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Abstract

We present an integrated dependency-
based semantic role labeling system for
English from both NomBank and Prop-
Bank. By introducing assistant argument
labels and considering much more fea-
ture templates, two optimal feature tem-
plate sets are obtained through an effec-
tive feature selection procedure and help
construct a high performance single SRL
system. From the evaluations on the date
set of CoNLL-2008 shared task, the per-
formance of our system is quite close to
the state of the art. As to our knowl-
edge, this is the first integrated SRL sys-
tem that achieves a competitive perfor-
mance against previous pipeline systems.

1 Introduction

We investigate the possibility to construct an effec-
tive integrated system for dependency-based se-
mantic role labeling (SRL) task. This means in
this work that a single system handles all these
sub-tasks, predicate identification/disambiguation
and argument identification/classification, regard-
less of whether the predicate is verbal or nominal.

Traditionally, a SRL task, either dependency
or constituent based, is implemented as two sub-
tasks, namely, argument identification and clas-
sification. If the predicate is unknown, then a
predicate identification or disambiguation subtask
should be additionally considered. A pipeline
framework is usually adopted to handle all these
sub-tasks. The reason to divide the whole task
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9040861 (CityU 1318/03H), CityU Strategic Research Grant
7002037.

into multiple stages is two-fold, one is each sub-
task asks for its favorable features, the other is
at the consideration of computational efficiency.
Generally speaking, a joint system is slower than
a pipeline system in training. (Xue and Palmer,
2004) fount out that different features suited for
different sub-tasks of SRL, i.e. argument identifi-
cation and classification. The results from CoNLL
shared tasks in 2005 and 2008 (Carreras and Mar-
quez, 2005; Koomen et al., 2005; Surdeanu et al.,
2008; Johansson and Nugues, 2008), further show
that SRL pipeline may be one of the standard to
achieve a state-of-the-art performance in practice.

In the recent years, most works on SRL, includ-
ing two CoNLL shared task in 2004 and 2005,
focus on verbal predicates with the availability
of PropBank (Palmer et al., 2005). As a com-
plement to PropBank, NomBank (Meyers et al.,
2004) annotates nominal predicates and their cor-
responding semantic roles using similar semantic
framework as PropBank. Though SRL for nomi-
nal predicates offers more challenge, it draws rel-
atively little attention (Jiang and Ng, 2006).

(Pustejovsky et al., 2005) discussed the issue of
merging various treebanks, including PropBank,
NomBank, and others. The idea of merging these
two different treebanks was implemented in the
CoNLL-2008 shared task (Surdeanu et al., 2008).
However, few empirical studies support the ne-
cessity of an integrated learning strategy from
NomBank and PropBank. Though aiming at Chi-
nese SRL, (Xue, 2006) reported that their exper-
iments show that simply adding the verb data to
the training set of NomBank and extracting the
same features from the verb and noun instances
will hurt the overall performance. From the re-
sults of CoNLL-2008 shared task, the top system
by (Johansson and Nugues, 2008) also used two
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different subsystems to handle verbal and nominal
predicates, respectively.

Despite all the above facts, an integrated SRL
system still holds some sort of merits, being eas-
ier to implement, a single-stage feature selection
benefiting the whole system, an all-in-one model
outputting all required semantic role information
and so on.

The shared tasks at the CoNLL 2008 and 2009
are devoted to the joint learning of syntactic and
semantic dependencies, which show that SRL can
be well performed using only dependency syn-
tax input. Using data and evaluation settings
of the CoNLL-2008 shared task, this work will
only focus on semantic dependency parsing and
compares the best-performing SRL system in the
CoNLL-2009 shared Task (Zhao et al., 2009b)
with those in the CoNLL-2008 shared task (Sur-
deanu et al., 2008; Hajič et al., 2009)1.

