ(𝐱𝑖)

2𝑁

𝑖=1

5 𝐹𝑚 𝐱 = 𝐹𝑚−1 𝐱 + 𝛽𝑚ℎ(𝐱)

Figure 1. The generic boosting algorithm for model
adaptation

507

is defined as a single feature, and in LambdaS-
MART (Section 4.2), h is a regression tree.

Now, we describe the way residual is com-
puted, the step that is identical in both algo-
rithms. Intuitively, the residual, denoted by y’
(line 3 in Figure 1), measures the amount of er-
rors (or loss) the base model makes on the train-
ing samples. If the loss function in Equation (3) is
differentiable, the residual can be computed
easily as the negative
gradient of the loss function. As discussed in
Section 2, we want to directly optimize the
NDCD, whose gradient is approximated via the
λ-function. Following Burges et al. (2006), the
gradient of a training sample (xi, yi), where xi is a
feature vector representing the query-document
pair (qi, di), w.r.t. the current base model is com-
puted by marginalizing the λ-functions of all
document pairs, (di, dj), of the query, qi, as

𝑦𝑖
′ = ∆NDCG ∙

𝜕𝐶𝑖𝑗

𝜕𝑜𝑖𝑗

,
𝑗≠𝑖

 (5)

where ∆NDCG is the NDCG gained by swapping
those two documents (after sorting all docu-
ments by their current scores); 𝑜𝑖𝑗 ≡ 𝑠𝑖 − 𝑠𝑗 is the

difference in ranking scores of di and dj given qi;
and Cij is the cross entropy cost defined as

𝐶𝑖𝑗 ≡ 𝐶 𝑜𝑖𝑗 = 𝑠𝑗 − 𝑠𝑖

+ log(1 + exp(𝑠𝑖 − 𝑠𝑗)).
(6)

Thus, we have
𝜕𝐶𝑖𝑗

𝜕𝑜𝑖𝑗

=
−1

1 + exp 𝑜𝑖𝑗
. (7)

This λ-function essentially uses the cross en-
tropy cost to smooth the change in NDCG ob-
tained by swapping the two documents. A key
intuition behind the λ-function is the observation
that NDCG does not treat all pairs equally; for
example, it costs more to incorrectly order a pair,
where the irrelevant document is ranked higher
than a highly relevant document, than it does to
swap a moderately relevant/not relevant pair.

4.1 The LambdaBoost Algorithm

In LambdaBoost, the basis function h is defined
as a single feature (i.e., an element feature in the
feature vector x). The algorithm is summarized
in Figure 2. It iteratively adapts a background
model to training data using the 3-step proce-

dure, as in Figure 1. Step 1 (line 3 in Figure 2) has
been described.

Step 2 (line 4 in Figure 2) finds the optimal
basis function h, as well as its optimal coefficient
β, that best fits the residual according to the
least-squares (LS) criterion. Formally, let h and β
denote the candidate basis function and its op-
timal coefficient. The LS error on training data

is 𝐿𝑆 ℎ; 𝛽 = 𝑦𝑖
′ − 𝛽ℎ 𝑁

𝑖=0
2

, where 𝑦𝑖
′ is com-

puted as Equation (5). The optimal coefficient of

h is estimated by solving the equation 𝜕 𝑦𝑖
′ −𝑁

𝑖=1

𝛽ℎ2/𝜕𝛽=0. Then, β is computed as

𝛽 =
 𝑦𝑖

′ℎ(𝐱𝑖)
𝑁
𝑖=1

 ℎ(𝐱𝑖)
𝑁
𝑖=1

. (8)

Finally, given its optimal coefficient β, the op-
timal LS loss of h is

𝐿𝑆 ℎ; 𝛽 = 𝑦𝑖
′ × 𝑦𝑖

′

𝑁

𝑖=1

−
 𝑦𝑖

′ℎ 𝐱𝑖
𝑁
𝑖=1 2

 ℎ2(𝐱𝑖)
𝑁
𝑖=1

. (9)

Step 3 (line 5 in Figure 2) updates the base
model by adding the chosen optimal basis func-
tion with its optimal coefficient. As shown in
Step 2, the optimal coefficient of each candidate
basis function is computed when the basis func-
tion is evaluated. However, adding the basis
function using its optimal efficient is prone to
overfitting. We thus add a shrinkage coefficient 0
< υ < 1 – the fraction of the optimal line step
taken. The update equation is thus rewritten in
line 5 in Figure 2.

