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Abstract

Methods that learn from prior informa-
tion about input features such as general-
ized expectation (GE) have been used to
train accurate models with very little ef-
fort. In this paper, we propose an ac-
tive learning approach in which the ma-
chine solicits “labels” on features rather
than instances. In both simulated and real
user experiments on two sequence label-
ing tasks we show that our active learning
method outperforms passive learning with
features as well as traditional active learn-
ing with instances. Preliminary experi-
ments suggest that novel interfaces which
intelligently solicit labels on multiple fea-
tures facilitate more efficient annotation.

1 Introduction

The application of machine learning to new prob-
lems is slowed by the need for labeled training
data. When output variables are structured, an-
notation can be particularly difficult and time-
consuming. For example, when training a condi-
tional random field (Lafferty et al., 2001) to ex-
tract fields such as rent, contact, features, and utilities
from apartment classifieds, labeling 22 instances
(2,540 tokens) provides only 66.1% accuracy.1

Recent work has used unlabeled data and lim-
ited prior information about input features to boot-
strap accurate structured output models. For ex-
ample, both Haghighi and Klein (2006) and Mann
and McCallum (2008) have demonstrated results
better than 66.1% on the apartments task de-
scribed above using only a list of 33 highly dis-
criminative features and the labels they indicate.
However, these methods have only been applied
in scenarios in which the user supplies such prior
knowledge before learning begins.

1Averaged over 10 randomly selected sets of 22 instances.

In traditional active learning (Settles, 2009), the
machine queries the user for only the labels of in-
stances that would be most helpful to the machine.
This paper proposes an active learning approach in
which the user provides “labels” for input features,
rather than instances. A labeled input feature de-
notes that a particular input feature, for example
the word call, is highly indicative of a particular
label, such as contact. Table 1 provides an excerpt
of a feature active learning session.

In this paper, we advocate using generalized
expectation (GE) criteria (Mann and McCallum,
2008) for learning with labeled features. We pro-
vide an alternate treatment of the GE objective
function used by Mann and McCallum (2008) and
a novel speedup to the gradient computation. We
then provide a pool-based feature active learning
algorithm that includes an option to skip queries,
for cases in which a feature has no clear label.
We propose and evaluate feature query selection
algorithms that aim to reduce model uncertainty,
and compare to several baselines. We evaluate
our method using both real and simulated user ex-
periments on two sequence labeling tasks. Com-
pared to previous approaches (Raghavan and Al-
lan, 2007), our method can be used for both classi-
fication and structured tasks, and the feature query
selection methods we propose perform better.

We use experiments with simulated labelers on
real data to extensively compare feature query se-
lection algorithms and evaluate on multiple ran-
dom splits. To make these simulations more re-
alistic, the effort required to perform different la-
beling actions is estimated from additional exper-
iments with real users. The results show that ac-
tive learning with features outperforms both pas-
sive learning with features and traditional active
learning with instances.

In the user experiments, each annotator actively
labels instances, actively labels features one at a
time, and actively labels batches of features orga-
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accuracy 46.5→ 60.5
feature label

PHONE* contact
call contact

deposit rent
month rent
pets restrict.
lease rent

appointment contact
parking features
EMAIL* contact

information contact

accuracy 60.5→ 67.1
feature label
water utilities
close neighbor.

garbage utilities
included utilities

features
shopping neighbor.

bart neighbor.
downtown neighbor.

TIME* contact
bath size

Table 1: Two iterations of feature active learning.
Each table shows the features labeled, and the re-
sulting change in accuracy. Note that the word in-
cluded was labeled as both utilities and features, and
that ∗ denotes a regular expression feature.

nized using a “grid” interface. The results support
the findings of the simulated experiments and pro-
vide evidence that the “grid” interface can facili-
tate more efficient annotation.

