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Abstract 

This paper explores two classes of model adapta-
tion methods for Web search ranking: Model In-
terpolation and error-driven learning approaches 
based on a boosting algorithm.  The results show 
that model interpolation, though simple, achieves 
the best results on all the open test sets where the 
test data is very different from the training data. 
The tree-based boosting algorithm achieves the 
best performance on most of the closed test sets 
where the test data and the training data are sim-
ilar, but its performance drops significantly on 
the open test sets due to the instability of trees.  
Several methods are explored to improve the 
robustness of the algorithm, with limited success. 

1 Introduction 

We consider the task of ranking Web search 
results, i.e., a set of retrieved Web documents 
(URLs) are ordered by relevance to a query is-
sued by a user.  In this paper we assume that the 
task is performed using a ranking model (also 
called ranker for short) that is learned on labeled 
training data (e.g., human-judged 
query-document pairs).  The ranking model acts 
as a function that maps the feature vector of a 
query-document pair to a real-valued score of 
relevance. 

Recent research shows that such a learned 
ranker is superior to classical retrieval models in 
two aspects (Burges et al., 2005; 2006; Gao et al., 
2005).  First, the ranking model can use arbitrary 
features. Both traditional criteria such as TF-IDF 
and BM25, and non-traditional features such as 
hyperlinks can be incorporated as features in the 
ranker. Second, if large amounts of high-quality 
human-judged query-document pairs were 
available for model training, the ranker could 
achieve significantly better retrieval results than 
the traditional retrieval models that cannot ben-
efit from training data effectively.  However, 
such training data is not always available for 

many search domains, such as non-English 
search markets or person name search. 

One of the most widely used strategies to re-
medy this problem is model adaptation, which 
attempts to adjust the parameters and/or struc-
ture of a model trained on one domain (called the 
background domain), for which large amounts of 
training data are available, to a different domain 
(the adaptation domain), for which only small 
amounts of training data are available.  In Web 
search applications, domains can be defined by 
query types (e.g., person name queries), or lan-
guages, etc. 

In this paper we investigate two classes of 
model adaptation methods for Web search 
ranking: Model Interpolation approaches and 
error-driven learning approaches.  In model 
interpolation approaches, the adaptation data is 
used to derive a domain-specific model (also 
called in-domain model), which is then com-
bined with the background model trained on the 
background data.  This appealingly simple con-
cept provides fertile ground for experimentation, 
depending on the level at which the combination 
is implemented (Bellegarda, 2004).  In er-
ror-driven learning approaches, the background 
model is adjusted so as to minimize the ranking 
errors the model makes on the adaptation data 
(Bacchiani et al., 2004; Gao et al. 2006).  This is 
arguably more powerful than model interpola-
tion for two reasons.  First, by defining a proper 
error function, the method can optimize more 
directly the measure used to assess the final 
quality of the Web search system, e.g., Normalized 
Discounted Cumulative Gain (Javelin & Kekalainen, 
2000) in this study.  Second, in this framework, 
the model can be adjusted to be as fine-grained as 
necessary.  In this study we developed a set of 
error-driven learning methods based on a 
boosting algorithm where, in an incremental 
manner, not only each feature weight could be 
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changed separately, but new features could be 
constructed. 

We focus our experiments on the robustness 
of the adaptation methods. A model is robust if it 
performs reasonably well on unseen test data 
that could be significantly different from training 
data.  Robustness is important in Web search 
applications.  Labeling training data takes time.  
As a result of the dynamic nature of Web, by the 
time the ranker is trained and deployed, the 
training data may be more or less out of date.  
Our results show that the model interpolation is 
much more robust than the boosting-based me-
thods. We then explore several methods to im-
prove the robustness of the methods, including 
regularization, randomization, and using shal-
low trees, with limited success. 

2 Ranking Model and Quality 
Measure in Web Search 

This section reviews briefly a particular example 
of rankers, called LambdaRank (Burges et al., 
2006), which serves as the baseline ranker in our 
study.  

Assume that training data is a set of input/ 
output pairs (x, y). x is a feature vector extracted 
from a query-document pair. We use approx-
imately 400 features, including dynamic ranking 
features such as term frequency and BM25, and 
statistic ranking features such as PageRank.  y is 
a human-judged relevance score, 0 to 4, with 4 as 
the most relevant. 