Notice that if the background model contains
all the input features in x, then LambdaBoost
does not add any new features but adjust the
weights of existing features. If the background
model does not contain all of the input features,
then LambdaBoost can be viewed as a feature
selection method, similar to Collins (2000), where
at each iteration the feature that has the largest
impact on reducing training loss is selected and
added to the background model. In either case,
LambdaBoost adapts the background model by
adding a model whose form is a (weighted) li-
near combination of input features. The property
of linearity makes LambdaBoost robust and less
likely to overfit in Web search applications. But
this also limits the adaptation capacity. A simple
method that allows us to go beyond linear
adaptation is to define h as nonlinear terms of the
input features, such as regression trees in
LambdaSMART.

4.2 The LambdaSMART Algorithm

LambdaSMART was originally proposed in Wu
et al. (2008). It is built on MART (Friedman, 2001)
but uses the λ-function (Burges et a., 2006) to

1 Set F0(x) to be the background ranking model
2 for m = 1 to M do
3 compute residuals according to Equation (5)
4 select best hm (with its best βm), according to LS,

computed by Equations (8) and (9)
5 𝐹𝑚 𝐱 = 𝐹𝑚−1 𝐱 + 𝜐𝛽𝑚ℎ(𝐱)

Figure 2. The LambdaBoost algorithm for model adaptation.

508

compute gradients. The algorithm is summa-
rized in Figure 3. Similar to LambdaBoost, it
takes M rounds, and at each boosting iteration, it
adapts the background model to training data
using the 3-step procedure. Step 1 (line 3 in Fig-
ure 3) has been described.

Step 2 (lines 4 to 6) searches for the optimal
basis function h to best fit the residual. Unlike
LambdaBoost where there are a finite number of
candidate basis functions, the function space of
regression trees is infinite. We define h as a re-
gression tree with L terminal nodes. In line 4, a
regression tree is built using Mean Square Error
to determine the best split at any node in the tree.
The value associated with a leaf (i.e., terminal
node) of the trained tree is computed first as the
residual (computed via λ-function) for the train-
ing samples that land at that leaf. Then, since
each leaf corresponds to a different mean, a
one-dimensional Newton-Raphson line step is
computed for each leaf (lines 5 and 6). These line
steps may be simply computed as the derivatives
of the LambdaRank gradients w.r.t. the model
scores si. Formally, the value of the l-th leaf, βml,
is computed as

𝛽𝑚𝑙 =
 𝑦𝑖

′
𝑥∈𝑅𝑙𝑚

 𝑤𝑖𝑥∈𝑅𝑙𝑚

, (10)

where 𝑦𝑖
′ is the residual of training sample i,

computed in Equation (5), and 𝑤𝑖 is the deriva-
tive of 𝑦𝑖

′ , i.e., 𝑤𝑖 = 𝜕𝑦𝑖
′ /𝜕𝐹(𝐱𝑖).

In Step 3 (line 7), the regression tree is added
to the current base model, weighted by the
shrinkage coefficient 0 < υ < 1.

Notice that since a regression tree can be
viewed as a complex feature that combines mul-
tiple input features, LambdaSMART can be used
as a feature generation method. LambdaSMART
is arguably more powerful than LambdaBoost in
that it introduces new complex features and thus
adjusts not only the parameters but also the
structure of the background model1. However,

1 Note that in a sense our proposed LambdaBoost
algorithm is the same as LambdaSMART, but using a
single feature at each iteration, rather than a tree. In
particular, they share the trick of using the Lambda

one problem of trees is their high variance.
Often a small change in the data can result in a
very different series of splits. As a result,
tree-based ranking models are much less robust
to noise, as we will show in our experiments. In
addition to the use of shrinkage coefficient 0 < υ
< 1, which is a form of model regularization
according to Hastie, et al., (2001), we will ex-
plore in Section 5.3 other methods of improving
the model robustness, including randomization

and using shallow trees.