2 Conditional Random Fields

In this section we describe the underlying proba-
bilistic model for all methods in this paper. We
focus on sequence labeling, though the described
methods could be applied to other structured out-
put or classification tasks. We model the proba-
bility of the label sequence y ∈ Yn conditioned
on the input sequence x ∈ X n, p(y|x; θ) using
first-order linear-chain conditional random fields
(CRFs) (Lafferty et al., 2001). This probability is

p(y|x; θ) =
1
Zx

exp
(∑

i

∑
j

θjfj(yi, yi+1,x, i)
)
,

where Zx is the partition function and feature
functions fj consider the entire input sequence
and at most two consecutive output variables.
The most probable output sequence and transition
marginal distributions can be computed using vari-
ants of Viterbi and forward-backward.

Provided a training data distribution p̃, we es-
timate CRF parameters by maximizing the condi-
tional log likelihood of the training data.

L(θ) = Ep̃(x,y)[log p(y|x; θ)]

We use numerical optimization to maximize L(θ),
which requires the gradient of L(θ) with respect
to the parameters. It can be shown that the par-
tial derivative with respect to parameter j is equal

to the difference between the empirical expecta-
tion of Fj and the model expectation of Fj , where
Fj(y,x) =

∑
i fj(yi, yi+1,x, i).

∂

∂θj
L(θ) = Ep̃(x,y)[Fj(y,x)]

− Ep̃(x)[Ep(y|x;θ)[Fj(y,x)]].

We also include a zero-mean variance σ2 = 10
Gaussian prior on parameters in all experiments.2

2.1 Learning with missing labels
The training set may contain partially labeled se-
quences. Let z denote missing labels. We esti-
mate parameters with this data by maximizing the
marginal log-likelihood of the observed labels.

LMML(θ) = Ep̃(x,y)[log
∑
z

p(y, z|x; θ)]

We refer to this training method as maximum
marginal likelihood (MML); it has also been ex-
plored by Quattoni et al. (2007).

The gradient of LMML(θ) can also be written
as the difference of two expectations. The first is
an expectation over the empirical distribution of x
and y, and the model distribution of z. The second
is a double expectation over the empirical distribu-
tion of x and the model distribution of y and z.

∂

∂θj
LMML(θ) = Ep̃(x,y)[Ep(z|y,x;θ)[Fj(y, z,x)]]

− Ep̃(x)[Ep(y,z|x;θ)[Fj(y, z,x)]].

We train models using LMML(θ) with expected
gradient (Salakhutdinov et al., 2003).

To additionally leverage unlabeled data, we
compare with entropy regularization (ER). ER
adds a term to the objective function that en-
courages confident predictions on unlabeled data.
Training of linear-chain CRFs with ER is de-
scribed by Jiao et al. (2006).

3 Generalized Expectation Criteria

In this section, we give a brief overview of gen-
eralized expectation criteria (GE) (Mann and Mc-
Callum, 2008; Druck et al., 2008) and explain how
we can use GE to learn CRF parameters with esti-
mates of feature expectations and unlabeled data.

GE criteria are terms in a parameter estimation
objective function that express preferences on the

210 is a default value that works well in many settings.
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value of a model expectation of some function.
Given a score function S, an empirical distribution
p̃(x), a model distribution p(y|x; θ), and a con-
straint function Gk(x,y), the value of a GE crite-
rion is G(θ) = S(Ep̃(x)[Ep(y|x;θ)[Gk(x,y)]]).

GE provides a flexible framework for parameter
estimation because each of these elements can take
an arbitrary form. The most important difference
between GE and other parameter estimation meth-
ods is that it does not require a one-to-one cor-
respondence between constraint functions Gk and
model feature functions. We leverage this flexi-
bility to estimate parameters of feature-rich CRFs
with a very small set of expectation constraints.

Constraint functions Gk can be normalized so
that the sum of the expectations of a set of func-
tions is 1. In this case, S may measure the di-
vergence between the expectation of the constraint
function and a target expectation Ĝk.