Aiming at main drawbacks of an integrated ap-
proach, two key techniques will be applied. 1)
Assistant argument labels are introduced for the
further improvement of argument pruning. This
helps the development of a fast and lightweight
SRL system. 2) Using a greedy feature selec-
tion algorithm, a large-scale feature engineering is
performed on a much larger feature template set
than that in previous work. This helps us find fea-
tures that may be of benefit to all SRL sub-tasks as
long as possible. As two optimal feature template
sets have been proven available, for the first time
we report that an integrated SRL system may pro-
vide a result close to the state-of-the-art achieved
by those SRL pipelines or individual systems for
some specific predicates.

2 Adaptive Argument Pruning

A word-pair classification is used to formulate se-
mantic dependency parsing as in (Zhao and Kit,
2008). As for predicate identification or disam-
biguation, the first word is set as a virtual root
(which is virtually set before the beginning of the
sentence.) and the second as a predicate candi-
date. As for argument identification/classification,
the first word in a word pair is specified as a predi-

1CoNLL-2008 is an English-only task, while CoNLL-
2009 is a multilingual one. Though the English corpus in
CoNLL-2009 is almost identical to the corpus in the CoNLL-
2008 shared task evaluation, the latter holds more sophisti-
cated input structure as in (Surdeanu et al., 2008). The most
difference for these two tasks is that the identification of se-
mantic predicates is required in the task of CoNLL-2008 but
not in CoNLL-2009.

cate candidate and the second as an argument can-
didate. In either of case, the first word is called a
semantic head, and noted as p in our feature rep-
resentation, the second is called a semantic depen-
dent and noted as a.

Word pairs are collected for the classifier in
such order. The first word of the pair is set to the
virtual root at first, the second word is then spec-
ified as a predicate candidate. According to the
result that the predicate candidate is classified or
proven to be non-predicate, 1) the second word is
reset to next predicate candidate if the answer is
non-predicate, otherwise, 2) the first word of the
pair is reset to the predicate that is just determined,
and the second is set to every argument candidates
one by one. The classifier will scan the input sen-
tence from left to right to check if each word is a
true predicate.

Without any constraint, all word pairs in an in-
put sequence must be considered by the classifier,
leading to poor computational efficiency and un-
necessary performance loss. Thus, the training
sample for SRL task needs to be pruned properly.

We use a simple strategy to prune predicate can-
didates, namely, only verbs and nouns are chosen
in this case.

There are two paths to collect argument candi-
dates over the sequence. One is based on an input
syntactic dependency tree, the other is based on
a linear path of the sentence. As for the former
(hereafter it is referred to synPth), we continue to
use a dependency version of the pruning algorithm
of (Xue and Palmer, 2004). The pruning algorithm
is readdressed as the following.

Initialization: Set the given predicate as the
current node;

(1) The current node and all of its syntactic
children are selected as argument candidates
(children are traversed from left to right.).

(2) Reset the current node to its syntactic head
and repeat step (1) until the root is reached.

Note that this pruning algorithm is slightly dif-
ferent from that of (Xue and Palmer, 2004), the
predicate itself is also included in the argument
candidate list as the nominal predicate sometimes
takes itself as its argument.

The above pruning algorithm has been shown
effective. However, it is still inefficient for a SRL

31



system that needs to tackle argument identifica-
tion/classification in a single stage. Assuming that
arguments trend to surround their predicate, an as-
sistant argument label ‘ NoMoreArgument’ is in-
troduced for further pruning. If an argument can-
didate in the above algorithm is assigned to such
a label, then the pruning algorithm will end im-
mediately. In training, this assistant label means
no more samples will be generated for the current
predicate, while in test, the decoder will not search
arguments any more. It will be seen that this adap-
tive technique more effectively prunes argument
candidates without missing more true arguments.

Along the linear path (hereafter referred to
linPth), the classifier will search all words before
and after the predicate. Similar to the pruning
algorithm for synPth, we also introduce two as-
sistant argument labels ‘ noLeft’ and ‘ noRight’
to adaptively prune words too far away from the
predicate.

To show how assistant argument labels actually
work, we give an example for linP th. Suppose an
input sequence with argument labels for a predi-
cate is

a b c d e f g h .

A1 A0

Note that c and g are two boundary words as no
more arguments appear before or after them. After
two assistant argument labels are added, it will be

a b c d e f g h .

noLeft A1 A0 noRight

Training samples will generated from c to g ac-
cording to the above sequence.