LambdaRank is a neural net ranker that maps 
a feature vector x to a real value y that indicates 
the relevance of the document given the query 
(relevance score).  For example, a linear Lamb-
daRank simply maps x to y with a learned weight 

vector w such that 𝑦 = 𝐰 ∙ 𝐱. (We used nonli-
near LambdaRank in our experiments). Lamb-
daRank is particularly interesting to us due to the 
way w is learned. Typically, w is optimized w.r.t. 
a cost function using numerical methods if the 
cost function is smooth and its gradient w.r.t. w 
can be computed easily.  In order for the ranker 
to achieve the best performance in document 
retrieval, the cost function used in training 
should be the same as, or as close as possible to, 
the measure used to assess the quality of the 
system. In Web search, Normalized Discounted 
Cumulative Gain (NDCG) (Jarvelin and Kekalai-
nen, 2000) is widely used as quality measure. For 
a query,  NDCG is computed  as 

𝒩𝑖 = 𝑁𝑖  
2𝑟 𝑗  − 1

log 1 + 𝑗 

𝐿

𝑗 =1

, (1) 

where 𝑟(𝑗) is the relevance level of the j-th doc-
ument, and the normalization constant Ni is 
chosen so that a perfect ordering would result in 
𝒩𝑖 = 1.  Here L is the ranking truncation level at 
which NDCG is computed. The 𝒩𝑖  are then av-
eraged over a query set. However, NDCG, if it 
were to be used as a cost function, is either flat or 
discontinuous everywhere, and thus presents 
challenges to most optimization approaches that 
require the computation of the gradient of the 
cost function.  

LambdaRank solves the problem by using an 
implicit cost function whose gradients are speci-
fied by rules. These rules are called λ-functions. 
Burges et al. (2006) studied several λ-functions 
that were designed with the NDCG cost function 
in mind. They showed that LambdaRank with 
the best λ-function outperforms significantly a 
similar neural net ranker, RankNet (Burges et al., 
2005), whose parameters are optimized using the 
cost function based on cross-entropy. 

The superiority of LambdaRank illustrates the 
key idea based on which we develop the model 
adaptation methods.  We should always adapt 
the ranking models in such a way that the NDCG 
can be optimized as directly as possible. 

3 Model Interpolation 

One of the simplest model interpolation methods 
is to combine an in-domain model with a back-
ground model at the model level via linear in-
terpolation.  In practice we could combine more 
than two in-domain/background models.  Let-
ting Score(q, d) be a ranking model that maps a 
query-document pair to a relevance score, the 
general form of the interpolation model is  

𝑆𝑐𝑜𝑟𝑒(𝑞, 𝑑) =  𝛼𝑖𝑆𝑐𝑜𝑟𝑒𝑖 𝑞, 𝑑 ,

𝑁

𝑖=1

 (2) 

where the ’s are interpolation weights, opti-
mized on validation data with respect to a pre-
defined objective, which is NDCG in our case.  
As mentioned in Section 2, NDCG is not easy to 
optimize, for which we resort to two solutions, 
both of which achieve similar results in our ex-
periments. 

The first solution is to view the interpolation 
model of Equation (2) as a linear neural net 
ranker where each component  model Scorei(.) is 
defined as a feature function. Then, we can use 
the LambdaRank algorithm described in Section 
2 to find the optimal weights.  

An alternative solution is to view interpola-
tion weight estimation as a multi-dimensional 
optimization problem, with each model as a 
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dimension. Since NCDG is not differentiable, we 
tried in our experiments the numerical algo-
rithms that do not require the computation of 
gradient. Among the best performers is the 
Powell Search algorithm (Press et al., 1992). It 
first constructs a set of N virtual directions that 
are conjugate (i.e., independent with each other), 
then it uses line search N times, each on one vir-
tual direction, to find the optimum.  Line search 
is a one-dimensional optimization algorithm. 
Our implementation follows the one described in 
Gao et al. (2005), which is used to optimize the 
averaged precision.  

The performance of model interpolation de-
pends to a large degree upon the quality and the 
size of adaptation data. First of all, the adaptation 
data has to be “rich” enough to suitably charac-
terize the new domain.  This can only be 
achieved by collecting more in-domain data.  
Second, once the domain has been characterized, 
the adaptation data has to be “large” enough to 
have a model reliably trained.  For this, we de-
veloped a method, which attempts to augment 
adaptation data by gathering similar data from 
background data sets. 

The method is based on the k-nearest-neighbor 
(kNN) algorithm, and is inspired by Bishop 
(1995).  We use the small in-domain data set D1 
as a seed, and expand it using the large back-
ground data set D2.  When the relevance labels 
are assigned by humans, it is reasonable to as-
sume that queries with the lowest information 
entropy of labels are the least noisy.  That is, for 
such a query most of the URLs are labeled as 
highly relevant/not relevant documents rather 
than as moderately relevance/not relevant 
documents. 

Due to computational limitations of 
kNN-based algorithms, a small subset of queries 
from D1 which are least noisy are selected. This 
data set is called S1.  For each sample in D2, its 
3-nearest neighbors in S1 are found using a co-
sine-similarity metric.  If the three neighbors are 
within a very small distance from the sample in 
D2, and one of the labels of the nearest neighbors 
matches exactly, the training sample is selected 
and is added to the expanded set E2, in its own 
query.  This way, S1 is used to choose training 
data from D2, which are found to be close in 
some space.  