G(θ) = Ĝk log(E[Gk(x,y)]), (1)

where E[Gk(x,y)] = Ep̃(x)[Ep(y|x;θ)[Gk(x,y)]].
It can be shown that the partial derivative of
G(θ) with respect to parameter j is proportional to
the predicted covariance between the model fea-
ture function Fj and the constraint function Gk.3

∂

∂θj
G(θ) =

Ĝk
E[Gk(x,y)]

× (2)(
Ep̃(x)

[
Ep(y|x;θ)[Fj(x,y)Gk(x,y)]

− Ep(y|x;θ)[Fj(x,y)]Ep(y|x;θ)[Gk(x,y)]
])

The partial derivative shows that GE learns pa-
rameter values for model feature functions based
on their predicted covariance with the constraint
functions. GE can thus be interpreted as a boot-
strapping method that uses the limited training sig-
nal to learn about parameters for related model
feature functions.

3.1 Learning with feature-label distributions
Mann and McCallum (2008) apply GE to a linear-
chain, first-order CRF. In this section we provide
an alternate treatment that arrives at the same ob-
jective function from the general form described
in the previous section.

Often, feature functions in a first-order linear-
chain CRF f are binary, and are the conjunction

3If we use squared error for S, the partial derivative is the
covariance multiplied by 2(Ĝk − E[Gk(x,y)]).

of an observational test q(x, i) and a label pair test
1{yi=y′,yi+1=y′′}.4

f(yi, yi+1,x, i) = 1{yi=y′,yi+1=y′′}q(x, i)

The constraint functions Gk we use here decom-
pose and operate similarly, except that they only
include a test for a single label. Single label con-
straints are easier for users to estimate and make
GE training more efficient. Label transition struc-
ture can be learned automatically from single la-
bel constraints through the covariance-based pa-
rameter update of Equation 2. For convenience,
we can write Gyk to denote the constraint func-
tion that combines observation test k with a test
for label y. We also add a normalization constant
Ck = Ep̃(x)[

∑
i qk(x, i)],

Gyk(x,y) =
∑
i

1
Ck

1{yi=y}qk(x, i)

Under this construction the expectation of Gyk is
the predicted conditional probability that the label
at some arbitrary position i is y when the observa-
tional test at i succeeds, p̃(yi=y|qk(x, i)=1; θ).

If we have a set of constraint functions {Gyk :
y ∈ Y}, and we use the score function in Equa-
tion 1, then the GE objective function specifies the
minimization of the KL divergence between the
model and target distributions over labels condi-
tioned on the success of the observational test. In
general the objective function will consist of many
such KL divergence penalties.

Computing the first term of the covariance in
Equation 2 requires a marginal distribution over
three labels, two of which will be consecutive, but
the other of which could appear anywhere in the
sequence. We can compute this marginal using
the algorithm of Mann and McCallum (2008). As
previously described, this algorithm is O(n|Y|3)
for a sequence of length n. However, we make
the following novel observation: we do not need
to compute the extra lattices for feature label pairs
with Ĝyk = 0, since this makes Equation 2 equal
to zero. In Mann and McCallum (2008), probabil-
ities were smoothed so that ∀y Ĝyk > 0. If we
assume that only a small number of labels m have
non-zero probability, then the time complexity of
the gradient computation is O(nm|Y|2). In this
paper typically 1 ≤m≤ 4, while |Y| is 11 or 13.

4We this notation for an indicator function that returns 1
if the condition in braces is satisfied, and 0 otherwise.
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In experiments in this paper, using this optimiza-
tion does not significantly affect final accuracy.

We use numerical optimization to estimate
model parameters. In general GE objective func-
tions are not convex. Consequently, we initial-
ize 0th-order CRF parameters using a sliding win-
dow logistic regression model trained with GE.
We also include a Gaussian prior on parameters
with σ2 = 10 in the objective function.