We use a Maximum Entropy classifier with a
tunable Gaussian prior as usual. Our implemen-
tation of the model adopts L-BFGS algorithm for
parameter optimization.

3 Feature Templates

3.1 Elements for Feature Generation
Motivated by previous works, we carefully con-
sider those factors from a wide range of features
that can help semantic role labeling for both predi-
cate disambiguation, argument’s identification and
classification as the predicate is either verbal or
nominal. These works include (Gildea and Juraf-
sky, 2002; Carreras and Marquez, 2005; Koomen

et al., 2005; Marquez et al., 2005; Dang and
Palmer, 2005; Pradhan et al., 2005; Toutanova et
al., 2005; Jiang and Ng, 2006; Liu and Ng, 2007;
Surdeanu et al., 2007; Johansson and Nugues,
2008; Che et al., 2008). Most feature templates
that we will adopt for this work will come from
various combinations or integrations of the follow-
ing basic elements.

Word Property. This type of elements include
word form (form and its split form, spForm)2,
lemma (lemma,spLemma), and part-of-speech tag
(pos, spPos), syntactic dependency label (dprel),
and semantic dependency label (semdprel)3.

Syntactic Connection. This includes syn-
tactic head (h), left(right) farthest(nearest) child
(lm, ln, rm, and rn), and high(low) support
verb or noun. We explain the last item, sup-
port verb(noun). From a given word to the
syntactic root along the syntactic tree, the first
verb/noun/preposition that is met is called as its
low support verb/noun/preposition, and the near-
est one to the root is called as its high support
verb/noun/preposition. The concept of support
verb was broadly used (Toutanova et al., 2005;
Xue, 2006; Jiang and Ng, 2006)4, we here extend
it to nouns and prepositions. In addition, we intro-
duce a slightly modified syntactic head, pphead,
it returns the left most sibling of a given word if
the word is headed by a preposition, otherwise it
returns the original head.

Path. There are two basic types of path between
the predicate and the argument candidates. One
is the linear path (linePath) in the sequence, the
other is the path in the syntactic parsing tree (dp-
Path). For the latter, we further divide it into four
sub-types with respect to the syntactic root, dp-
Path is the full path in the syntactic tree. Leading
two paths to the root from the predicate and the
argument, respectively, the common part of these
two paths will be dpPathShare. Assume that dp-
PathShare starts from a node r′, then dpPathPred
is from the predicate to r′, and dpPathArgu is from
the argument to r′.

Family. Two types of children sets for the pred-
icate or argument candidate are considered, the

2In CoNLL-2008, Treebank tokens are split at the position
that a hyphen (-) or a forward slash (/) occurs. This leads to
two types of feature columns, non-split and split.

3Lemma and pos for either training or test are from auto-
matically pre-analyzed columns in the input files.

4Note that the meaning of support verb is slightly different
between (Toutanova et al., 2005) and (Xue, 2006; Jiang and
Ng, 2006)
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first includes all syntactic children (children), the
second also includes all but excludes the left most
and the right most children (noFarChildren).

Concatenation of Elements. For all collected
elements according to linePath, children and so
on, we use three strategies to concatenate all those
strings to produce the feature value. The first is
seq, which concatenates all collected strings with-
out doing anything. The second is bag, which
removes all duplicated strings and sort the rest.
The third is noDup, which removes all duplicated
neighbored strings.

We address some other elements that are not in-
cluded by the above description as the following.

dpTreeRelation. It returns the relationship of a
and p in the input syntactic tree. The possible val-
ues for this feature include parent, sibling
etc.

isCurPred. It judges if a given word is the cur-
rent predicate. If the word is the predicate, then it
returns the predicate itself, otherwise it returns a
default value.

existCross. It judges if a forthcoming depen-
dency relation that is between a given word pair
may cause any cross with all existing dependency
relations.

distance. It counts the number of words along a
given path, either dpPath or linePath.

existSemdprel. It checks if the given argument
label for other predicates has been assigned to a
given word.

voice. This feature returns Active or Passive for
verbs, and a default value for nouns.

baseline. Two types of semantic role baseline
outputs are used for features from (Carreras and
Marquez, 2005)5. baseline Ax tags the head of
the first NP before the predicate as A0 and the
head of the first NP after the predicate as A1.
baseline Mod tags the dependant of the predicate
as AM-MOD as it is a modal verb.