This process effectively creates several data 
points in close neighborhood of the points in the 
original small data set D1, thus expanding the 
set, by jittering each training sample a little. This 
is equivalent to training with noise (Bishop, 
1995), except that the training samples used are 

actual queries judged by a human. This is found 
to increase the NDCG in our experiments. 

4 Error-Driven Learning 

Our error-drive learning approaches to ranking 
modeling adaptation are based on the Stochastic 
Gradient Boosting algorithm (or the boosting 
algorithm for short) described in Friedman 
(1999). Below, we follow the notations in Fried-
man (2001). 

Let adaptation data (also called training data in 
this section) be a set of input/output pairs {xi, yi}, 
i = 1…N. In error-driven learning approaches, 
model adaptation is performed by adjusting the 
background model into a new in-domain model 
𝐹: 𝑥 → 𝑦 that minimizes a loss function L(y, F(x)) 
over all samples in training data  

𝐹∗ = argmin
𝐹

 𝐿(𝑦𝑖 , 𝐹(𝐱𝑖))

𝑁

𝑖=1

. (3) 

We further assume that F(x) takes the form of 
additive expansion as 

𝐹 𝐱 =  𝛽𝑚ℎ 𝐱; 𝐚𝑚  

𝑀

𝑚=0

, (4) 

where h(x; a) is called basis function, and is 
usually a simple parameterized function of the 
input x, characterized by parameters a. In what 
follows, we drop a, and use h(x) for short.  In 
practice, the form of h has to be restricted to a 
specific function family to allow for a practically 
efficient procedure of model adaptation.  β is a 
real-valued coefficient. 

Figure 1 is the generic algorithm.  It starts 
with a base model F0, which is a background 
model.  Then for m = 1, 2, …, M, the algorithm 
takes three steps to adapt the base model so as to 
best fit the adaptation data: (1) compute the re-
sidual of the current base model (line 3), (2) select 
the optimal basis function (line 4) that best fits 
the residual, and (3) update the base model by 
adding the optimal basis function (line 5).  The 
two model adaptation algorithms that will be 
described below follow the same 3-step adapta-
tion procedure. They only differ in the choice of 
h.  In the LambdaBoost algorithm (Section 4.1) h 

1 Set F0(x) be the background ranking model 
2 for m = 1 to M do 

3 𝑦𝑖
′ = −  

𝜕𝐿 𝑦 𝑖 ,𝐹 𝐱𝑖  

𝜕𝐹 𝐱𝑖 
 
𝐹 𝐱 =𝐹𝑚 −1 𝐱 

, for i = 1… N 

4 (ℎ𝑚 , 𝛽𝑚 ) = argmin
ℎ ,𝛽

  𝑦𝑖
′ − 𝛽ℎ(𝐱𝑖) 

2𝑁

𝑖=1
 

5 𝐹𝑚  𝐱 = 𝐹𝑚−1 𝐱 + 𝛽𝑚ℎ(𝐱) 

Figure 1. The generic boosting algorithm for model 
adaptation 
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is defined as a single feature, and in LambdaS-
MART (Section 4.2), h is a regression tree.  

Now, we describe the way residual is com-
puted, the step that is identical in both algo-
rithms. Intuitively, the residual, denoted by y’ 
(line 3 in Figure 1), measures the amount of er-
rors (or loss) the base model makes on the train-
ing samples.  If the loss function in Equation (3) is 
differentiable, the residual can be computed 
easily as the negative  
gradient of the loss function.  As discussed in 
Section 2, we want to directly optimize the 
NDCD, whose gradient is approximated via the 
λ-function.  Following Burges et al. (2006), the 
gradient of a training sample (xi, yi), where xi is a 
feature vector representing the query-document 
pair (qi, di), w.r.t. the current base model is com-
puted by marginalizing the λ-functions of all 
document pairs, (di, dj), of the query, qi, as 

𝑦𝑖
′ =  ∆NDCG ∙

𝜕𝐶𝑖𝑗

𝜕𝑜𝑖𝑗

,
𝑗≠𝑖

 (5) 

where ∆NDCG is the NDCG gained by swapping 
those two documents (after sorting all docu-
ments by their current scores);  𝑜𝑖𝑗 ≡ 𝑠𝑖 − 𝑠𝑗  is the 

difference in ranking scores of di and dj given qi; 
and Cij is the cross entropy cost defined as  

𝐶𝑖𝑗 ≡ 𝐶 𝑜𝑖𝑗  = 𝑠𝑗 − 𝑠𝑖

+ log(1 + exp(𝑠𝑖 − 𝑠𝑗 )). 
(6) 

Thus, we have 
𝜕𝐶𝑖𝑗

𝜕𝑜𝑖𝑗

=
−1

1 + exp 𝑜𝑖𝑗  
. (7) 

This λ-function essentially uses the cross en-
tropy cost to smooth the change in NDCG ob-
tained by swapping the two documents. A key 
intuition behind the λ-function is the observation 
that NDCG does not treat all pairs equally; for 
example, it costs more to incorrectly order a pair, 
where the irrelevant document is ranked higher 
than a highly relevant document, than it does to 
swap a moderately relevant/not relevant pair. 