3.2 Learning with labeled features
The training procedure described above requires
a set of observational tests or input features with
target distributions over labels. Estimating a dis-
tribution could be a difficult task for an annotator.
Consequently, we abstract away from specifying
a distribution by allowing the user to assign labels
to features (c.f. Haghighi and Klein (2006) , Druck
et al. (2008)). For example, we say that the word
feature call has label contact. A label for a feature
simply indicates that the feature is a good indicator
of the label. Note that features can have multiple
labels, as does included in the active learning ses-
sion shown in Table 1. We convert an input feature
with a set of labels L into a distribution by assign-
ing probability 1/|L| for each l ∈ L and probabil-
ity 0 for each l /∈ L. By assigning 0 probability to
labels l /∈ L, we can use the speed-up described in
the previous section.

3.3 Related Work
Other proposed learning methods use labeled fea-
tures to label unlabeled data. The resulting
partially-labeled corpus can be used to train a CRF
by maximizing MML. Similarly, prototype-driven
learning (PDL) (Haghighi and Klein, 2006) opti-
mizes the joint marginal likelihood of data labeled
with prototype input features for each label. Ad-
ditional features that indicate similarity to the pro-
totypes help the model to generalize. In a previ-
ous comparison between GE and PDL (Mann and
McCallum, 2008), GE outperformed PDL without
the extra similarity features, whose construction
may be problem-specific. GE also performed bet-
ter when supplied accurate label distributions.

Additionally, both MML and PDL do not natu-
rally generalize to learning with features that have
multiple labels or distributions over labels, as in
these scenarios labeling the unlabeled data is not
straightforward. In this paper, we attempt to ad-
dress this problem using a simple heuristic: when
there are multiple choices for a token’s label, sam-

ple a label. In Section 5 we use this heuristic with
MML, but in general obtain poor results.

Raghavan and Allan (2007) also propose sev-
eral methods for learning with labeled features,
but in a previous comparison GE gave better re-
sults (Druck et al., 2008). Additionally, the gen-
eralization of these methods to structured output
spaces is not straightforward. Chang et al. (2007)
present an algorithm for learning with constraints,
but this method requires users to set weights by
hand. We plan to explore the use of the recently
developed related methods of Bellare et al. (2009),
Graça et al. (2008), and Liang et al. (2009) in fu-
ture work. Druck et al. (2008) provide a survey
of other related methods for learning with labeled
input features.

4 Active Learning by Labeling Features

Feature active learning, presented in Algorithm 1,
is a pool-based active learning algorithm (Lewis
and Gale, 1994) (with a pool of features rather
than instances). The novel components of the
algorithm are an option to skip a query and the
notion that skipping and labeling have different
costs. The option to skip is important when us-
ing feature queries because a user may not know
how to label some features. In each iteration the
model is retrained using the train procedure, which
takes as input a set of labeled features C and un-
labeled data distribution p̃. For the reasons de-
scribed in Section 3.3, we advocate using GE for
the train procedure. Then, while the iteration cost
c is less than the maximum cost cmax, the feature
query q that maximizes the query selection met-
ric φ is selected. The accept function determines
whether the labeler will label q. If q is labeled, it
is added to the set of labeled features C, and the
label cost clabel is added to c. Otherwise, the skip
cost cskip is added to c. This process continues for
N iterations.

4.1 Feature query selection methods

In this section we propose feature query selection
methods φ. Queries with a higher scores are con-
sidered better candidates. Note again that by fea-
tures we mean observational tests qk(x, i). It is
also important to note these are not feature selec-
tion methods since we are determining the features
for which supervisory feedback will be most help-
ful to the model, rather than determining which
features will be part of the model.
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Algorithm 1 Feature Active Learning
Input: empirical distribution p̃, initial feature constraints
C, label cost clabel, skip cost cskip, max cost per iteration
cmax, max iterations N
Output: model parameters θ
for i = 1 to N do
θ = train(p̃, C)
c = 0
while c < cmax do
q = argmaxqk