We show some feature template examples de-
rived from the above mentioned items.

a.lm.lemma The lemma of the left most child of
the argument candidate.

p.h.dprel The dependant label of the syntactic
head of the predicate candidate.

p−1.pos+p.pos pos of the previous word of the
predicate and PoS of the predicate itself.

a:p|dpPath.lemma.bag Collect all lemmas

5These baseline rules were developed by Erik Tjong Kim
Sang, from the University of Antwerp, Belgium.

along the syntactic tree path from the argument
to the predicate, then removed all duplicated
ones and sort the rest, finally concatenate all as a
feature string.

a:p.highSupportNoun|linePath.dprel.seq Col-
lect all dependant labels along with the line path
from the argument to the high support noun of the
predicate, then concatenate all as a feature string.

3.2 Feature Template Selection

Based on the above mentioned elements, 781 fea-
ture templates (hereafter the set of these templates
is referred to FT )6 are initially considered. Fea-
ture templates in this initial set are constructed in
a generalized way. For example, if we find that
a feature template a.lm.lemma was once used in
some existing work, then such three templates,
a.rm.lemma, a.rn.lemma, a.ln.lemma will be also
added into the set.

As an optimal feature template subset cannot be
expected to be extracted from so large a set by
hand, a greedy feature selection similar to that in
(Jiang and Ng, 2006; Ding and Chang, 2008) is ap-
plied. The detailed algorithm is described in Algo-
rithm 1. Assuming that the number of feature tem-
plates in a given set is n, the algorithm of (Ding
and Chang, 2008) requires O(n2) times of train-
ing/test routines, it cannot handle a set that con-
sists of hundreds of templates. As the time com-
plexity of Algorithm 1 is only O(n), it permits a
large scale feature selection accomplished by pay-
ing a reasonable time cost. Though the time com-
plexity of the algorithm given by (Jiang and Ng,
2006) is also linear, it should assume all feature
templates in the initial selected set ‘good’ enough
and handles other feature template candidates in a
strict incremental way. However, these two con-
straints are not easily satisfied in our case, while
Algorithm 1 may release these two constraints.

Choosing the first 1/10 templates in FT as
the initial selected set S, the feature selection is
performed for two argument candidate traverse
schemes, synPth and linP th, respectively. 4686
machine learning routines run for the former,
while 6248 routines for the latter. Two feature
template sets, FTsyn and FTlin, are obtained at
last. These two sets are given in Table 1-3. We see
that two sets share 30 identical feature templates
as in Table 1. FTsyn holds 51 different templates

6This set with detailed explanation will be available at our
website.
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p.lm.dprel
p.rm.dprel
p.spForm
p−1.spLemma
p.spLemma
p−1.spLemma+p.spLemma
p.spLemma + p1.spLemma
p.spLemma + p.h.spForm
p.spLemma + p.currentSense
p.lemma
p.lemma + p1.lemma
p−1.pos+p.pos
a.isCurPred.lemma
a−2.isCurPred.lemma + a−1.isCurPred.lemma
a.isCurPred.spLemma
a−1.isCurPred.spLemma + a.isCurPred.spLemma
a.isCurPred.spLemma + a1.isCurPred.spLemma
a.children.dprel.bag
a−1.spLemma + a.spLemma
a−1.spLemma + a.dprel
a−1.spLemma + a.dprel + a.h.spLemma
a.lm−1.spLemma
a.rm−1.dprel + a.spPos
a−1.lemma + a.dprel + a.h.lemma
a.lemma + p.lemma
a.pos + p.pos
a.spLemma + p.spLemma
a:p|dpPath.dprel
a:p|dpPathArgu.dprel
a:p|dpPathPred.spPos

Table 1: Feature templates for both synPth and
linP th

as in Table 2 and FTlin holds 57 different tem-
plates as in Table 3. In these tables, the subscripts -
2(or -1) and 1(or 2) stand for the previous and next
words, respectively. For example, a.lm−1.lemma
returns the lemma of the previous word of the ar-
gument’s left most child.

