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Abstract

Determining the polarity of a sentiment-

bearing expression requires more than a sim-

ple bag-of-words approach. In particular,

words or constituents within the expression

can interact with each other to yield a particu-

lar overall polarity. In this paper, we view such

subsentential interactions in light of composi-

tional semantics, and present a novel learning-

based approach that incorporates structural in-

ference motivated by compositional seman-

tics into the learning procedure. Our exper-

iments show that (1) simple heuristics based

on compositional semantics can perform bet-

ter than learning-based methods that do not in-

corporate compositional semantics (accuracy

of 89.7% vs. 89.1%), but (2) a method that

integrates compositional semantics into learn-

ing performs better than all other alterna-

tives (90.7%). We also find that “content-

word negators”, not widely employed in pre-

vious work, play an important role in de-

termining expression-level polarity. Finally,

in contrast to conventional wisdom, we find

that expression-level classification accuracy

uniformly decreases as additional, potentially

disambiguating, context is considered.

1 Introduction

Determining the polarity of sentiment-bearing ex-

pressions at or below the sentence level requires

more than a simple bag-of-words approach. One of

the difficulties is that words or constituents within

the expression can interact with each other to yield

a particular overall polarity. To facilitate our discus-

sion, consider the following examples:

1: [I did [not]¬ have any [doubt]− about it.]+

2: [The report [eliminated]¬ my [doubt]−.]+

3: [They could [not]¬ [eliminate]¬ my [doubt]−.]−

In the first example, “doubt” in isolation carries

a negative sentiment, but the overall polarity of the

sentence is positive because there is a negator “not”,

which flips the polarity. In the second example, both

“eliminated” and “doubt” carry negative sentiment

in isolation, but the overall polarity of the sentence

is positive because “eliminated” acts as a negator for

its argument “doubt”. In the last example, there are

effectively two negators – “not” and “eliminated” –

which reverse the polarity of “doubt” twice, result-

ing in the negative polarity for the overall sentence.

These examples demonstrate that words or con-

stituents interact with each other to yield the

expression-level polarity. And a system that sim-

ply takes the majority vote of the polarity of indi-

vidual words will not work well on the above exam-

ples. Indeed, much of the previous learning-based

research on this topic tries to incorporate salient in-

teractions by encoding them as features. One ap-

proach includes features based on contextual va-

lence shifters1 (Polanyi and Zaenen, 2004), which

are words that affect the polarity or intensity of sen-

timent over neighboring text spans (e.g., Kennedy

and Inkpen (2005), Wilson et al. (2005), Shaikh et

al. (2007)). Another approach encodes frequent sub-

sentential patterns (e.g., McDonald et al. (2007)) as

features; these might indirectly capture some of the

subsentential interactions that affect polarity. How-

1For instance, “never”, “nowhere”, “little”, “most”, “lack”,

“scarcely”, “deeply”.
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ever, both types of approach are based on learning

models with a flat bag-of-features: some structural

information can be encoded as higher order features,

but the final representation of the input is still a flat

feature vector that is inherently too limited to ade-

quately reflect the complex structural nature of the

underlying subsentential interactions. (Liang et al.,

2008)

Moilanen and Pulman (2007), on the other hand,

handle the structural nature of the interactions more

directly using the ideas from compositional seman-

tics (e.g., Montague (1974), Dowty et al. (1981)). In

short, the Principle of Compositionality states that

the meaning of a compound expression is a func-

tion of the meaning of its parts and of the syntac-

tic rules by which they are combined (e.g., Mon-

tague (1974), Dowty et al. (1981)). And Moilanen

and Pulman (2007) develop a collection of compo-

sition rules to assign a sentiment value to individual

expressions, clauses, or sentences. Their approach

can be viewed as a type of structural inference, but

their hand-written rules have not been empirically

compared to learning-based alternatives, which one

might expect to be more effective in handling some

aspects of the polarity classification task.

In this paper, we begin to close the gap between

learning-based approaches to expression-level po-

larity classification and those founded on composi-

tional semantics: we present a novel learning-based

approach that incorporates structural inference mo-

tivated by compositional semantics into the learning

procedure.

