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Abstract

We propose a novel unsupervised approach
for distinguishing literal and non-literal use
of idiomatic expressions. Our model com-
bines an unsupervised and a supervised
classifier. The former bases its decision
on the cohesive structure of the context and
labels training data for the latter, which can
then take a larger feature space into account.
We show that a combination of both classi-
fiers leads to significant improvements over
using the unsupervised classifier alone.

1 Introduction

Idiomatic expressions are abundant in natural lan-
guage. They also often behave idiosyncratically
and are therefore a significant challenge for natural
language processing systems. For example, idioms
can violate selectional restrictions (as in push one’s
luck), disobey typical subcategorisation constraints
(e.g., in line without a determiner before line), or
change the default assignments of semantic roles
to syntactic categories (e.g., in break sth with X the
argument X would typically be an instrument but
for the idiom break the ice it is more likely to fill a
patient role, as in break the ice with Russia).

In order to deal with such idiosyncracies and as-
sign the correct analyses, NLP systems need to be
able to recognise idiomatic expressions. Much pre-
vious research on idioms has been concerned with
type-based classification, i.e., dividing expressions
into ‘idiom’ or ‘not idiom’ irrespective of their ac-
tual use in a given context. However, while some
expressions, such as by and large, always have an
idiomatic meaning, several other expressions, such
as break the ice or spill the beans, can be used liter-
ally as well as idiomatically (see examples (1) and
(2), respectively). Sometimes the literal usage can
even dominate in a domain, as for drop the ball,

which occurs fairly frequently in a literal sense in
the sports section of news texts.
(1) Dad had to break the ice on the chicken troughs so

that they could get water.
(2) Somehow I always end up spilling the beans all

over the floor and looking foolish when the clerk
comes to sweep them up.

Hence, whether a particular occurrence of a po-
tentially ambiguous expression has literal or non-
literal meaning has to be inferred from the context
(token-based idiom classification). Recently, there
has been increasing interest in this classification
task and both supervised and unsupervised tech-
niques have been proposed. The work we present
here builds on previous research by Sporleder and
Li (2009), who describe an unsupervised method
that exploits the presence or absence of cohesive
ties between the component words of a potential
idiom and its context to distinguish between literal
and non-literal use. If strong ties can be found
the expression is classified as literal otherwise as
non-literal. While this approach often works fairly
well, it has the disadvantage that it focuses exclu-
sively on lexical cohesion, other linguistic cues
that might influence the classification decision are
disregarded.

We show that it is possible to improve on
Sporleder and Li’s (2009) results by employing
a two-level strategy, in which a cohesion-based
unsupervised classifier is combined with a super-
vised classifier. We use the unsupervised classifier
to label a sub-set of the test data with high confi-
dence. This sub-set is then passed on as training
data to the supervised classifier, which then labels
the remainder of the data set. Compared to a fully
unsupervised approach, this two-stage method has
the advantage that a larger feature set can be ex-
ploited. This is beneficial for examples, in which
the cohesive ties are relatively weak but which con-
tain other linguistic cues for literal or non-literal
use.
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2 Related Work

Most studies on idiom classification focus on type-
based classification; few researchers have worked
on token-based approaches (i.e., classification of an
expression in a given context). Type-based meth-
ods frequently exploit the fact that idioms have a
number of properties which differentiate them from
other expressions. For example, they often exhibit
a degree of syntactic and lexical fixedness. Some
idioms, for instance, do not allow internal modi-
fiers (*shoot the long breeze) or passivisation (*the
bucket was kicked). They also typically only al-
low very limited lexical variation (*kick the vessel,
*strike the bucket).

Many approaches for identifying idioms focus
on one of these two aspects. For instance, measures
that compute the association strength between the
elements of an expression have been employed
to determine its degree of compositionality (Lin,
1999; Fazly and Stevenson, 2006) (see also Villav-
icencio et al. (2007) for an overview and a com-
parison of different measures). Other approaches
use Latent Semantic Analysis (LSA) to determine
the similarity between a potential idiom and its
components (Baldwin et al., 2003). Low similar-
ity is supposed to indicate low compositionality.
Bannard (2007) looks at the syntactic fixedness
of idiomatic expressions, i.e., how likely they are
to take modifiers or be passivised, and compares
this to what would be expected based on the ob-
served behaviour of the component words. Fazly
and Stevenson (2006) combine information about
syntactic and lexical fixedness (i.e., estimated de-
gree of compositionality) into one measure.