5 Experiments

5.1 The Data

We evaluated the ranking model adaptation
methods on two Web search domains, namely (1)
a name query domain, which consists of only
person name queries, and (2) a Korean query
domain, which consists of queries that users
submitted to the Korean market.

For each domain, we used two in-domain
data sets that contain queries sampled respec-
tively from the query log of a commercial Web
search engine that were collected in two
non-overlapping periods of time. We used the
more recent one as open test set, and split the
other into three non-overlapping data sets,
namely training, validation and closed test sets,
respectively. This setting provides a good si-
mulation to the realistic Web search scenario,
where the rankers in use are usually trained on
early collected data, and thus helps us investigate
the robustness of these model adaptation me-
thods.

The statistics of the data sets used in our per-
son name domain adaptation experiments are
shown in Table 1. The names query set serves as
the adaptation domains, and Web-1 as the back-
ground domain. Since Web-1 is used to train a
background ranker, we did not split it to
train/valid/test sets. We used 416 input features
in these experiments.

For cross-domain adaptation experiments
from non-Korean to Korean markets, Korean
data serves as the adaptation domain, and Eng-
lish, Chinese, and Japanese data sets as the
background domain. Again, we did not split the
data sets in the background domain to
train/valid/test sets. The statistics of these data
sets are shown in Table 2. We used 425 input
features in these experiments.

gradients to learn NDCG.

1 Set F0(x) to be the background ranking model
2 for m = 1 to M do
3 compute residuals according to Equation (5)
4 create a L-terminal node tree, ℎ𝑚 ≡ 𝑅𝑙𝑚 𝑙=1…𝐿
5 for l = 1 to L do
6 compute the optimal βlm according to Equation

(10), based on approximate Newton step.

7 𝐹𝑚 𝐱 = 𝐹𝑚−1 𝑥 + 𝜐 𝛽𝑙𝑚 1(𝑥 ∈ 𝑅𝑙𝑚)
𝑙=1…𝐿

Figure 3. The LambdaSMART algorithm for model adaptation.

509

In each domain, the in-domain training data is
used to train in-domain rankers, and the back-
ground data for background rankers. Validation
data is used to learn the best training parameters

of the boosting algorithms, i.e., M, the total

number of boosting iterations, , the shrinkage
coefficient, and L, the number of leaf nodes for

each regression tree (L=1 in LambdaBoost).
Model performance is evaluated on the
closed/open test sets.

All data sets contain samples labeled on a
5-level relevance scale, 0 to 4, with 4 as most
relevant and 0 as irrelevant. The performance of
rankers is measured through NDCG evaluated
against closed/open test sets. We report NDCG
scores at positions 1, 3 and 10, and the averaged
NDCG score (Ave-NDCG), the arithmetic mean
of the NDCG scores at 1 to 10. Significance test
(i.e., t-test) was also employed.

5.2 Model Adaptation Results

This section reports the results on two adapta-
tion experiments. The first uses a large set of
Web data, Web-1, as background domain and
uses the name query data set as adaptation data.
The results are summarized in Tables 3 and 4.
We compared the three model adaptation me-
thods against two baselines: (1) the background
ranker (Row 1 in Tables 3 and 4), a 2-layer
LambdaRank model with 15 hidden nodes and a
learning rate of 10-5 trained on Web-1; and (2) the
In-domain Ranker (Row 2), a 2-layer Lambda-
Rank model with 10 hidden nodes and a learning
rate of 10-5 trained on Names-1-Train. We built
two interpolated rankers. The 2-way interpo-
lated ranker (Row 3) is a linear combination of
the two baseline rankers, where the interpolation
weights were optimized on Names-1-Valid. To
build the 3-way interpolated ranker (Row 4), we
linearly interpolated three rankers. In addition
to the two baseline rankers, the third ranker is
trained on an augmented training data, which
was created using the kNN method described in
Section 3.