4 Decoding

After the predicate sense is disambiguated, an op-
timal argument structure for each predicate is de-
termined by the following maximal probability.

Sp = argmax
∏

i

P (ai|ai−1, ai−2, ...), (1)

where Sp is the argument structure, P (ai|ai−1...)
is the conditional probability to determine the la-
bel of the i-th argument candidate label. A beam
search algorithm is used to find the optimal argu-
ment structure.

5 Evaluation Results

Our evaluation is performed on the standard
training/development/test corpus of CoNLL-2008
shared task. The data is derived by merging a de-
pendency version of the Penn Treebank with Prop-
Bank and NomBank. More details on the data are

Algorithm 1 Greedy Feature Selection
Input:
The set of all feature templates: FT
The set of selected feature templates: S0

Output:
The set of selected feature templates: S

Procedure:
Let the counter i = 1
Let Si = S0 and C = FT − Si

while do
Train a model with features according to Si,
test on development set and the result is pi.
Let Cr = null.
for each feature template fj in set Si do

Let S′ = Si − fj .
Train a model with features according to
S′, test on development set and the result
is p′.
if p′ > pi then

Cr = Cr + fj .
end if

end for
C = C + Cr

Si = Si − Cr

Let S′i = Si

Train a model with features according to S′i,
test on development set and the result is qi.
Let Cr = null
for each feature template fj in set C do

Let C ′ = S′i + fj .
Train a model with features according to
C ′, test on development set and the result
is p′.
if p′ > qi then

Cr = Cr + fj .
end if

end for
C = C − Cr

S′i = S′i + Cr

if Si = Si−1(No feature templates are added
or removed) or, neither pi nor qi is larger than
pi−1 and qi−1 then

Output S = argmaxpi,qi
{Si, S

′
i} and the

algorithm ends.
else

Let i = i + 1, Si=Si−1 and C = FT − Si

end if
end while
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p−1.lemma + p.lemma
p−2.pos
p.pos
p−2.spForm + p−1.spForm
p1.spForm
p.spForm + p.children.dprel.noDup
p.lm.spPos
p.spForm + p.lm.spPos
+ p.noFarChildren.spPos.bag + p.rm.spPos
p.dprel
p.children.dprel.bag
p.children.pos.seq
p.dprel = OBJ ? a

a.dprel
a−1.lemma + a1.lemma
a1.lemma
a−1.pos
a1.spPos
a.h.lemma
a.h.spLemma
a.pphead.lemma
a.pphead.spLemma
a.lm.dprel + a.spPos
a.rm−1.pos
a.spLemma + a.h.spPos
a.existSemdprel A1
a.dprel = OBJ ?
a.form + a.children.pos.seq
a.children.adv.bagb

a:p|linePath.distance
a:p|dpPath.distance
a:p|existCross
a:p|dpPath.dprel.bag
a:p|dpPathPred.dprel.bag
a:p|dpPath.spForm.seq
a:p|dpPathArgu.spForm.seq
a:p|dpPathPred.spForm.bag
a:p|dpPath.spLemma.seq
a:p|dpPathArgu.spLemma.seq
a:p|dpPathArgu.spLemma.bag
a:p|dpPathPred.spLemma.bag
a:p|dpPath.spPos.bag
a:p|dpPathPred.spPos.bag
(a:p|dpPath.dprel.seq) + p.spPos
(a:p|dpTreeRelation) + a.spPos
(a:p|dpTreeRelation) + p.spPos
(a.highSupportVerb:p|dpTreeRelation) + a.spPos
a.highSupportNoun:p|dpPath.dprel.seq
a.lowSupportVerb:p|dpPath.dprel.seq
a:p|linePath.spForm.bag
a:p|linePath.spLemma.bag
a:p|linePath.spLemma.seq

aThis feature checks if the dependant type is OBJ.
badv means all adverbs.