The few token-based approaches include a study
by Katz and Giesbrecht (2006), who devise a super-
vised method in which they compute the meaning
vectors for the literal and non-literal usages of a
given expression in the training data. An unseen
test instance of the same expression is then labelled
by performing a nearest neighbour classification.

Birke and Sarkar (2006) model literal vs. non-
literal classification as a word sense disambiguation
task and use a clustering algorithm which compares
test instances to two automatically constructed seed
sets (one with literal and one with non-literal ex-
pressions), assigning the label of the closest set.
While the seed sets are created without immediate
human intervention they do rely on manually cre-
ated resources such as databases of known idioms.

Cook et al. (2007) and Fazly et al. (2009) pro-

pose an alternative method which crucially relies
on the concept of canonical form, which is a fixed
form (or a small set of those) corresponding to the
syntactic pattern(s) in which the idiom normally
occurs (Riehemann, 2001).1 The canonical form
allows for inflectional variation of the head verb but
not for other variations (such as nominal inflection,
choice of determiner etc.). It has been observed that
if an expression is used idiomatically, it typically
occurs in its canonical form. For example, Riehe-
mann (2001, p. 34) found that for decomposable
idioms 75% of the occurrences are in canonical
form, rising to 97% for non-decomposable idioms.2

Cook et al. exploit this behaviour and propose an
unsupervised method which classifies an expres-
sion as idiomatic if it occurs in canonical form and
literal otherwise.

Finally, in earlier work, we proposed an unsu-
pervised method which detects the presence or ab-
sence of cohesive links between the component
words of the idiom and the surrounding discourse
(Sporleder and Li, 2009). If such links can be found
the expression is classified as ‘literal’ otherwise as
‘non-literal’. In this paper we show that the per-
formance of such a classifier can be significantly
improved by complementing it with a second-stage
supervised classifier.

3 First Stage: Unsupervised Classifier

As our first-stage classifier, we use the unsuper-
vised model proposed by Sporleder and Li (2009).
This model exploits the fact that words in a co-
herent discourse exhibit lexical cohesion (Halliday
and Hasan, 1976), i.e. concepts referred to in sen-
tences are typically related to other concepts men-
tioned elsewhere in the discourse. Given a suitable
measure of semantic relatedness, it is possible to
compute the strength of such cohesive ties between
pairs of words. While the component words of
literally used expressions tend to exhibit lexical co-
hesion with their context, the words of non-literally
used expressions do not. For example, in (3) the ex-
pression play with fire is used literally and the word
fire is related to surrounding words like grilling,
dry-heat, cooking, and coals. In (4), however play
with fire is used non-literally and cohesive ties be-

1This is also the form in which an idiom is usually listed
in a dictionary.

2Decomposable idioms are expressions such as spill the
beans which have a composite meaning whose parts can be
mapped to the words of the expression (e.g., spill→’reveal’,
beans→’secret’).
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tween play or fire and the context are absent.

(3) Grilling outdoors is much more than just another
dry-heat cooking method. It’s the chance to
play with fire, satisfying a primal urge to stir around
in coals .

(4) And PLO chairman Yasser Arafat has accused Israel
of playing with fire by supporting HAMAS in its
infancy.

To determine the strength of cohesive links, the
unsupervised model builds a graph structure (called
cohesion graph) in which all pairs of content words
in the context are connected by an edge which is
weighted by the pair’s semantic relatedness. Then
the connectivity of the graph is computed, defined
as the average edge weight. If the connectivity
increases when the component words of the idiom
are removed, then there are no strong cohesive ties
between the expression and the context and the
example is labelled as ‘non-literal’, otherwise it is
labelled as ‘literal’.

To model semantic distance, we use the Nor-
malized Google Distance (NGD, see Cilibrasi and
Vitanyi (2007)), which computes relatedness on the
basis of page counts returned by a search engine.3

It is defined as follows:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

log M −min{log f(x), log f(y)}
(5)

where x and y are the two words whose association
strength is computed (e.g., fire and coal), f(x) is
the page count returned by the search engine for x
(and likewise for f(y) and y), f(x, y) is the page
count returned when querying for “x AND y”, and
M is the number of web pages indexed by the
search engine. The basic idea is that the more often
two terms occur together, relative to their overall
occurrence, the more closely they are related.