In LambdaBoost (Row 5) and LambdaSMART
(Row 6), we adapted the background ranker to
name queries by boosting the background ranker
with Names-1-Train. We trained LambdaBoost

with the setting M = 500, = 0.5, optimized on
Names-1-Valid. Since the background ranker
uses all of the 416 input features, in each boosting
iteration, LambdaBoost in fact selects one exist-
ing feature in the background ranker and adjusts
its weight. We trained LambdaSMART with M =

500, L = 20, = 0.5, optimized on Names-1-Valid.
We see that the results on the closed test set

(Table 3) are quite different from the results on
the open test set (Table 4). The in-domain ranker
outperforms the background ranker on the
closed test set, but underperforms significantly
the background ranker on the open test set. The
interpretation is that the training set and the
closed test set are sampled from the same data
set and are very similar, but the open test set is a
very different data set, as described in Section 5.1.
Similarly, on the closed test set, LambdaSMART
outperforms LambdaBoost with a big margin
due to its superior adaptation capacity; but on
the open test set their performance difference is
much smaller due to the instability of the trees in
LambdaSMART, as we will investigate in detail
later. Interestingly, model interpolation, though
simple, leads to the two best rankers on the open
test set. In particular, the 3-way interpolated
ranker outperforms the two baseline rankers

Coll. Description #qry. # url/qry

Web-1 Background training data 31555 134
Names-1-Train In-domain training data

(adaptation data)
5752 85

Names-1-Valid In-domain validation data 158 154
Names-1-Test Closed test data 318 153
Names-2-Test Open test data 4370 84

Table 1. Data sets in the names query domain experiments,
where # qry is number of queries, and # url/qry is number
of documents per query.

Coll. Description # qry. # url/qry

Web-En Background En training data 6167 198
Web-Ja Background Ja training data 45012 58
Web-Cn Background Ch training data 32827 72
Kokr-1-Train In-domain Ko training data

(adaptation data)
3724 64

Kokr-1-Valid In-domain validation data 334 130
Kokr-1-Test Korean closed test data 372 126
Kokr-2-Test Korean open test data 871 171

Table 2. Data sets in the Korean domain experiments.

Models NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 Back. 0.4575 0.4952 0.5446 0.5092
2 In-domain 0.4921 0.5296 0.5774 0.5433
3 2W-Interp. 0.4745 0.5254 0.5747 0.5391
4 3W-Interp. 0.4829 0.5333 0.5814 0.5454
5 λ-Boost 0.4706 0.5011 0.5569 0.5192
6 λ-SMART 0.5042 0.5449 0.5951 0.5623

Table 3. Close test results on Names-1-Test.

Models NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 Back. 0.5472 0.5347 0.5731 0.5510
2 In-domain 0.5216 0.5266 0.5789 0.5472
3 2W-Interp. 0.5452 0.5414 0.5891 0.5604
4 3W-Interp. 0.5474 0.5470 0.5951 0.5661
5 λ-Boost 0.5269 0.5233 0.5716 0.5428
6 λ-SMART 0.5200 0.5331 0.5875 0.5538

Table 4. Open test results on Names-2-Test.

510

significantly (i.e., p-value < 0.05 according to
t-test) on both the open and closed test sets.

The second adaptation experiment involves
data sets from several languages (Table 2).
2-layer LambdaRank baseline rankers were first
built from Korean, English, Japanese, and Chi-
nese training data and tested on Korean test sets

(Tables 5 and 6). These baseline rankers then
serve as in-domain ranker and background
rankers for model adaptation. For model inter-
polation (Tables 7 and 8), Rows 1 to 4 are three
2-way interpolated rankers built by linearly in-
terpolating
each of the three background rankers with the
in-domain ranker, respectively. Row 4 is a 4-way
interpolated ranker built by interpolating the
in-domain ranker with the three background
rankers. For LambdaBoost (Tables 9 and 10) and
LambdaSMART (Tables 11 and 12), we used the
same parameter settings as those in the name
query experiments, and adapted the three back-
ground rankers, to the Korean training data,
Kokr-1-Train.