Table 2: Feature templates only for synPth

p.currentSense + a.spLemma
p.currentSense + a.spPos
p.voice + (a:p|direction)
p.rm.dprel
p.children.dprel.noDup
p.rm.form
p.lowSupportNoun.spForm
p.lowSupportProp:p|dpTreeRelation
p−2.form + p−1.form
p.voice
p.form + p.children.dprel.noDup
p.pos + p.dprel
p.spForm + p.children.dprel.bag
a.voice + (a:p|direction)
a−1.isCurPred.lemma
a1.isCurPred.lemma
a−1.isCurPred.lemma + a.isCurPred.lemma
a.isCurPred.lemma + a1.isCurPred.lemma
a1.isCurPred.spLemma
a−2.isCurPred.spLemma + a−1.isCurPred.spLemma
a.baseline Ax + a.voice + (a:p|direction)
a.baseline Mod
a.h.children.dprel.bag
a.lm.dprel + a.dprel
a.lm.dprel + a.pos
a.lm−1.lemma
a.lm.lemma
a.lm1.lemma
a.lm.pos + a.pos
a.lm.spForm
a.lm−1.spPos
a.lm.spPos
a.ln.dprel + a.pos
a.noFarChildren.spPos.bag + a.rm.spPos
a.children.spPos.seq + p.children.spPos.seq
a.rm.dprel + a.pos
a.rm−1.spPos
a.rm.spPos
a.rm1.spPos
a.rn.dprel + a.spPos
a.form
a.form + a1.form
a.form + a.pos
a−1.lemma
a−1.lemma + a.lemma
a−2.pos
a.spForm + a1.spForm
a.spForm + a.spPos
a.spLemma + a1.spLemma
a.spForm + a.children.spPos.seq
a.spForm + a.children.spPos.bag
a.spLemma + a.h.spForm
a.spLemma + a.pphead.spForm
a.existSemdprel A2
a:p|dpPathArgu.pos.seq
a:p|dpPathPred.dprel.seq
a:p|dpTreeRelation

Table 3: Feature templates only for linPth
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in (Surdeanu et al., 2008). Note that CoNLL-2008
shared task is essentially a joint learning task for
both syntactic and semantic dependencies, how-
ever, we will focus on semantic part of this task.
The main semantic measure that we adopt is se-
mantic labeled F1 score (Sem-F1). In addition, the
macro labeled F1 scores (Macro-F1), which was
used for the ranking of the participating systems of
CoNLL-2008, the ratio between labeled F1 score
for semantic dependencies and the LAS for syn-
tactic dependencies (Sem-F1/LAS), are also given
for reference.

5.1 Syntactic Dependency Parsers

We consider three types of syntactic information
to feed the SRL task. One is gold-standard syn-
tactic input, and other two are based on automati-
cally parsing results of two parsers, the state-of-
the-art syntactic parser described in (Johansson
and Nugues, 2008)7(it is referred to Johansson)
and an integrated parser described as the follow-
ing (referred to MSTME).

The parser is basically based on the MSTParser8

using all the features presented by (McDonald et
al., 2006) with projective parsing. Moreover, we
exploit three types of additional features to im-
prove the parser. 1) Chen et al. (2008) used fea-
tures derived from short dependency pairs based
on large-scale auto-parsed data to enhance depen-
dency parsing. Here, the same features are used,
though all dependency pairs rather than short de-
pendency pairs are extracted along with the de-
pendency direction from training data rather than
auto-parsed data. 2) Koo et al. (2008) presented
new features based on word clusters obtained from
large-scale unlabeled data and achieved large im-
provement for English and Czech. Here, the same
features are also used as word clusters are gen-
erated only from the training data. 3) Nivre and
McDonald (2008) presented an integrating method
to provide additional information for graph-based
and transition-based parsers. Here, we represent
features based on dependency relations predicted
by transition-based parsers for the MSTParer. For
the sake of efficiency, we use a fast transition-

7It is a 2-order maximum spanning tree parser with
pseudo-projective techniques. A syntactic-semantic rerank-
ing was performed to output the final results according to (Jo-
hansson and Nugues, 2008). However, only 1-best outputs of
the parser before reranking are used for our evaluation. Note
that the reranking may slightly improve the syntactic perfor-
mance according to (Johansson and Nugues, 2008).