We hypothesise that the unsupervised classifier
will give us relatively good results for some exam-
ples. For instance, in (3) there are several strong
cues which suggest that play with fire is used liter-
ally. However, because the unsupervised classifier
only looks at lexical cohesion, it misses many other
clues which could help distinguish literal and non-
literal usages. For example, if break the ice is
followed by the prepositions between or over as in
example (6), it is more likely to be used idiomati-
cally (at least in the news domain).

(6) ”Gujral will meet Sharif on Monday and discuss
bilateral relations,” the Press Trust of India added.

3We employ Yahoo! rather than Google since we found
that it returns more stable counts.

The minister said Sharif and Gujral would be able
to break the ice over Kashmir.

Furthermore, idiomatic usages also exhibit co-
hesion with their context but the cohesive ties are
with the non-literal meaning of the expression. For
example, in news texts, break the ice in its figu-
rative meaning often co-occurs with discuss, rela-
tions, talks or diplomacy (see (6)). At the moment
we do not have any way to model these cohesive
links, as we do not know the non-literal meaning
of the idiom.4 However if we had labelled data we
could train a supervised classifier to learn these and
other contextual clues. The trained classifier might
then be able to correctly classify examples which
were misclassified by the unsupervised classifier,
i.e., examples in which the cohesive ties are weak
but where other clues exist which indicate how the
expression is used.

For example, in (7) there is weak cohesive evi-
dence for a literal use of break the ice, due to the
semantic relatedness between ice and water. How-
ever, there are stronger cues for non-literal usage,
such as the preposition between and the presence
of words like diplomats and talks, which are in-
dicative of idiomatic usage. Examples like this
are likely to be misclassified by the unsupervised
model; a supervised classifier, on the other hand,
has a better chance to pick up on such additional
cues and predict the correct label.

(7) Next week the two diplomats will meet in an attempt
to break the ice between the two nations. A crucial
issue in the talks will be the long-running water
dispute.

4 Second Stage: Supervised Classifier

For the supervised classifier, we used Support Vec-
tor Machines as implemented by the LIBSVM
package.5 We implemented four types of features,
which encode both cohesive information and word
co-occurrence more generally.6

4It might be possible to compute the Normalized Google
Distance between the whole expression and the words in the
context, assuming that whenever the whole expression occurs
it is much more likely to be used figuratively than literally.
For expressions in canonical form this is indeed often the
case (Riehemann, 2001), however there are exceptions (see
Section 6.1) for which such an approach would not work.

5Available from: http://www.csie.ntu.edu.tw/
˜cjlin/libsvm/ We used the default parameters.

6We also experimented with linguistically more informed
features, such as the presence of named entities in the local
context of the expression, and properties of the subject or
co-ordinated verbs, but we found that these features did not
lead to a better performance of the supervised classifier. This
is probably partly due to data sparseness.
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Salient Words (salW) This feature aims to iden-
tify words which are particularly salient for literal
usage. We used a frequency-based definition of
salience and computed the literal saliency score for
each word in a five-paragraph context around the
target expression:

sallit(w) =
log flit(w)× ilit(w)

log fnonlit(w)× inonlit(w)
(8)

where sallit(w) is the saliency score of the word w
for the class lit; flit(w) is the token frequency of
the word w for literally used expressions; ilit(w) is
the number of instances of the target expressions
classified as lit which co-occur with word w (and
mutatis mutandis nonlit for target expressions la-
belled as non-literal).7

Words with a high sallit occur much more fre-
quently with literal usages than with non-literal
ones. Conversely, words with a low sallit should
be more indicative of the non-literal class. How-
ever, we found that, in practice, the measure is
better at picking out indicative words for the literal
class; non-literal usages tend to co-occur with a
wide range of words. For example, among the high-
est scoring words for break the ice we find thick,
bucket, cold, water, reservoir etc. While we do find
words like relations, diplomacy, discussions among
the lowest scoring terms (i.e., terms indicative of
the non-literal class), we also find a lot of noise
(ask, month). The effect is even more pronounced
for other expressions (like drop the ball) which
tend to be used idiomatically in a wider variety
of situations (drop the ball on a ban of chemical
weapons, drop the ball on debt reduction etc.).