4.1 The LambdaBoost Algorithm 

In LambdaBoost, the basis function h is defined 
as a single feature (i.e., an element feature in the 
feature vector x).  The algorithm is summarized 
in Figure 2.  It iteratively adapts a background 
model to training data using the 3-step proce-

dure, as in Figure 1. Step 1 (line 3 in Figure 2) has 
been described.  

Step 2 (line 4 in Figure 2) finds the optimal 
basis function h, as well as its optimal coefficient 
β, that best fits the residual according to the 
least-squares (LS) criterion. Formally, let h and β 
denote the candidate basis function and its op-
timal coefficient. The LS error on training data 

is 𝐿𝑆 ℎ; 𝛽 =   𝑦𝑖
′ − 𝛽ℎ 𝑁

𝑖=0
2

, where 𝑦𝑖
′  is com-

puted as Equation (5). The optimal coefficient of 

h is estimated by solving the equation 𝜕   𝑦𝑖
′ −𝑁

𝑖=1

𝛽ℎ2/𝜕𝛽=0. Then, β is computed as 

𝛽 =
 𝑦𝑖

′ℎ(𝐱𝑖)
𝑁
𝑖=1

 ℎ(𝐱𝑖)
𝑁
𝑖=1

. (8) 

Finally, given its optimal coefficient β, the op-
timal LS loss of h is  

𝐿𝑆 ℎ; 𝛽 =  𝑦𝑖
′ × 𝑦𝑖

′  

𝑁

𝑖=1

−
  𝑦𝑖

′ℎ 𝐱𝑖 
𝑁
𝑖=1  2

 ℎ2(𝐱𝑖)
𝑁
𝑖=1

. (9) 

Step 3 (line 5 in Figure 2) updates the base 
model by adding the chosen optimal basis func-
tion with its optimal coefficient.  As shown in 
Step 2, the optimal coefficient of each candidate 
basis function is computed when the basis func-
tion is evaluated.  However, adding the basis 
function using its optimal efficient is prone to 
overfitting. We thus add a shrinkage coefficient 0 
< υ < 1 – the fraction of the optimal line step 
taken. The update equation is thus rewritten in 
line 5 in Figure 2.   

Notice that if the background model contains 
all the input features in x, then LambdaBoost 
does not add any new features but adjust the 
weights of existing features.  If the background 
model does not contain all of the input features, 
then LambdaBoost can be viewed as a feature 
selection method, similar to Collins (2000), where 
at each iteration the feature that has the largest 
impact on reducing training loss is selected and 
added to the background model. In either case, 
LambdaBoost adapts the background model by 
adding a model whose form is a (weighted) li-
near combination of input features.  The property 
of linearity makes LambdaBoost robust and less 
likely to overfit in Web search applications.  But 
this also limits the adaptation capacity. A simple 
method that allows us to go beyond linear 
adaptation is to define h as nonlinear terms of the 
input features, such as regression trees in 
LambdaSMART. 

4.2 The LambdaSMART Algorithm 

LambdaSMART was originally proposed in Wu 
et al. (2008). It is built on MART (Friedman, 2001) 
but uses the λ-function (Burges et a., 2006) to 

1 Set F0(x) to be the background ranking model 
2 for m = 1 to M do 
3 compute residuals according to Equation (5)  
4 select best hm (with its best βm), according to LS, 

computed by Equations (8) and (9) 
5 𝐹𝑚  𝐱 = 𝐹𝑚−1 𝐱 + 𝜐𝛽𝑚ℎ(𝐱) 

Figure 2. The LambdaBoost algorithm for model adaptation. 
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compute gradients. The algorithm is summa-
rized in Figure 3.  Similar to LambdaBoost, it 
takes M rounds, and at each boosting iteration, it 
adapts the background model to training data 
using the 3-step procedure. Step 1 (line 3 in Fig-
ure 3) has been described.  