8It’s freely available at http://mstparser.sourceforge.net.

Parser Path Adaptive Pruning Coverage
/wo /w Rate

Gold synPth 2.13M 1.05M 98.4%
(49.30%)

linP th 5.29M 1.57M 100.0%
(29.68%)

Johansson synPth 2.15M 1.06M 95.4%
(49.30%)

linP th 5.28M 1.57M 100.0%
(29.73%)

MSTME synPth 2.15M 1.06M 95.0%
(49.30%)

linP th 5.29M 1.57M 100.0%
(29.68%)

Table 4: The number of training samples on argu-
ment candidates

synPth+FTsyn linPth+FTlin

Syn-Parser LAS Sem Sem-F1 Sem Sem-F1

F1 /LAS F1 /LAS
MSTME 88.39 80.53 91.10 79.83 90.31

Johansson 89.28 80.94 90.66 79.84 89.43
Gold 100.00 84.57 84.57 83.34 83.34

Table 5: Semantic Labeled F1

based parser based on maximum entropy as in
Zhao and Kit (2008). We still use the similar fea-
ture notations of that work.

5.2 The Results

At first, we report the effectiveness of the proposed
adaptive argument pruning. The numbers of argu-
ment candidates are in Table 4. The statistics is
conducted on three different syntactic inputs. The
coverage rate in the table means the ratio of how
many true arguments are covered by the selected
pruning scheme. Note that the adaptive pruning
of argument candidates using assistant labels does
not change this rate. This ratio only depends on
which path, either synPth or linP th, is chosen,
and how good the syntactic input is (if synPth
is the case). From the results, we see that more
than a half of argument candidates can be effec-
tively pruned for synPth and even 2/3 for linP th.
As mentioned by (Pradhan et al., 2004), argument
identification plays a bottleneck role in improving
the performance of a SRL system. The effective-
ness of the proposed additional pruning techniques
may be seen as a significant improvement over the
original algorithm of (Xue and Palmer, 2004). The
results also indicate that such an assumption holds
that arguments trend to close with their predicate,
at either type of distance, syntactic or linear.

Based on different syntactic inputs, we obtain
different results on semantic dependency parsing
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as shown in Table 5. These results on differ-
ent syntactic inputs also give us a chance to ob-
serve how semantic performance varies according
to syntactic performance. The fact from the re-
sults is that the ratio Sem-F1/LAS becomes rela-
tively smaller as the syntactic input becomes bet-
ter. Though not so surprised, the results do show
that the argument traverse scheme synPth always
outperforms the other linP th. The result of this
comparison partially shows that an integrated se-
mantic role labeler is sensitive to the order of how
argument candidates are traversed to some extent.

The performance given by synPth is com-
pared to some other systems that participated in
the CoNLL-2008 shared task. They were cho-
sen among the 20 participating systems either be-
cause they held better results (the first four partic-
ipants) or because they used some joint learning
techniques (Henderson et al., 2008). The results of
(Titov et al., 2009) that use the similar joint learn-
ing technique as (Henderson et al., 2008) are also
included9. Results of these evaluations on the test
set are in Table 6. Top three systems of CoNLL-
2008, (Johansson and Nugues, 2008; Ciaramita et
al., 2008; Che et al., 2008), used SRL pipelines.

In this work, we partially use the similar
techniques (synPth) for our participation in the
shared tasks of CoNLL-2008 and 2009 (Zhao and
Kit, 2008; Zhao et al., 2009b; Zhao et al., 2009a).
Here we report that all SRL sub-tasks are tackled
in one integrated model, while the predicate dis-
ambiguation sub-task was performed individually
in both of our previous systems. Therefore, this is
our first attempt at a full integrated SRL system.