Adopting the view point of compositional seman-

tics, our working assumption is that the polarity of a

sentiment-bearing expression can be determined in a

two-step process: (1) assess the polarities of the con-

stituents of the expression, and then (2) apply a rela-

tively simple set of inference rules to combine them

recursively. Rather than a rigid application of hand-

written compositional inference rules, however, we

hypothesize that an ideal solution to the expression-

level polarity classification task will be a method

that can exploit ideas from compositional seman-

tics while providing the flexibility needed to handle

the complexities of real-world natural language —

exceptions, unknown words, missing semantic fea-

tures, and inaccurate or missing rules. The learning-

based approach proposed in this paper takes a first

step in this direction.

In addition to the novel learning approach, this

paper presents new insights for content-word nega-

tors, which we define as content words that can

negate the polarity of neighboring words or con-

stituents. (e.g., words such as “eliminated” in the

example sentences). Unlike function-word nega-

tors, such as “not” or “never”, content-word nega-

tors have been recognized and utilized less actively

in previous work. (Notable exceptions include e.g.,

Niu et al. (2005), Wilson et al. (2005), and Moilanen

and Pulman (2007).2)

In our experiments, we compare learning- and

non-learning-based approaches to expression-level

polarity classification — with and without com-

positional semantics — and find that (1) simple

heuristics based on compositional semantics outper-

form (89.7% in accuracy) other reasonable heuris-

tics that do not incorporate compositional seman-

tics (87.7%); they can also perform better than sim-

ple learning-based methods that do not incorporate

compositional semantics (89.1%), (2) combining

learning with the heuristic rules based on compo-

sitional semantics further improves the performance

(90.7%), (3) content-word negators play an impor-

tant role in determining the expression-level polar-

ity, and, somewhat surprisingly, we find that (4)

expression-level classification accuracy uniformly

decreases as additional, potentially disambiguating,

context is considered.

In what follows, we first explore heuristic-based

approaches in §2, then we present learning-based ap-

proaches in §3. Next we present experimental results

in §4, followed by related work in §5.

2 Heuristic-Based Methods

This section describes a set of heuristic-based meth-

ods for determining the polarity of a sentiment-

bearing expression. Each assesses the polarity of the

words or constituents using a polarity lexicon that

indicates whether a word has positive or negative

polarity, and finds negators in the given expression

using a negator lexicon. The methods then infer the

expression-level polarity using voting-based heuris-

tics (§ 2.1) or heuristics that incorporate composi-

tional semantics (§2.2). The lexicons are described

2See §5. Related Work for detailed discussion.
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VOTE NEG(1) NEG(N) NEGEX(1) NEGEX(N) COMPO

type of negators none function-word function-word & content-word

maximum # of negations applied 0 1 n 1 n n

scope of negators N/A over the entire expression compositional

Table 1: Heuristic methods. (n refers to the number of negators found in a given expression.)

Rules Examples

1 Polarity( not [arg1] ) = ¬ Polarity( arg1 ) not [bad]arg1.

2 Polarity( [VP] [NP] ) = Compose( [VP], [NP] ) [destroyed]V P [the terrorism]NP .

3 Polarity( [VP1] to [VP2] ) = Compose( [VP1], [VP2] ) [refused]V P1 to [deceive]V P2 the man.

4 Polarity( [adj] to [VP] ) = Compose( [adj], [VP] ) [unlikely]adj to [destroy]V P the planet.

5 Polarity( [NP1] [IN] [NP2] ) = Compose( [NP1], [NP2] ) [lack]NP1 [of]IN [crime]NP2 in rural areas.

6 Polarity( [NP] [VP] ) = Compose( [VP], [NP] ) [pollution]NP [has decreased]V P .

7 Polarity( [NP] be [adj] ) = Compose( [adj], [NP] ) [harm]NP is [minimal]adj .

Definition of Compose( arg1, arg2 )

Compose( arg1, arg2 ) =

For COMPOMC: if (arg1 is a negator) then ¬ Polarity( arg2 )

(COMPOsition with Majority Class) else if (Polarity( arg1 ) == Polarity( arg2 )) then Polarity( arg1 )

else the majority polarity of data

Compose( arg1, arg2 ) =

For COMPOPR: if (arg1 is a negator) then ¬ Polarity( arg2 )

(COMPOsition with PRiority) else Polarity( arg1 )

Table 2: Compositional inference rules motivated by compositional semantics.

in §2.3.