φ(qk)

if accept(q) then
C = C ∪ label(q)
c = c+ clabel

else
c = c+ cskip

end if
end while

end for
θ = train(p̃, C)

We propose to select queries that provide the
largest reduction in model uncertainty. We notate
possible responses to a query qk as ĝ. The Ex-
pected Information Gain (EIG) of a query is the
expectation of the reduction in model uncertainty
over all possible responses. Mathematically, IG is

φEIG(qk) = Ep(ĝ|qk;θ)[Ep̃(x)[H(p(y|x; θ)−
H(p(y|x; θĝ)]],

where θĝ are the new model parameters if the re-
sponse to qk is ĝ. Unfortunately, this method is
computationally intractable. Re-estimating θĝ will
typically involve retraining the model, and do-
ing this for each possible query-response pair is
prohibitively expensive for structured output mod-
els. Computing the expectation over possible re-
sponses is also difficult, as in this paper users may
provide a set of labels for a query, and more gen-
erally ĝ could be a distribution over labels.

Instead, we propose a tractable strategy for re-
ducing model uncertainty, motivated by traditional
uncertainty sampling (Lewis and Gale, 1994). We
assume that when a user responds to a query, the
reduction in uncertainty will be equal to the To-
tal Uncertainty (TU), the sum of the marginal en-
tropies at the positions where the feature occurs.

φTU (qk) =
∑
i

∑
j

qk(xi, j)H(p(yj |xi; θ))

Total uncertainty, however, is highly biased to-
wards selecting frequent features. A mean un-
certainty variant, normalized by the feature’s
count, would tend to choose very infrequent fea-
tures. Consequently we propose a tradeoff be-

tween the two extremes, called weighted uncer-
tainty (WU), that scales the mean uncertainty by
the log count of the feature in the corpus.

φWU (qk) = log(Ck)
φTU (qk)
Ck

.

Finally, we also suggest an uncertainty-based met-
ric called diverse uncertainty (DU) that encour-
ages diversity among queries by multiplying TU
by the mean dissimilarity between the feature and
previously labeled features. For sequence labeling
tasks, we can measure the relatedness of features
using distributional similarity.5

φDU (qk) = φTU (qk)
1
|C|
∑
j∈C

1−sim(qk, qj)

We contrast the notion of uncertainty described
above with another type of uncertainty: the en-
tropy of the predicted label distribution for the fea-
ture, or expectation uncertainty (EU). As above
we also multiply by the log feature count.

φEU (qk) = log(Ck)H(p̃(yi = y|qk(x, i)=1; θ))

EU is flawed because it will have a large value for
non-discriminative features.

The methods described above require the model
to be retrained between iterations. To verify that
this is necessary, we compare against query selec-
tion methods that only consider the previously la-
beled features. First, we consider a feature query
selection method called coverage (cov) that aims
to select features that are dissimilar from existing
labeled features, increasing the labeled features’
“coverage” of the feature space. In order to com-
pensate for choosing very infrequent features, we
multiply by the log count of the feature.

φcov(qk) = log(Ck)
1
|C|
∑
j∈C

1− sim(qk, qj)

Motivated by the feature query selection method
of Tandem Learning (Raghavan and Allan, 2007)
(see Section 4.2 for further discussion), we con-
sider a feature selection metric similarity (sim)
that is the maximum similarity to a labeled fea-
ture, weighted by the log count of the feature.

φsim(qk) = log(Ck) max
j∈C

sim(qk, qj)

5sim(qk, qj) returns the cosine similarity between context
vectors of words occurring in a window of ±3.
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Features similar to those already labeled are likely
to be discriminative, and therefore likely to be la-
beled (rather than skipped). However, insufficient
diversity may also result in an inaccurate model,
suggesting that coverage should select more use-
ful queries than similarity.

Finally, we compare with several passive base-
lines. Random (rand) assigns scores to features
randomly. Frequency (freq) scores input features
using their frequency in the training data.