We implement the saliency score in our model by
encoding for the 300 highest scoring words whether
the word is present in the context of a given exam-
ple and how frequently it occurs.8 Note that this
feature (as well as the next one) can be computed in
a per-idiom or a generic fashion. In the former case,
we would encode the top 300 words separately for
each idiom in the training set, in the latter across all
idioms (with the consequence that more frequent

7Our definition of sallit bears similarities with the well
known tf.idf score. We include both the term frequencies
(flit) and the instance frequencies (ilit) in the formula because
we believe both are important. However, the instance fre-
quency is more informative and less sensitive to noise because
it indicates that expression classified as ’literal’ consistently
co-occurs with the word in question. Therefore we weight
down the effect of the term frequency by taking its log.

8We also experimented with different feature dimensions
besides 300 but did not find a big difference in performance.

idioms in the training set contribute to more po-
sitions in the feature vector). We found that, in
practice, it does not make a big difference which
variant is used. Moreover, in our bootstrapping
scenario, we cannot ensure that we have sufficient
examples of each idiom in the training set to train
separate classifiers, so we opted for generic models
throughout all experiments.

Related Words (relW) This feature set is a vari-
ant of the previous one. Here we score the words
not based on their saliency but we determine the
semantic relatedness between the noun in the id-
iomatic expression and each word in the global
context, using the Normalized Google Distance
mentioned in Section 3. Again we encode the 300
top-scoring words.

While the related words feature is less prone to
overestimation of accidental co-occurrence than the
saliency feature, it has the disadvantage of conflat-
ing different word senses. For example, among the
highest scoring words for ice are cold, melt, snow,
skate, hockey but also cream, vanilla, dessert.

Relatedness Score (relS) The fourth feature set
implements the relatedness score which encodes
the scores for the 100 most highly weighted edges
in the cohesion graph of an instance.9 If these
scores are high, there are many cohesive ties with
the surrounding discourse and the target expression
is likely to be used literally.

Discourse Connectivity (connect.) Finally, we
implemented two features which look at the cohe-
sion graph of an instance. We encode the connec-
tivity of the graph (i) when the target expression
is included and (ii) when it is excluded. The un-
supervised classifier uses the difference between
these two values to make its prediction. By encod-
ing the absolute connectivity values as features we
enable the supervised classifier to make use of this
information as well.

5 Combining the Classifiers

As mentioned before, we use the unsupervised clas-
sifier to label an initial training set for the super-
vised one. To ensure that the training set does
not contain too much noise, we only add those ex-
amples about which the unsupervised classifier is

9We only used the 100 highest ranked edges because we
are looking at a specific context here rather than the contexts
of the literal or non-literal class overall. Since the contexts we
use are only five paragraphs long, recording the 100 strongest
edges seems sufficient.
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most confident. We thus need to address two ques-
tions: (i) how to define a confidence function for
the unsupervised classifier, and (ii) how to set the
confidence threshold governing what proportion of
the data set is used for training the second classifier.

The first question is relatively easy to answer:
as the unsupervised classifier bases its decision on
the difference in connectivity between including or
excluding the component words of the idiom in the
cohesion graph, an obvious choice for a confidence
function is the difference in connectivity; i.e., the
higher the difference, the higher the confidence of
the classifier in the predicted label.

The confidence threshold could be selected on
the basis of the unsupervised classifier’s perfor-
mance on a development set. Note that when choos-
ing such a threshold there is usually a trade-off be-
tween the size of the training set and the amount of
noise in it: the lower the threshold, the larger and
the noisier the training set. Ideally we would like
a reasonably-sized training set which is also rela-
tively noise-free, i.e., does not contain too many
wrongly labelled examples. One way to achieve
this is to start with a relatively small training set
and then expand it gradually.

A potential problem for the supervised classifier
is that our data set is relatively imbalanced, with
the non-literal class being four times as frequent
as the literal class. Supervised classifiers often
have problems with imbalanced data and tend to be
overly biased towards the majority class (see, e.g.,
Japkowicz and Stephen (2002)). To overcome this
problem, we experimented with boosting the literal
class with additional examples.10 We describe our
methods for training set enlargement and boosting
the literal class in the remainder of this section.