The results in Tables 7 to 12 confirm what we
learned in the name query experiments. There
are three main conclusions. (1) Model interpola-
tion is an effective method of ranking model
adaptation. E.g., the 4-way interpolated ranker
outperforms other ranker significantly. (2)
LambdaSMART is the best performer on the
closed test set, but its performance drops signif-
icantly on the open test set due to the instability
of trees. (3) LambdaBoost does not use trees. So
its modeling capacity is weaker than Lamb-
daSMART (e.g., it always underperforms
LambdaSMART significantly on the closed test
sets), but it is more robust due to its linearity (e.g.,
it performs similarly to LambdaSMART on the
open test set).

5.3 Robustness of Boosting Algorithms

This section investigates the robustness issue
of the boosting algorithms in more detail. We
compared LambdaSMART with different values
of L (i.e., the number of leaf nodes), and with and
without randomization. Our assumptions are (1)
allowing more leaf nodes would lead to deeper
trees, and as a result, would make the resulting
ranking models less robust; and (2) injecting
randomness into the basis function (i.e. regres-
sion tree) estimation procedure would improve
the robustness of the trained models (Breiman,
2001; Friedman, 1999). In LambdaSMART, the
randomness can be injected at different levels of
tree construction. We found that the most effec-
tive method is to introduce the randomness at
the node level (in Step 4 in Figure 3). Before each
node split, a subsample of the training data and a
subsample of the features are drawn randomly.
(The sample rate is 0.7). Then, the two randomly
selected subsamples, instead of the full samples,
are used to determine the best split.

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 Back. (En) 0.5371 0.5413 0.5873 0.5616
2 Back. (Ja) 0.5640 0.5684 0.6027 0.5808
3 Back. (Cn) 0.4966 0.5105 0.5761 0.5393
4 In-domain 0.5927 0.5824 0.6291 0.6055

Table 5. Close test results of baseline rankers, on Kokr-1-Test

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 Back. (En) 0.4991 0.5242 0.5397 0.5278
2 Back. (Ja) 0.5052 0.5092 0.5377 0.5194
3 Back. (Cn) 0.4779 0.4855 0.5114 0.4942
4 In-domain 0.5164 0.5295 0.5675 0.5430

Table 6. Open test results of baseline rankers, on Kokr-2-Test

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 Interp. (En) 0.5954 0.5893 0.6335 0.6088
2 Interp. (Ja) 0.6047 0.5898 0.6339 0.6116
3 Interp. (Cn) 0.5812 0.5807 0.6268 0.6024
4 4W-Interp. 0.5878 0.5870 0.6289 0.6054

Table 7. Close test results of interpolated rankers, on
Kokr-1-Test.

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 Interp. (En) 0.5178 0.5369 0.5768 0.5500
2 Interp. (Ja) 0.5274 0.5416 0.5788 0.5531
3 Interp. (Cn) 0.5224 0.5339 0.5766 0.5487
4 4W-Interp. 0.5278 0.5414 0.5823 0.5549

Table 8. Open test results of interpolated rankers, on
Kokr-2-Test.

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 λ-Boost (En) 0.5757 0.5716 0.6197 0.5935
2 λ-Boost (Ja) 0.5801 0.5807 0.6225 0.5982
3 λ-Boost (Cn) 0.5731 0.5793 0.6226 0.5972

Table 9. Close test results of λ-Boost rankers, on Kokr-1-Test.

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 λ-Boost (En) 0.4960 0.5203 0.5486 0.5281
2 λ-Boost (Ja) 0.5090 0.5167 0.5374 0.5233
3 λ-Boost (Cn) 0.5177 0.5324 0.5673 0.5439

Table 10. Open test results of λ-Boost rankers, on Kokr-2-Test.