φfreq(qk) =
∑
i

∑
j

qk(xi, j)

Top LDA (LDA) selects the top words from 50
topics learned from the unlabeled data using la-
tent Dirichlet allocation (LDA) (Blei et al., 2003).
More specifically, the words w generated by each
topic t are ranked using the conditional probability
p(w|t). The word feature is assigned its maximum
rank across all topics.

φLDA(qk) = max
t

rankLDA(qk, t)

This method will select useful features if the top-
ics discovered are relevant to the task. A similar
heuristic was used by Druck et al. (2008).

4.2 Related Work

Tandem Learning (Raghavan and Allan, 2007) is
an algorithm that combines feature and instance
active learning for classification. The algorithm it-
eratively queries the user first for instance labels,
then for feature labels. Feature queries are selected
according to their co-occurrence with important
model features and previously labeled features. As
noted in Section 3.3, GE is preferable to the meth-
ods Tandem Learning uses to learn with labeled
features. We address the mixing of feature and in-
stance queries in Section 4.3.

In order to better understand differences in fea-
ture query selection methodology, we proposed a
feature query selection method motivated6 by the
method used in Tandem Learning in Section 4.1.
However, this method performs poorly in the ex-
periments in Section 5.

Liang et al. (2009) simultaneously developed
a method for learning with and actively selecting

6The query selection method of Raghavan and Allan
(2007) requires a stack that is modified between queries
within each iteration. Here query scores are only updated
after each iteration of labeling.

measurements, or target expectations with associ-
ated noise. The measurement selection method
proposed by Liang et al. (2009) is based on
Bayesian experimental design and is similar to
the expected information gain method described
above. Consequently this method is likely to be
intractable for real applications. Note that Liang
et al. (2009) only use this method in synthetic ex-
periments, and instead use a method similar to to-
tal uncertainty for experiments in part-of-speech
tagging. Unlike the experiments presented in this
paper, Liang et al. (2009) conduct only simulated
active learning experiments and do not consider
skipping queries.

Sindhwani (Sindhwani et al., 2009) simultane-
ously developed an active learning method that
queries for both instance and feature labels that
are then used in a graph-based learning algorithm.
They find that querying certain features outper-
forms querying uncertain features, but this is likely
because their query selection method is similar
to the expectation uncertainty method described
above, and consequently non-discriminative fea-
tures may be queried often (see also the discus-
sion in Section 4.1). It is also not clear how this
graph-based training method would generalize to
structured output spaces.

4.3 Expectation Constraint Active Learning

Throughout this paper, we have focussed on label-
ing input features. However, the proposed meth-
ods generalize to queries for expectation estimates
of arbitrary functions, for example queries for the
label distributions for input features, labels for in-
stances (using a function that is non-zero only for
a particular instance), partial labels for instances,
and class priors. The uncertainty-based query se-
lection methods described in Section 4.1 apply
naturally to these new query types. Importantly
this framework would allow principled mixing of
different query types, instead of alternating be-
tween them as in Tandem Learning (Raghavan and
Allan, 2007). When mixing queries, it will be
important to use different costs for different an-
notation types (Vijayanarasimhan and Grauman,
2008), and estimate the probability of obtaining a
useful response to a query. We plan to pursue these
directions in future work. This idea was also pro-
posed by Liang et al. (2009), but no experiments
with mixed active learning were presented.
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5 Simulated User Experiments

In this section we experiment with an automated
oracle labeler. When presented an instance query,
the oracle simply provides the true labels. When
presented a feature query, the oracle first decides
whether to skip the query. We have found that
users are more likely to label features that are rel-
evant for only a few labels. Therefore, the oracle
labels a feature if the entropy of its per occurrence
label expectation, H(p̃(yi = y|qk(x, i) = 1; θ)) ≤
0.7. The oracle then labels the feature using a
heuristic: label the feature with the label whose
expectation is highest, as well as any label whose
expectation is at least half as large.