Iteratively Enlarging the Training Set A typi-
cal method for increasing the training set is to go
through several iterations of enlargement and re-
training.11 We adopt a conservative enlargement
strategy: we only consider instances on whose la-
bels both classifiers agree and we use the confi-
dence function of the unsupervised classifier to
determine which of these examples to add to the
training set. The motivation for this is that we hy-
pothesise that the supervised classifier will not have

10Throughout this paper, we use the term ’boosting’ in a
non-technical sense.

11In our case re-training also involves re-computing the
ranked lists of salient and related words. As the process goes
on the classifier will be able to discover more and more useful
cue words and encode them in the feature vector.

a very good performance initially, as it is trained
on a very small data set. As a consequence its con-
fidence function may also not be very accurate. On
the other hand, we know from Sporleder and Li
(2009) that the unsupervised classifier has a rea-
sonably good performance. So while we give the
supervised classifier a veto-right, we do not allow
it to select new training data by itself or overturn
classifications made by the unsupervised classifier.

A similar strategy was employed by Ng and
Cardie (2003) in a self-training set-up. However,
while they use an ensemble of supervised classi-
fiers, which they re-train after each iteration, we
can only re-train the second classifier; the first one,
being unsupervised, will never change its predic-
tion. Hence it does not make sense to go through
a large number of iterations; the more iterations
we go through, the closer the performance of the
combined classifier will be to that of the unsuper-
vised one because that classifier will label a larger
and larger proportion of the data. However, going
through one or two iterations allows us to slowly
enlarge the training set and thereby gradually im-
prove the performance of the supervised classifier.

In each iteration, we select 10% of the remain-
ing examples to be added to the training set.12

We could simply add those 10% of the data about
which the unsupervised classifier is most confident,
but if the classifier was more confident about one
class than about the other, we would risk obtain-
ing a severely imbalanced training set. Hence, we
decided to separate examples classified as ‘literal’
from those classified as ‘non-literal’ and add the
top 10% from each set. Provided the automatic
classification is reasonably accurate, this will en-
sure that the distribution of classes in the training
set is roughly similar to that in the overall data set
at least at the early stages of the bootstrapping.

Boosting the Literal Class As the process goes
on, we are still likely to introduce more and more
imbalance in the training set. This is due to the
fact that the supervised classifier is likely to have
some bias towards the majority class (and our ex-
periments in Section 6.2 suggest that this is indeed
the case). Hence, as the bootstrapping process goes
on, potentially more and more examples will be
labelled as ’non-literal’ and if we always select the
top 10% of these, our training set will gradually

12Since we do not have a separate development set, we
chose the value of 10% intuitively as it seemed a reasonably
good threshold.
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become more imbalanced. This is a well-known
problem for bootstrapping approaches (Blum and
Mitchell, 1998; Le et al., 2006). We could coun-
teract this by selecting a higher proportion of ex-
amples labelled as ’literal’. However given that
the number of literal examples in our data set is
relatively small, we would soon deplete our literal
instance pool and moreover, because we would be
forced to add less confidently labelled examples
for the literal class, we are likely to introduce more
noise in the training set.

A better option is to boost the literal class with
external examples. To do this we exploit the
fact that non-canonical forms of idioms are highly
likely to be used literally. Given that our data set
only contains canonical forms (see Section 6.1), we
automatically extract non-canonical form variants
and label them as ’literal’. To generate possible
variants, we either (i) change the number of the
noun (e.g., rock the boat becomes rock the boats),
(ii) change the determiner (e.g., rock a boat), or (iii)
replace the verb or noun by one of its synonyms,
hypernyms, or siblings from WordNet (e.g., rock
the ship). While this strategy does not give us addi-
tional literal examples for all idioms, for example
we were not able to find non-canonical form occur-
rences of sweep under the carpet in the Gigaword
corpus, for most idioms we were able to gener-
ate additional examples. Note that this data set is
potentially noisy as not all non-canonical form ex-
amples are used literally. However, when checking
a small sample manually, we found that only very
small percentage (<< 1%) was mis-labelled.

To reduce the classifier bias when enlarging the
training set, we add additional literal examples dur-
ing each iteration to ensure that the class distri-
bution does not deviate too much from the dis-
tribution originally predicted by the unsupervised
classifier.13 The examples to be added are selected
randomly but we try to ensure that each idiom is
represented. When reporting the results, we disre-
gard these additional external examples.