Step 2 (lines 4 to 6) searches for the optimal 
basis function h to best fit the residual.  Unlike 
LambdaBoost where there are a finite number of 
candidate basis functions, the function space of 
regression trees is infinite. We define h as a re-
gression tree with L terminal nodes.  In line 4, a 
regression tree is built using Mean Square Error 
to determine the best split at any node in the tree.  
The value associated with a leaf (i.e., terminal 
node) of the trained tree is computed first as the 
residual (computed via λ-function) for the train-
ing samples that land at that leaf.  Then, since 
each leaf corresponds to a different mean, a 
one-dimensional Newton-Raphson line step is 
computed for each leaf (lines 5 and 6).  These line 
steps may be simply computed as the derivatives 
of the LambdaRank gradients w.r.t. the model 
scores si.  Formally, the value of the l-th leaf, βml, 
is computed as 

𝛽𝑚𝑙 =
 𝑦𝑖

′
𝑥∈𝑅𝑙𝑚

 𝑤𝑖𝑥∈𝑅𝑙𝑚

, (10) 

where 𝑦𝑖
′  is the residual of training sample i, 

computed in Equation (5), and  𝑤𝑖  is the deriva-
tive of 𝑦𝑖

′ , i.e., 𝑤𝑖 = 𝜕𝑦𝑖
′ /𝜕𝐹(𝐱𝑖). 

In Step 3 (line 7), the regression tree is added 
to the current base model, weighted by the 
shrinkage coefficient 0 < υ < 1.  

Notice that since a regression tree can be 
viewed as a complex feature that combines mul-
tiple input features, LambdaSMART can be used 
as a feature generation method. LambdaSMART 
is arguably more powerful than LambdaBoost in 
that it introduces new complex features and thus 
adjusts not only the parameters but also the 
structure of the background model1. However, 

                                                      
1  Note that in a sense our proposed LambdaBoost 
algorithm is the same as LambdaSMART, but using a 
single feature at each iteration, rather than a tree. In 
particular, they share the trick of using the Lambda 

one problem of trees is their high variance.  
Often a small change in the data can result in a 
very different series of splits.  As a result, 
tree-based ranking models are much less robust 
to noise, as we will show in our experiments.  In 
addition to the use of shrinkage coefficient 0 < υ 
< 1, which is a form of model regularization 
according to Hastie, et al., (2001), we will ex-
plore in Section 5.3 other methods of improving 
the model robustness, including randomization 

and using shallow trees. 

5 Experiments 

5.1 The Data 

We evaluated the ranking model adaptation 
methods on two Web search domains, namely (1) 
a name query domain, which consists of only 
person name queries, and (2) a Korean query 
domain, which consists of queries that users 
submitted to the Korean market.   

For each domain, we used two in-domain 
data sets that contain queries sampled respec-
tively from the query log of a commercial Web 
search engine that were collected in two 
non-overlapping periods of time.  We used the 
more recent one as open test set, and split the 
other into three non-overlapping data sets, 
namely training, validation and closed test sets, 
respectively.  This setting provides a good si-
mulation to the realistic Web search scenario, 
where the rankers in use are usually trained on 
early collected data, and thus helps us investigate 
the robustness of these model adaptation me-
thods. 

The statistics of the data sets used in our per-
son name domain adaptation experiments are 
shown in Table 1. The names query set serves as 
the adaptation domains, and Web-1 as the back-
ground domain. Since Web-1 is used to train a 
background ranker, we did not split it to 
train/valid/test sets. We used 416 input features 
in these experiments.  

For cross-domain adaptation experiments 
from non-Korean to Korean markets, Korean 
data serves as the adaptation domain, and Eng-
lish, Chinese, and Japanese data sets as the 
background domain.  Again, we did not split the 
data sets in the background domain to 
train/valid/test sets.  The statistics of these data 
sets are shown in Table 2. We used 425 input 
features in these experiments. 

                                                                                
gradients to learn NDCG. 

1 Set F0(x) to be the background ranking model 
2 for m = 1 to M do 
3 compute residuals according to Equation (5)  
4 create a  L-terminal node tree, ℎ𝑚 ≡  𝑅𝑙𝑚  𝑙=1…𝐿  
5 for l = 1 to L do 
6 compute the optimal βlm according to Equation 

(10), based on approximate Newton step. 

7 𝐹𝑚  𝐱 = 𝐹𝑚−1 𝑥 + 𝜐  𝛽𝑙𝑚 1(𝑥 ∈ 𝑅𝑙𝑚 )
𝑙=1…𝐿

 

Figure 3. The LambdaSMART algorithm for model adaptation. 
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In each domain, the in-domain training data is 
used to train in-domain rankers, and the back-
ground data for background rankers. Validation 
data is used to learn the best training parameters 

of the boosting algorithms, i.e., M, the total 

number of boosting iterations, , the shrinkage 
coefficient, and L, the number of leaf nodes for 

each regression tree (L=1 in LambdaBoost). 
Model performance is evaluated on the 
closed/open test sets.  

All data sets contain samples labeled on a 
5-level relevance scale, 0 to 4, with 4 as most 
relevant and 0 as irrelevant. The performance of 
rankers is measured through NDCG evaluated 
against closed/open test sets.  We report NDCG 
scores at positions 1, 3 and 10, and the averaged 
NDCG score (Ave-NDCG), the arithmetic mean 
of the NDCG scores at 1 to 10. Significance test 
(i.e., t-test) was also employed. 