We estimate the effort of different labeling ac-
tions with preliminary experiments in which we
observe users labeling data for ten minutes. Users
took an average of 4 seconds to label a feature, 2
seconds to skip a feature, and 0.7 seconds to la-
bel a token. We setup experiments such that each
iteration simulates one minute of labeling by set-
ting cmax = 60, cskip = 2 and clabel = 4. For
instance active learning, we use Algorithm 1 but
without the skip option, and set clabel = 0.7. We
use N = 10 iterations, so the entire experiment
simulates 10 minutes of annotation time. For ef-
ficiency, we consider the 500 most frequent unla-
beled features in each iteration. To start, ten ran-
domly selected seed labeled features are provided.

We use random (rand) selection, uncertainty
sampling (US) (using sequence entropy, normal-
ized by sequence length) and information den-
sity (ID) (Settles and Craven, 2008) to select in-
stance queries. We use Entropy Regularization
(ER) (Jiao et al., 2006) to leverage unlabeled in-
stances.7 We weight the ER term by choosing the
best8 weight in {10−3, 10−2, 10−1, 1, 10} multi-
plied by #labeled

#unlabeled for each data set and query se-
lection method. Seed instances are provided such
that the simulated labeling time is equivalent to la-
beling 10 features.

We evaluate on two sequence labeling tasks.
The apartments task involves segmenting 300
apartment classified ads into 11 fields including
features, rent, neighborhood, and contact. We use
the same feature processing as Haghighi and Klein
(2006), with the addition of context features in a
window of ±3. The cora references task is to ex-
tract 13 BibTeX fields such as author and booktitle

7Results using self-training instead of ER are similar.
8As measured by test accuracy, giving ER an advantage.

method apartments cora
mean final mean final

ER rand 48.1 53.6 75.9 81.1
ER US 51.7 57.9 76.0 83.2
ER ID 51.4 56.9 75.9 83.1
MML rand 47.7 51.2 58.6 64.6
MML WU 57.6 60.8 61.0 66.2
GE rand 59.0 64.8∗ 77.6 83.7
GE freq 66.5∗ 71.6∗ 68.6 79.8
GE LDA 65.7∗ 71.4∗ 74.9 85.0
GE cov 68.2∗† 72.6∗ 73.5 83.3
GE sim 57.8 65.9∗ 67.1 79.2
GE EU 66.5∗ 71.6∗ 68.6 79.8
GE TU 70.1∗† 73.6∗† 76.9 88.2∗†
GE WU 71.6∗† 74.6∗† 80.3∗† 88.1∗†
GE DU 70.5∗† 74.4∗† 78.4∗ 87.5∗†

Table 2: Mean and final token accuracy results.
A ∗ or † denotes that a GE method significantly
outperforms all non-GE or passive GE methods,
respectively. Bold entries significantly outperform
all others. Methods in italics are passive.

from 500 research paper references. We use a stan-
dard set of word, regular expressions, and lexicon
features, as well as context features in a window
of ±3. All results are averaged over ten random
80:20 splits of the data.

5.1 Results
Table 2 presents mean (across all iterations) and
final token accuracy results. On the apartments
task, GE methods greatly outperform MML9 and
ER methods. Each uncertainty-based GE method
also outperforms all passive GE methods. On the
cora task, only GE with weighted uncertainty sig-
nificantly outperforms ER and passive GE meth-
ods in terms of mean accuracy, but all uncertainty-
based GE methods provide higher final accuracy.
This suggests that on the cora task, active GE
methods are performing better in later iterations.
Figure 1, which compares the learning curves of
the best performing methods of each type, shows
this phenomenon. Further analysis reveals that the
uncertainty-based methods are choosing frequent
features that are more likely to be skipped than
those selected randomly in early iterations.