(Titov et al., 2009) reported the best result by
using joint learning technique up to now. The
comparison indicates that our integrated system
outputs a result quite close to the state-of-the-art
by the pipeline system of (Johansson and Nugues,
2008) as the same syntactic structure input is
adopted. It is worth noting that our system actu-
ally competes with two independent sub-systems
of (Johansson and Nugues, 2008), one for verbal
predicates, the other for nominal predicates. In ad-
dition, the results of our system is obtained with-
out using additional joint learning technique like
syntactic-semantic reranking. It indicates that our
system is expected to obtain some further perfor-
mance improvement by using such techniques.

9In addition, the work of (Henderson et al., 2008) and
(Titov et al., 2009) jointly considered syntactic and semantic
dependencies, that is significantly different from the others.

6 Conclusion

We have described a dependency-based semantic
role labeling system for English from NomBank
and PropBank. From the evaluations, the result of
our system is quite close to the state of the art. As
to our knowledge, it is the first integrated SRL sys-
tem that achieves such a competitive performance
against previous pipeline systems.

According to the path that the word-pair classi-
fier traverses argument candidates, two integration
schemes are presented. Argument candidate prun-
ing and feature selection are performed on them,
respectively. These two schemes are more than
providing a trivial comparison. As assistant la-
beled are introduced to help further argument can-
didate pruning, and this techniques work well for
both schemes, it support the assumption that argu-
ments trend to surround their predicate. The pro-
posed feature selection procedure also work for
both schemes and output quite different two fea-
ture template sets, and either of the sets helps the
system obtain a competitive performance, this fact
suggests that the feature selection procedure is ro-
bust and effective, too.

Either of the presented integrated systems can
provide a competitive performance. This conclu-
sion about basic learning scheme for SRL is some
different from previous literatures. However, ac-
cording to our results, there does exist a ‘harmony’
feature template set that is helpful to both predi-
cate and argument identification/classification, or
SRL for both verbal and nominal predicates. We
attribute this different conclusion to two main fac-
tors, 1) much more feature templates (for example,
ten times more than those used by Xue et al.) than
previous that are considered for a successful fea-
ture engineering, 2) a maximum entropy classifier
makes it possible to accept so many various fea-
tures in one model. Note that maximum entropy is
not so sensitive to those (partially) overlapped fea-
tures, while SVM and other margin-based learners
are not so.
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Systemsa LAS Sem-F1 Macro Sem-F1 pred-F1
b argu-F1

c Verb-F1
d Nomi-F1

e

F1 /LAS
Johansson:2008*f 89.32 81.65 85.49 91.41 87.22 79.04 84.78 77.12
Ours:Johansson 89.28 80.94 85.12 90.66 86.57 78.30 83.66 76.93
Ours:MSTME 88.39 80.53 84.93 91.10 86.80 77.60 82.77 77.23
Johansson:2008 89.32 80.37 84.86 89.98 85.40 78.02 84.45 74.32
Ciaramita:2008* 87.37 78.00 82.69 89.28 83.46 75.35 80.93 73.80
Che:2008 86.75 78.52 82.66 90.51 85.31 75.27 80.46 75.18
Zhao:2008* 87.68 76.75 82.24 87.53 78.52 75.93 78.81 73.59
Ciaramita:2008 86.60 77.50 82.06 89.49 83.46 74.56 80.15 73.17
Titov:2009 87.50 76.10 81.80 86.97 – – – –
Zhao:2008 86.66 76.16 81.44 87.88 78.26 75.18 77.67 73.28
Henderson:2008* 87.64 73.09 80.48 83.40 81.42 69.10 75.84 68.90
Henderson:2008 86.91 70.97 79.11 81.66 79.60 66.83 73.80 66.26
Ours:Gold 100.0 84.57 92.20 84.57 87.67 83.15 88.71 78.39

aRanking according to Sem-F1
bLabeled F1 for predicate identification and classification
cLabeled F1 for argument identification and classification
dLabeled F1 for verbal predicates
eLabeled F1 for nominal predicates
f* means post-evaluation results, which are available at the official website of CoNLL-2008 shared task,

http://www.yr-bcn.es/dokuwiki/doku.php?id=conll2008:start.

Table 6: Comparison of the best existing systems
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