2.1 Voting

We first explore five simple heuristics based on vot-

ing. VOTE is defined as the majority polarity vote

by words in a given expression. That is, we count

the number of positive polarity words and negative

polarity words in a given expression, and assign the

majority polarity to the expression. In the case of a

tie, we default to the prevailing polarity of the data.

For NEG(1), we first determine the majority polar-

ity vote as above, and then if the expression contains

any function-word negator, flip the polarity of the

majority vote once. NEG(N) is similar to NEG(1), ex-

cept we flip the polarity of the majority vote n times

after the majority vote, where n is the number of

function-word negators in a given expression.

NEGEX(1) and NEGEX(N) are defined similarly as

NEG(1) and NEG(N) above, except both function-

word negators and content-word negators are con-

sidered as negators when flipping the polarity of the

majority vote. See Table 1 for summary. Note that a

word can be both a negator and have a negative prior

polarity. For the purpose of voting, if a word is de-

fined as a negator per the voting scheme, then that

word does not participate in the majority vote.

For brevity, we refer to NEG(1) and NEG(N) col-

lectively as NEG, and NEGEX(1) and NEGEX(N) col-

lectively as NEGEX.

2.2 Compositional semantics

Whereas the heuristics above use voting-based in-

ference, those below employ a set of hand-written

rules motivated by compositional semantics. Table 2

shows the definition of the rules along with moti-

vating examples. In order to apply a rule, we first

detect a syntactic pattern (e.g., [destroyed]V P [the

terrorism]NP ), then apply the Compose function as

defined in Table 2 (e.g., Compose([destroyed], [the

terrorism]) by rule #2).3

3Our implementation uses part-of-speech tags and function-

words to coarsely determine the patterns. An implementation
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Compose first checks whether the first argument is

a negator, and if so, flips the polarity of the second

argument. Otherwise, Compose resolves the polar-

ities of its two arguments. Note that if the second

argument is a negator, we do not flip the polarity of

the first argument, because the first argument in gen-

eral is not in the semantic scope of the negation.4 In-

stead, we treat the second argument as a constituent

with negative polarity.

We experiment with two variations of the Com-

pose function depending on how conflicting polari-

ties are resolved: COMPOMC uses a Compose func-

tion that defaults to the Majority Class of the po-

larity of the data,5 while COMPOPR uses a Compose

function that selects the polarity of the argument that

has higher semantic PRiority. For brevity, we refer

to COMPOPR and COMPOMC collectively as COMPO.

2.3 Lexicons

The polarity lexicon is initialized with the lexicon

of Wilson et al. (2005) and then expanded using the

General Inquirer dictionary.6 In particular, a word

contained in at least two of the following categories

is considered as positive: POSITIV, PSTV, POSAFF,

PLEASUR, VIRTUE, INCREAS, and a word contained

in at least one of the following categories is consid-

ered as negative: NEGATIV, NGTV, NEGAFF, PAIN,

VICE, HOSTILE, FAIL, ENLLOSS, WLBLOSS, TRAN-

LOSS.

For the (function- and content-word) negator lex-

icon, we collect a handful of seed words as well as

General Inquirer words that appear in either NOTLW

or DECREAS category. Then we expand the list of

content-negators using the synonym information of

WordNet (Miller, 1995) to take a simple vote among

senses.

based on parse trees might further improve the performance.
4Moilanen and Pulman (2007) provide more detailed dis-

cussion on the semantic scope of negations and the semantic

priorities in resolving polarities.
5The majority polarity of the data we use for our experi-

ments is negative.
6Available at http://www.wjh.harvard.edu/∼inquirer/.