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 λ-SMART
(En)

0.6096 0.6057 0.6454 0.6238

2 λ- SMART
(Ja)

0.6014 0.5966 0.6385 0.6172

3 λ- SMART
(Cn)

0.5955 0.6095 0.6415 0.6209

Table 11. Close test results of λ-SMART rankers, on
Kokr-1-Test.

Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 λ- SMART
(En)

0.5177 0.5297 0.5563 0.5391

2 λ- SMART
(Ja)

0.5205 0.5317 0.5522 0.5368

3 λ- SMART
(Cn)

0.5198 0.5305 0.5644 0.5410

Table 12. Open test results of λ-SMART rankers, on
Kokr-2-Test.

511

We first performed the experiments on name
queries. The results on the closed and open test sets
are shown in Figures 4 (a) and 4 (b), respectively.
The results are consistent with our assumptions.
There are three main observations. First, the gray
bars in Figures 4 (a) and 4 (b) (boosting without
randomization) show that on the closed test set, as
expected, NDCG increases with the value of L, but
the correlation does not hold on the open test set.
Second, the black bars in these figures (boosting
with randomization) show that in both closed and
open test sets, NDCG increases with the value of L.
Finally, comparing the gray bars with their cor-
responding black bars, we see that randomization
consistently improves NDCG on the open test set,
with a larger margin of gain for the boosting algo-
rithms with deeper trees (L > 5).

These results are very encouraging. Randomi-
zation seems to work like a charm. Unfortunately,
it does not work well enough to help the boosting
algorithm beat model interpolation on the open test
sets. Notice that all the LambdaSMART results
reported in Section 5.2 use randomization with the
same sampling rate of 0.7. We repeated the com-
parison in the cross-domain adaptation experi-
ments. As shown in Figure 4, results in 4 (c) and 4
(d) are consistent with those on names queries in 4
(b). Results in 4 (f) show a visible performance drop
from LambdaBoost to LambdaSMART with L = 2,
indicating again the instability of trees.

6 Conclusions and Future Work

In this paper, we extend two classes of model
adaptation methods (i.e., model interpolation and
error-driven learning), which have been well stu-
died in statistical language modeling for speech
and natural language applications (e.g., Bacchiani
et al., 2004; Bellegarda, 2004; Gao et al., 2006), to
ranking models for Web search applications.

We have evaluated our methods on two adap-
tation experiments over a wide variety of datasets
where the in-domain datasets bear different levels
of similarities to their background datasets. We
reach different conclusions from the results of the
open and close tests, respectively. Our open test
results show that in the cases where the in-domain
data is dramatically different from the background
data, model interpolation is very robust and out-
performs the baseline and the error-driven learning
methods significantly; whereas our close test re-
sults show that in the cases where the in-domain
data is similar to the background data, the tree-
based boosting algorithm (i.e. LambdaSMART) is
the best performer, and achieves a significant im-
provement over the baselines. We also show that
these different conclusions are largely due to the
instability of the use of trees in the boosting algo-
rithm. We thus explore several methods of im-
proving the robustness of the algorithm, such as
randomization, regularization, using shallow trees,
with limited success. Of course, our experiments,

 (a) (b)

(c) (d) (e)

Figure 4. AveNDCG results (y-axis) of LambdaSMART with different values of L (x-axis), where L=1 is LambdaBoost; (a) and (b) are
the results on closed and open tests using Names-1-Train as adaptation data, respectively; (d), (e) and (f) are the results on the
Korean open test set, using background models trained on Web-En, Web-Ja, and Web-Cn data sets, respectively.

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

1 2 4 10 20

0.53

0.54

0.54

0.55

0.55

1 2 4 10 20

0.50

0.51

0.52

0.53

0.54

0.55

1 2 4 10 20

0.49

0.50

0.51

0.52

0.53

0.54

1 2 4 10 20

0.51

0.52

0.53

0.54

0.55

1 2 4 10 20

512

described in Section 5.3, only scratch the surface of
what is possible. Robustness deserves more inves-
tigation and forms one area of our future work.