5.2 Model Adaptation Results 

This section reports the results on two adapta-
tion experiments.  The first uses a large set of 
Web data, Web-1, as background domain and 
uses the name query data set as adaptation data. 
The results are summarized in Tables 3 and 4.  
We compared the three model adaptation me-
thods against two baselines: (1) the background 
ranker (Row 1 in Tables 3 and 4), a 2-layer 
LambdaRank model with 15 hidden nodes and a 
learning rate of 10-5 trained on Web-1; and (2) the 
In-domain Ranker (Row 2), a 2-layer Lambda-
Rank model with 10 hidden nodes and a learning 
rate of 10-5 trained on Names-1-Train.  We built 
two interpolated rankers.  The 2-way interpo-
lated ranker (Row 3) is a linear combination of 
the two baseline rankers, where the interpolation 
weights were optimized on Names-1-Valid.  To 
build the 3-way interpolated ranker (Row 4), we 
linearly interpolated three rankers.  In addition 
to the two baseline rankers, the third ranker is 
trained on an augmented training data, which 
was created using the kNN method described in 
Section 3.   

In LambdaBoost (Row 5) and LambdaSMART 
(Row 6), we adapted the background ranker to 
name queries by boosting the background ranker 
with Names-1-Train. We trained LambdaBoost 

with the setting M = 500,  = 0.5, optimized on 
Names-1-Valid. Since the background ranker 
uses all of the 416 input features, in each boosting 
iteration, LambdaBoost in fact selects one exist-
ing feature in the background ranker and adjusts 
its weight. We trained LambdaSMART with M = 

500, L = 20,  = 0.5, optimized on Names-1-Valid. 
We see that the results on the closed test set 

(Table 3) are quite different from the results on 
the open test set (Table 4).  The in-domain ranker 
outperforms the background ranker on the 
closed test set, but underperforms significantly 
the background ranker on the open test set.  The 
interpretation is that the training set and the 
closed test set are sampled from the same data 
set and are very similar, but the open test set is a 
very different data set, as described in Section 5.1.  
Similarly, on the closed test set, LambdaSMART 
outperforms LambdaBoost with a big margin 
due to its superior adaptation capacity; but on 
the open test set their performance difference is 
much smaller due to the instability of the trees in 
LambdaSMART, as we will investigate in detail 
later.  Interestingly, model interpolation, though 
simple, leads to the two best rankers on the open 
test set. In particular, the 3-way interpolated 
ranker outperforms the two baseline rankers 

Coll. Description  #qry. # url/qry 

Web-1 Background training data 31555 134 
Names-1-Train In-domain training data  

(adaptation data)  
5752 85 

Names-1-Valid In-domain validation data 158 154 
Names-1-Test Closed test data 318 153 
Names-2-Test Open test data 4370 84 

Table 1. Data sets in the names query domain experiments,  
where # qry is number of queries, and # url/qry is number 
of documents per query. 

Coll. Description  # qry. # url/qry 

Web-En Background En training data 6167 198 
Web-Ja Background Ja training data 45012 58 
Web-Cn Background Ch training data 32827 72 
Kokr-1-Train In-domain Ko training data 

(adaptation data)  
3724 64 

Kokr-1-Valid In-domain validation data 334 130 
Kokr-1-Test Korean closed test data 372 126 
Kokr-2-Test Korean open test data 871 171 

Table 2. Data sets in the Korean domain experiments. 

# Models NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. 0.4575 0.4952 0.5446 0.5092 
2 In-domain 0.4921 0.5296 0.5774 0.5433 
3 2W-Interp. 0.4745 0.5254 0.5747 0.5391 
4 3W-Interp. 0.4829 0.5333 0.5814 0.5454 
5 λ-Boost 0.4706 0.5011 0.5569 0.5192 
6 λ-SMART 0.5042 0.5449 0.5951 0.5623 

Table 3. Close test results on Names-1-Test. 

# Models NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. 0.5472 0.5347 0.5731 0.5510 
2 In-domain 0.5216 0.5266 0.5789 0.5472 
3 2W-Interp. 0.5452 0.5414 0.5891 0.5604 
4 3W-Interp. 0.5474 0.5470 0.5951 0.5661 
5 λ-Boost 0.5269 0.5233 0.5716 0.5428 
6 λ-SMART 0.5200 0.5331 0.5875 0.5538 

Table 4. Open test results on Names-2-Test. 
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significantly (i.e., p-value < 0.05 according to 
t-test) on both the open and closed test sets. 