We next compare with the results of related
methods published elsewhere. We cannot make
claims about statistical significance, but the results

9Only the best MML results are shown.
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illustrate the competitiveness of our method. The
74.6% final accuracy on apartments is higher than
any result obtained by Haghighi and Klein (2006)
(the highest is 74.1%), higher than the supervised
HMM results reported by Grenager et al. (2005)
(74.4%), and matches the results of Mann and Mc-
Callum (2008) with GE with more accurate sam-
pled label distributions and 10 labeled examples.
Chang et al. (2007) only obtain better results than
88.2% on cora when using 300 labeled examples
(two hours of estimated annotation time), 5000 ad-
ditional unlabeled examples, and extra test time in-
ference constraints. Note that obtaining these re-
sults required only 10 simulated minutes of anno-
tation time, and that GE methods are provided no
information about the label transition matrix.

6 User Experiments

Another advantage of feature queries is that fea-
ture names are concise enough to be browsed,
rather than considered individually. This allows
the design of improved interfaces that can further
increase the speed of feature active learning. We
built a prototype interface that allows the user to
quickly browse many candidate features. The fea-
tures are split into groups of five features each.
Each group contains features that are related, as
measured by distributional similarity. The features
within each group are sorted according to the ac-
tive learning metric. This interface, displayed in
Figure 3, may be useful because features in the
same group are likely to have the same label.

We conduct three types of experiments. First, a
user labels instances selected by information den-
sity, and models are trained using ER. The in-
stance labeling interface allows the user to label
tokens quickly by extending the current selection
one token at a time and only requiring a single
keystroke to label an entire segment. Second,
the user labels features presented one-at-a-time by
weighted uncertainty, and models are trained us-
ing GE. To aid the user in understanding the func-
tion of the feature quickly, we provide several ex-
amples of the feature occurring in context and the
model’s current predicted label distribution for the
feature. Finally, the user labels features organized
using the grid interface described in the previous
paragraph. Weighted uncertainty is used to sort
feature queries within each group, and GE is used
to train models. Each iteration of labeling lasts
two minutes, and there are five iterations. Retrain-

ing with ER between iterations takes an average
of 5 minutes on cora and 3 minutes on apart-
ments. With GE, the retraining times are on av-
erage 6 minutes on cora and 4 minutes on apart-
ments. Consequently, even when viewed with to-
tal time, rather than annotation time, feature active
learning is beneficial. While waiting for models to
retrain, users can perform other tasks.

Figure 2 displays the results. User 1 labeled
apartments data, while Users 2 and 3 labeled cora
data. User 1 was able to obtain much better results
with feature labeling than with instance labeling,
but performed slightly worse with the grid inter-
face than with the serial interface. User 1 com-
mented that they found the label definitions for
apartments to be imprecise, so the other experi-
ments were conducted on the cora data. User 2
obtained better results with feature labeling than
instance labeling, and obtained higher mean ac-
curacy with the grid interface. User 3 was much
better at labeling features than instances, and per-
formed especially well using the grid interface.

7 Conclusion

We proposed an active learning approach in which
features, rather than instances, are labeled. We
presented an algorithm for active learning with
features and several feature query selection meth-
ods that approximate the expected reduction in
model uncertainty of a feature query. In simu-
lated experiments, active learning with features
outperformed passive learning with features, and
uncertainty-based feature query selection outper-
formed other baseline methods. In both simulated
and real user experiments, active learning with
features outperformed passive and active learning
with instances. Finally, we proposed a new label-
ing interface that leverages the conciseness of fea-
ture queries. User experiments suggested that this
grid interface can improve labeling efficiency.
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Figure 1: Token accuracy vs. time for best performing ER, MML, passive GE, and active GE methods.
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Figure 2: User experiments with instance labeling and feature labeling with the serial and grid interfaces.

Figure 3: Grid feature labeling interface. Boxes on the left contain groups of features that appear in
similar contexts. Features in the same group often receive the same label. On the right, the model’s
current expectation and occurrences of the selected feature in context are displayed.
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