6 Experiments and Results

We carried out a number of different experiments.
In Section 6.2 we investigate the performance of
the different features of the supervised classifier
and in Section 6.3 we look more closely at the

13We are assuming that the true distribution is not known
and use the predictions of the unsupervised classifier to ap-
proximate the true distribution.

behaviour of the combined classifier. We start by
describing the data set.

6.1 Data

We used the data from Sporleder and Li (2009),
which consist of 17 idioms that can be used both
literally and non-literally (see Table 1). For each
expression, all canonical form occurrences were
extracted from the Gigaword corpus together with
five paragraphs of context and labelled as ‘literal’
or ‘non-literal’.14 The inter-annotator agreement
on a small sample of doubly annotated examples
was 97% and the kappa score 0.7 (Cohen, 1960).

non-
expression literal literal all
back the wrong horse 0 25 25
bite off more than one can chew 2 142 144
bite one’s tongue 16 150 166
blow one’s own trumpet 0 9 9
bounce off the wall* 39 7 46
break the ice 20 521 541
drop the ball* 688 215 903
get one’s feet wet 17 140 157
pass the buck 7 255 262
play with fire 34 532 566
pull the trigger* 11 4 15
rock the boat 8 470 478
set in stone 9 272 281
spill the beans 3 172 175
sweep under the carpet 0 9 9
swim against the tide 1 125 126
tear one’s hair out 7 54 61
all 862 3102 3964

Table 1: Idiom statistics (* indicates expressions
for which the literal usage is more common than
the non-literal one)

6.2 Feature Analysis for the Supervised
Classifier

In a first experiment, we tested the contribution of
the different features (Table 2). For each set, we
trained a separate classifier and tested it in 10-fold
cross-validation mode. We also tested the perfor-
mance of the first three features combined (salient
and related words and relatedness score) as we
wanted to know whether their combination leads
to performance gains over the individual classifiers.
Moreover, testing these three features in combi-
nation allows us to assess the contribution of the
connectivity feature, which is most closely related
to the unsupervised classifier. We report the accu-
racy, and because our data are fairly imbalanced,

14The restriction to canonical forms was motivated by the
fact that for the mostly non-decomposable idioms in the set,
the vast majority (97%) of non-canonical form occurrences
will be used literally (see Section 2).
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also the F-Score for the minority class (’literal’).

Avg. literal (%) Avg. (%)
Feature Prec. Rec. F-Score Acc.
salW 77.10 56.10 65.00 86.83
relW 78.00 43.20 55.60 84.99
relS 74.90 37.50 50.00 83.68
connectivity 78.30 2.10 4.10 78.58
salW+relW+relS 82.90 63.50 71.90 89.20

all 85.80 66.60 75.00 90.34

Table 2: Performance of different feature sets, 10-
fold cross-validation

It can be seen that the salient words (salW) fea-
ture has the highest performance of the individual
features, both in terms of accuracy and in terms of
literal F-Score, followed by related words (relW),
and relatedness score (relS). Intuitively, it is plausi-
ble that the saliency feature performs quite well as
it can also pick up on linguistic indicators of idiom
usage that do not have anything to do with lexical
cohesion. However, a combination of the first three
features leads to an even better performance, sug-
gesting that the features do indeed model somewhat
different aspects of the data.

The performance of the connectivity feature is
also interesting: while it does not perform very well
on its own, as it over-predicts the non-literal class, it
noticeably increases the performance of the model
when combined with the other features, suggesting
that it picks up on complementary information.

6.3 Testing the Combined Classifier

We experimented with different variants of the
combined classifier. The results are shown in Ta-
ble 3. In particular, we looked at: (i) combining the
two classifiers without training set enlargement or
boosting of the literal class (combined), (ii) boost-
ing the literal class with 200 automatically labelled
non-canonical form examples (combined+boost),
(iii) enlarging the training set by iteration (com-
bined+it), and (iv) enlarging the training set by
iteration and boosting the literal class after each
iteration (combined+boost+it). The table shows
the literal precision, recall and F-Score of the com-
bined model (both classifiers) on the complete data
set (excluding the extra literal examples). Note that
the results for the set-ups involving iterative train-
ing set enlargement are optimistic: since we do not
have a separate development set, we report the op-
timal performance achieved during the first seven
iterations. In a real set-up, when the optimal num-
ber of iterations is chosen on the basis of a separate

data set, the results may be lower. The table also
shows the majority class baseline (Basemaj), and
the overall performance of the unsupervised model
(unsup) and the supervised model when trained in
10-fold cross-validation mode (super 10CV).