The second adaptation experiment involves 
data sets from several languages (Table 2).  
2-layer LambdaRank baseline rankers were first 
built from Korean, English, Japanese, and Chi-
nese training data and tested on Korean test sets 

(Tables 5 and 6).  These baseline rankers then 
serve as in-domain ranker and background 
rankers for model adaptation.  For model inter-
polation (Tables 7 and 8), Rows 1 to 4 are three 
2-way interpolated rankers built by linearly in-
terpolating  
each of the three background rankers with the 
in-domain ranker, respectively.  Row 4 is a 4-way 
interpolated ranker built by interpolating the 
in-domain ranker with the three background 
rankers.  For LambdaBoost (Tables 9 and 10) and 
LambdaSMART (Tables 11 and 12), we used the 
same parameter settings as those in the name 
query experiments, and adapted the three back-
ground rankers, to the Korean training data, 
Kokr-1-Train. 

The results in Tables 7 to 12 confirm what we 
learned in the name query experiments. There 
are three main conclusions. (1) Model interpola-
tion is an effective method of ranking model 
adaptation. E.g., the 4-way interpolated ranker 
outperforms other ranker significantly. (2) 
LambdaSMART is the best performer on the 
closed test set, but its performance drops signif-
icantly on the open test set due to the instability 
of trees. (3) LambdaBoost does not use trees. So 
its modeling capacity is weaker than Lamb-
daSMART (e.g., it always underperforms 
LambdaSMART significantly on the closed test 
sets), but it is more robust due to its linearity (e.g., 
it performs similarly to LambdaSMART on the 
open test set). 

5.3 Robustness of Boosting Algorithms 

This section investigates the robustness issue 
of the boosting algorithms in more detail. We 
compared LambdaSMART with different values 
of L (i.e., the number of leaf nodes), and with and 
without randomization. Our assumptions are (1) 
allowing more leaf nodes would lead to deeper 
trees, and as a result, would make the resulting 
ranking models less robust; and (2) injecting 
randomness into the basis function (i.e. regres-
sion tree) estimation procedure would improve 
the robustness of the trained models (Breiman, 
2001; Friedman, 1999).  In LambdaSMART, the 
randomness can be injected at different levels of 
tree construction.  We found that the most effec-
tive method is to introduce the randomness at 
the node level (in Step 4 in Figure 3). Before each 
node split, a subsample of the training data and a 
subsample of the features are drawn randomly. 
(The sample rate is 0.7). Then, the two randomly 
selected subsamples, instead of the full samples, 
are used to determine the best split.  
 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. (En) 0.5371 0.5413 0.5873 0.5616 
2 Back. (Ja) 0.5640 0.5684 0.6027 0.5808 
3 Back. (Cn) 0.4966 0.5105 0.5761 0.5393 
4 In-domain  0.5927 0.5824 0.6291 0.6055 

Table 5. Close test results of baseline rankers, on Kokr-1-Test 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. (En) 0.4991 0.5242 0.5397 0.5278 
2 Back. (Ja) 0.5052 0.5092 0.5377 0.5194 
3 Back. (Cn) 0.4779 0.4855 0.5114 0.4942 
4 In-domain  0.5164 0.5295 0.5675 0.5430 

Table 6. Open test results of baseline rankers, on Kokr-2-Test 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Interp. (En) 0.5954 0.5893 0.6335 0.6088 
2 Interp. (Ja) 0.6047 0.5898 0.6339 0.6116 
3 Interp. (Cn) 0.5812 0.5807 0.6268 0.6024 
4 4W-Interp. 0.5878 0.5870 0.6289 0.6054 

Table 7. Close test results of interpolated rankers, on 
Kokr-1-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Interp. (En) 0.5178 0.5369 0.5768 0.5500 
2 Interp. (Ja) 0.5274 0.5416 0.5788 0.5531 
3 Interp. (Cn) 0.5224 0.5339 0.5766 0.5487 
4 4W-Interp.  0.5278 0.5414 0.5823 0.5549 

Table 8. Open test results of interpolated rankers, on 
Kokr-2-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ-Boost (En) 0.5757 0.5716 0.6197 0.5935 
2 λ-Boost (Ja) 0.5801 0.5807 0.6225 0.5982 
3 λ-Boost (Cn)  0.5731 0.5793 0.6226 0.5972 

Table 9. Close test results of λ-Boost rankers, on Kokr-1-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ-Boost (En) 0.4960 0.5203 0.5486 0.5281 
2 λ-Boost (Ja) 0.5090 0.5167 0.5374 0.5233 
3 λ-Boost (Cn)  0.5177 0.5324 0.5673 0.5439 

Table 10. Open test results of λ-Boost rankers, on Kokr-2-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ-SMART 
(En) 

0.6096 0.6057 0.6454 0.6238 

2 λ- SMART 
(Ja) 

0.6014 0.5966 0.6385 0.6172 

3 λ- SMART 
(Cn)  