When consulting the General Inquirer dictionary, senses with

less than 5% frequency and senses specific to an idiom are

dropped.

3 Learning-Based Methods

While we expect that a set of hand-written heuristic

rules motivated by compositional semantics can be

effective for determining the polarity of a sentiment-

bearing expression, we do not expect them to be per-

fect. Interpreting natural language is such a com-

plex task that writing a perfect set of rules would

be extremely challenging. Therefore, a more ideal

solution would be a learning-based method that can

exploit ideas from compositional semantics while

providing the flexibility to the rigid application of

the heuristic rules. To this end, we present a novel

learning-based approach that incorporates inference

rules inspired by compositional semantics into the

learning procedure (§3.2). To assess the effect of

compositional semantics in the learning-based meth-

ods, we also experiment with a simple classifica-

tion approach that does not incorporate composi-

tional semantics (§3.1). The details of these two

approaches are elaborated in the following subsec-

tions.

3.1 Simple Classification (SC)

Given an expression x consisting of n words x1,

..., xn, the task is to determine the polarity y ∈
{positive, negative} of x. In our simple binary

classification approach, x is represented as a vec-

tor of features f(x), and the prediction y is given by

argmaxyw·f(x, y), where w is a vector of parameters

learned from training data. In our experiment, we

use an online SVM algorithm called MIRA (Margin

Infused Relaxed Algorithm) (Crammer and Singer,

2003)7 for training.

For each x, we encode the following features:

• Lexical: We add every word xi in x, and also

add the lemma of xi produced by the CASS

partial parser toolkit (Abney, 1996).

• Dictionary: In order to mitigate the problem of

unseen words in the test data, we add features

that describe word categories based on the Gen-

eral Inquirer dictionary. We add this feature for

each xi that is not a stop word.

• Vote: We experiment with two variations of

voting-related features: for SC-VOTE, we add

7We use the Java implementation of this algorithm

available at http://www.seas.upenn.edu/∼strctlrn/StructLearn

/StructLearn.html.

796



Simple Classification Classification with Compositional Inference

y ← argmaxy score(y) Find K best z and denote them as Z = {z(1), ..., z(K)}

l← loss flat(y∗, y) s.t. ∀ i < j, score(z(i)) > score(z(j))

w← update(w, l, y∗, y) zbad ← mink z(k) s.t. loss compo(y∗, z(k), x) > 0

(if such zbad not found in Z, skip parameter update for this.)

If loss compo(y∗, z∗, x) > 0

zgood ← mink z(k) s.t. loss compo(y∗, z(k), x) = 0

z∗ ← zgood

(if such zgood not found in Z, stick to the original z∗.)

l ← loss compo(y∗, zbad, x)− loss compo(y∗, z∗, x)

w← update(w, l, z∗, zbad)

Definitions of score functions and loss functions

score(y) := w · f(x, y) score(z) :=
∑

i score(zi) :=
∑

i w · f(x, zi, i)

loss flat(y∗, y) := if (y∗ = y) 0 else 1 loss compo(y∗, z, x) := if (y∗ = C(x, z)) 0 else 1

Figure 1: Training procedures. y∗ ∈ {positive, negative} denotes the true label for a given expression x = x1, ..., xn.

z∗ denotes the pseudo gold standard for hidden variables z.

a feature that indicates the dominant polarity of

words in the given expression, without consid-

ering the effect of negators. For SC-NEGEX,

we count the number of content-word nega-

tors as well as function-word negators to de-

termine whether the final polarity should be

flipped. Then we add a conjunctive feature that

indicates the dominant polarity together with

whether the final polarity should be flipped. For

brevity, we refer to SC-VOTE and SC-NEGEX

collectively as SC.

Notice that in this simple binary classification set-

ting, it is inherently difficult to capture the compo-

sitional structure among words in x, because f(x, y)
is merely a flat bag of features, and the prediction

is governed simply by the dot product of f(x, y) and

the parameter vector w.