Model Precl Recl F-Scorel Acc.

Basemaj - - - 78.25
unsup. 50.04 69.72 58.26 78.38
combined 83.86 45.82 59.26 86.30
combined+boost 70.26 62.76 66.30 86.13
combined+it∗ 85.68 46.52 60.30 86.68
combined+boost+it∗ 71.86 66.36 69.00 87.03
super. 10CV 85.80 66.60 75.00 90.34

Table 3: Results for different classifiers; ∗ indicates
best performance (optimistic)

It can be seen that the combined classifier is 8%
more accurate than both the majority baseline and
the unsupervised classifier. This amounts to an
error reduction of over 35% (the difference is sta-
tistically significant, χ2 test, p << 0.01). While
the F-Score of the unboosted combined classifier is
comparable to that of the unsupervised one, boost-
ing the literal class leads to a 7% increase, due
to a significantly increased recall, with no signif-
icant drop in accuracy. These results show that
complementing the unsupervised classifier with a
supervised one, can lead to tangible performance
gains. Note that the accuracy of the combined clas-
sifier, which uses no manually labelled training
data, is only 4% below that of a fully supervised
classifier; in other words, we do not lose much by
starting with an automatically labelled data set. It-
erative enlargement of the training set can lead to
further improvements, especially when combined
with boosting to reduce the classifier bias.

To get a better idea of the effect of training set
enlargement, we plotted the accuracy and F-Score
of the combined classifier for a given number of
iterations with boosting (Figure 1) and without (Fig-
ure 2). It can be seen that enlargement has a notice-
able positive effect if combined with boosting. If
the literal class is not boosted, the increasing bias
of the classifier seems to outweigh most of the pos-
itive effects from the enlarged training set. Figure 1
also shows that the best performance is obtained af-
ter a relatively small number of iterations (namely
two), as expected.15 With more iterations the per-
formance decreases again. However, it decays rel-

15Note that this also depends on the confidence threshold.
For example, if a threshold of 5% is chosen, more iterations
may be required for optimal performance.
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atively gracefully and even after seven iterations,
when more than 40% of the data are classified by
the unsupervised classifier, the combined classifier
still achieves an overall performance that is sig-
nificantly above that of the unsupervised classifier
(84.28% accuracy compared to 78.38%, significant
at p << 0.01). Hence, the combined classifier
seems not to be very sensitive to the exact number
of iterations and performs reasonably well even if
the number of iterations is sub-optimal.
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Figure 1: Accuracy and literal F-Score on complete
data set after different iterations with boosting of
the literal class
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Figure 2: Accuracy and literal F-Score on complete
data set after different iterations without boosting
of the literal class

Figure 3 shows how the training set increases
as the process goes on16 and how the number of
mis-classifications in the training set develops. In-
terestingly, when going from the first to the second
iteration the training set nearly doubles (from 396
to 669 instances), while the proportion of errors is
also reduced by a third (from 7% to 5%). Hence,
the training set does not only grow but the pro-
portion of noise in it decreases, too. This shows

16Again, we disregard the extra literal examples here.

that our conservative enlargement strategy is fairly
successful in selecting correctly labelled examples.
Only at later stages, when the classifier bias takes
over, does the proportion of noise increase again.
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Figure 3: Training set size and error in training set
at different iterations

7 Conclusion

We presented a two-stage classification approach
for distinguishing literal and non-literal use of id-
iomatic expressions. Our approach complements
an unsupervised classifier, which exploits informa-
tion about the cohesive structure of the discourse,
with a supervised classifier. The latter can make
use of a range of features and therefore base its
classification decision on additional properties of
the discourse, besides lexical cohesion. We showed
that such a combined classifier can lead to a sig-
nificant reduction of classification errors. Its per-
formance can be improved further by iteratively
increasing the training set in a bootstrapping loop
and by adding additional examples of the literal
class, which is typically the minority class. We
found that such examples can be obtained automat-
ically by extracting non-canonical variants of the
target idioms from an unlabelled corpus.

Future work should look at improving the su-
pervised classifier, which so far has an accuracy
of 90%. While this is already pretty good, a more
sophisticated model might lead to further improve-
ments. For example, one could experiment with
linguistically more informed features. While our
initial studies in this direction were negative, care-
ful feature engineering might lead to better results.
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