0.5955 0.6095 0.6415 0.6209 

Table 11. Close test results of λ-SMART rankers, on 
Kokr-1-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ- SMART 
(En) 

0.5177 0.5297 0.5563 0.5391 

2 λ- SMART 
(Ja) 

0.5205 0.5317 0.5522 0.5368 

3 λ- SMART 
(Cn)  

0.5198 0.5305 0.5644 0.5410 

Table 12. Open test results of λ-SMART rankers, on 
Kokr-2-Test. 
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We first performed the experiments on name 
queries. The results on the closed and open test sets 
are shown in Figures 4 (a) and 4 (b), respectively. 
The results are consistent with our assumptions. 
There are three main observations.  First, the gray 
bars in Figures 4 (a) and 4 (b) (boosting without 
randomization) show that on the closed test set, as  
expected, NDCG increases with the value of L, but 
the correlation does not hold on the open test set.  
Second, the black bars in these figures (boosting 
with randomization) show that in both closed and 
open test sets, NDCG increases with the value of L.  
Finally, comparing the gray bars with their cor-
responding black bars, we see that randomization 
consistently improves NDCG on the open test set, 
with a larger margin of gain for the boosting algo-
rithms with deeper trees (L > 5). 

These results are very encouraging.  Randomi-
zation seems to work like a charm. Unfortunately, 
it does not work well enough to help the boosting 
algorithm beat model interpolation on the open test 
sets.  Notice that all the LambdaSMART results 
reported in Section 5.2 use randomization with the 
same sampling rate  of 0.7.  We repeated the com-
parison in the cross-domain adaptation experi-
ments.  As shown in Figure 4, results in 4 (c) and 4 
(d) are consistent with those on names queries in 4 
(b). Results in 4 (f) show a visible performance drop 
from LambdaBoost to LambdaSMART with L = 2, 
indicating again the instability of trees. 

6 Conclusions and Future Work 

In this paper, we extend two classes of model 
adaptation methods (i.e., model interpolation and 
error-driven learning), which have been well stu-
died in statistical language modeling for speech 
and natural language applications (e.g., Bacchiani 
et al., 2004; Bellegarda, 2004; Gao et al., 2006), to 
ranking models for Web search applications.  

We have evaluated our methods on two adap-
tation experiments over a wide variety of datasets 
where the in-domain datasets bear different levels 
of similarities to their background datasets.  We 
reach different conclusions from the results of the 
open and close tests, respectively. Our open test 
results show that in the cases where the in-domain 
data is dramatically different from the background 
data, model interpolation is very robust and out-
performs the baseline and the error-driven learning 
methods significantly; whereas our close test re-
sults show that in the cases where the in-domain 
data is similar to the background data, the tree- 
based boosting algorithm (i.e. LambdaSMART) is 
the best performer, and achieves a significant im-
provement over the baselines.  We also show that 
these different conclusions are largely due to the 
instability of the use of trees in the boosting algo-
rithm. We thus explore several methods of im-
proving the robustness of the algorithm, such as 
randomization, regularization, using shallow trees, 
with limited success.  Of course, our experiments, 

 (a)  (b)  

  

(c)  (d)  (e)  

Figure 4. AveNDCG results (y-axis) of LambdaSMART with different values of L (x-axis), where L=1 is LambdaBoost; (a) and (b) are 
the results on closed and open tests using Names-1-Train as adaptation data, respectively;  (d),  (e) and (f) are the results on the 
Korean open test set, using background models trained on Web-En, Web-Ja, and Web-Cn data sets, respectively. 

   

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

1 2 4 10 20

0.53

0.54

0.54

0.55

0.55

1 2 4 10 20

0.50

0.51

0.52

0.53

0.54

0.55

1 2 4 10 20

0.49

0.50

0.51

0.52

0.53

0.54

1 2 4 10 20

0.51

0.52

0.53

0.54

0.55

1 2 4 10 20

512



described in Section 5.3, only scratch the surface of 
what is possible.  Robustness deserves more inves-
tigation and forms one area of our future work. 

Another family of model adaptation methods 
that we have not studied in this paper is transfer 
learning, which has been well-studied in the ma-
chine learning community (e.g., Caruana, 1997; 
Marx et al., 2008).  We leave it to future work. 

To solve the issue of inadequate training data, in 
addition to model adaptation, researchers have 
also been exploring the use of implicit user feed-
back data (extracted from log files) for ranking 
model training (e.g., Joachims et al., 2005; Radlinski 
et al., 2008).  Although such data is very noisy, it is 
of a much larger amount and is cheaper to obtain 
than human-labeled data.  It will be interesting to 
apply the model adaptation methods described in 
this paper to adapt a ranker which is trained on a 
large amount of automatically extracted data to a 
relatively small amount of human-labeled data. 
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