3.2 Classification with Compositional

Inference (CCI)

Next, instead of determining y directly from x,

we introduce hidden variables z = (z1, ..., zn)
as intermediate decision variables, where zi ∈

{positive, negative, negator, none}, so that zi

represents whether xi is a word with posi-

tive/negative polarity, or a negator, or none of the

above. For simplicity, we let each intermediate de-

cision variable zi (a) be determined independently

from other intermediate decision variables, and (b)

For each token xi,

if xi is a word in the negator lexicon

then z∗i ← negator

else if xi is in the polarity lexicon as negative

then z∗i ← negative

else if xi is in the polarity lexicon as positive

then z∗i ← positive

else

then z∗i ← none

Figure 2: Constructing Soft Gold Standard z∗

depend only on the input x, so that zi = argmaxzi
w ·

f(x, zi, i), where f(x, zi, i) is the feature vector en-

coding around the ith word (described on the next

page). Once we determine the intermediate decision

variables, we apply the heuristic rules motivated by

compositional semantics (from Table 2) in order to

obtain the final polarity y of x. That is, y = C(x, z),

where C is the function that applies the composi-

tional inference, either COMPOPR or COMPOMC.

For training, there are two issues we need to

handle: the first issue is dealing with the hidden

variables z. Because the structure of composi-

tional inference C does not allow dynamic program-

ming, it is intractable to perform exact expectation-

maximization style training that requires enumerat-

ing all possible values of the hidden variables z. In-

stead, we propose a simple and tractable training
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rule based on the creation of a soft gold standard for

z. In particular, we exploit the fact that in our task,

we can automatically construct a reasonably accu-

rate gold standard for z, denoted as z∗: as shown in

Figure 2, we simply rely on the negator and polar-

ity lexicons. Because z∗ is not always correct, we

allow the training procedure to replace z∗ with po-

tentially better assignments as learning proceeds: in

the event that the soft gold standard z∗ leads to an in-

correct prediction, we search for an assignment that

leads to a correct prediction to replace z∗. The exact

procedure is given in Figure 1, and will be discussed

again shortly.

Figure 1 shows how we modify the parameter up-

date rule of MIRA (Crammer and Singer, 2003) to

reflect the aspect of compositional inference. In the

event that the soft gold standard z∗ leads to an incor-

rect prediction, we search for zgood, the assignment

with highest score that leads to a correct prediction,

and replace z∗ with zgood. In the event of no such

zgood being found among the K-best assignments of

z, we stick with z∗.

The second issue is finding the assignment of z

with the highest score(z) =
∑

i w · f(x, zi, i) that

leads to an incorrect prediction y = C(x, z). Be-

cause the structure of compositional inference C
does not allow dynamic programming, finding such

an assignment is again intractable. We resort to enu-

merating only over K-best assignments instead. If

none of the K-best assignments of z leads to an in-

correct prediction y, then we skip the training in-

stance for parameter update.

Features. For each xi in x, we encode the follow-

ing features:

• Lexical: We include the current word xi as well

as the lemma of xi produced by CASS partial

parser toolkit (Abney, 1996). We also add a

boolean feature to indicate whether the current

word is a stop word.

• Dictionary: In order to mitigate the problem

with unseen words in the test data, we add fea-

tures that describe word categories based on the

General Inquirer dictionary. We add this fea-

ture for each xi that is not a stop word. We

also add a number of boolean features that pro-

vide following properties of xi using the polar-

ity lexicon and the negator lexicon:

– whether xi is a function-word negator

– whether xi is a content-word negator

– whether xi is a negator of any kind

– the polarity of xi according to Wilson et

al. (2005)’s polarity lexicon

– the polarity of xi according to the lexicon

derived from the General Inquirer dictio-

nary

– conjunction of the above two features

• Vote: We encode the same vote feature that we

use for SC-NEGEX described in § 3.1.

As in the heuristic-based compositional semantics

approach (§ 2.2), we experiment with two variations

of this learning-based approach: CCI-COMPOPR

and CCI-COMPOMC, whose compositional infer-

ence rules are COMPOPR and COMPOMC respec-

tively. For brevity, we refer to both variations col-

lectively as CCI-COMPO.