Another family of model adaptation methods
that we have not studied in this paper is transfer
learning, which has been well-studied in the ma-
chine learning community (e.g., Caruana, 1997;
Marx et al., 2008). We leave it to future work.

To solve the issue of inadequate training data, in
addition to model adaptation, researchers have
also been exploring the use of implicit user feed-
back data (extracted from log files) for ranking
model training (e.g., Joachims et al., 2005; Radlinski
et al., 2008). Although such data is very noisy, it is
of a much larger amount and is cheaper to obtain
than human-labeled data. It will be interesting to
apply the model adaptation methods described in
this paper to adapt a ranker which is trained on a
large amount of automatically extracted data to a
relatively small amount of human-labeled data.

Acknowledgments

This work was done while Yi Su was visiting Mi-
crosoft Research, Redmond. We thank Steven Yao's
group at Microsoft Bing Search for their help with
the experiments.

References

Bacchiani, M., Roark, B. and Saraclar, M. 2004.
Language model adaptation with MAP estima-
tion and the Perceptron algorithm. In
HLT-NAACL, 21-24.

Bellegarda, J. R. 2004. Statistical language model
adaptation: review and perspectives. Speech
Communication, 42: 93-108.

Breiman, L. 2001. Random forests. Machine Learning,
45, 5-23.

Bishop, C.M. 1995. Training with noise is equiva-
lent to Tikhonov regularization. Neural Computa-
tion, 7, 108-116.

Burges, C. J., Ragno, R., & Le, Q. V. 2006. Learning
to rank with nonsmooth cost functions. In ICML.

Burges, C., Shaked, T., Renshaw, E., Lazier, A.,
Deeds, M., Hamilton, and Hullender, G. 2005.
Learning to rank using gradient descent. In
ICML.

Caruana, R. 1997. Multitask learning. Machine
Learning, 28(1): 41-70.

Collins, M. 2000. Discriminative reranking for nat-
ural language parsing. In ICML.

Donmea, P., Svore, K. and Burges. 2008. On the
local optimality for NDCG. Microsoft Technical
Report, MSR-TR-2008-179.

Friedman, J. 1999. Stochastic gradient boosting.
Technical report, Dept. Statistics, Stanford.

Friedman, J. 2001. Greedy function approximation:
a gradient boosting machine. Annals of Statistics,
29(5).

Gao, J., Qin, H., Xia, X. and Nie, J-Y. 2005. Linear
discriminative models for information retrieval.
In SIGIR.

Gao, J., Suzuki, H. and Yuan, W. 2006. An empirical
study on language model adaptation. ACM Trans
on Asian Language Processing, 5(3):207-227.

Hastie, T., Tibshirani, R. and Friedman, J. 2001. The
elements of statistical learning. Springer-Verlag,
New York.

Jarvelin, K. and Kekalainen, J. 2000. IR evaluation
methods for retrieving highly relevant docu-
ments. In SIGIR.

Joachims, T., Granka, L., Pan, B., Hembrooke, H.
and Gay, G. 2005. Accurately interpreting click-
through data as implicit feedback. In SIGIR.

Marx, Z., Rosenstein, M.T., Dietterich, T.G. and
Kaelbling, L.P. 2008. Two algorithms for transfer
learning. To appear in Inductive Transfer: 10 years

later.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and
B. P. Flannery. 1992. Numerical Recipes In C.
Cambridge Univ. Press.

Radlinski, F., Kurup, M. and Joachims, T. 2008.
How does clickthrough data reflect retrieval
quality? In CIKM.

Thrun, S. 1996. Is learning the n-th thing any easier
than learning the first. In NIPS.

Wu, Q., Burges, C.J.C., Svore, K.M. and Gao, J.
2008. Ranking, boosting, and model adaptation.
Technical Report MSR-TR-2008-109, Microsoft
Research.

513