4 Experiments

The experiments below evaluate our heuristic- and

learning-based methods for subsentential sentiment

analysis (§ 4.1). In addition, we explore the role

of context by expanding the boundaries of the

sentiment-bearing expressions (§ 4.2).

4.1 Evaluation with given boundaries

For evaluation, we use the Multi-Perspective Ques-

tion Answering (MPQA) corpus (Wiebe et al.,

2005), which consists of 535 newswire documents

manually annotated with phrase-level subjectivity

information. We evaluate on all strong (i.e., inten-

sity of expression is ‘medium’ or higher), sentiment-

bearing (i.e., polarity is ‘positive’ or ‘negative’) ex-

pressions.8 As a result, we can assume the bound-

aries of the expressions are given. Performance is

reported using 10-fold cross-validation on 400 doc-

uments; a separate 135 documents were used as a

development set. Based on pilot experiments on the

development data, we set parameters for MIRA as

follows: slack variable to 0.5, and the number of

incorrect labels (constraints) for each parameter up-

date to 1. The number of iterations (epochs) for

training is set to 1 for simple classification, and to 4

8We discard expressions with confidence marked as ‘uncer-

tain’.
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Heuristic-Based Learning-Based

VOTE NEG NEG NEG NEG COMPO COMPO SC SC CCI CCI
(1) (N) EX EX MC PR VOTE NEG COMPO COMPO

(1) (N) EX MC PR

86.5 82.0 82.2 87.7 87.7 89.7 89.4 88.5 89.1 90.6 90.7

Table 3: Performance (in accuracy) on MPQA dataset.

Heuristic-Based Learning-Based

VOTE NEG NEG NEG NEG COMPO COMPO SC SC CCI CCI
Data (1) (N) EX EX MC PR VOTE NEG COMPO COMPO

(1) (N) EX MC PR

[-0,+0] 86.5 82.0 82.2 87.7 87.7 89.7 89.4 88.5 89.1 90.6 90.7

[-1,+1] 86.4 81.0 81.2 87.2 87.2 89.3 89.0 88.3 88.4 89.5 89.4

[-5,+5] 85.9 79.0 79.4 85.7 85.6 88.2 88.0 86.4 87.1 88.7 88.7

[-∞,+∞] 85.3 75.8 76.9 83.9 83.9 87.0 86.9 85.8 85.8 87.3 87.5

Table 4: Performance (in accuracy) on MPQA data set with varying boundaries of expressions.

for classification with compositional inference. We

use K = 20 for classification with compositional

inference.

Results. Performance is reported in Table 3. In-

terestingly, the heuristic-based methods NEG (∼
82.2%) that only consider function-word negators

perform even worse than VOTE (86.5%), which does

not consider negators. On the other hand, the NEGEX

methods (87.7%) that do consider content-word

negators as well as function-word negators perform

better than VOTE. This confirms the importance of

content-word negators for determining the polari-

ties of expressions. The heuristic-based methods

motivated by compositional semantics COMPO fur-

ther improve the performance over NEGEX, achiev-

ing up to 89.7% accuracy. In fact, these heuris-

tics perform even better than the SC learning-based

methods (∼ 89.1%). This shows that heuristics that

take into account the compositional structure of the

expression can perform better than learning-based

methods that do not exploit such structure.

Finally, the learning-based methods that in-

corporate compositional inference CCI-COMPO (∼

90.7%) perform better than all of the previous

methods. The difference between CCI-COMPOPR

(90.7%) and SC-NEGEX (89.1%) is statistically sig-

nificant at the .05 level by paired t-test. The dif-

ference between COMPO and any other heuristic that

is not based on computational semantics is also

statistically significant. In addition, the difference

between CCICOMPOPR (learning-based) and COM-

POMC (non-learning-based) is statistically signifi-

cant, as is the difference between NEGEX and VOTE.

4.2 Evaluation with noisy boundaries

One might wonder whether employing additional

context outside the annotated expression boundaries

could further improve the performance. Indeed, con-

ventional wisdom would say that it is necessary to

employ such contextual information (e.g., Wilson et

al. (2005)). In any case, it is important to determine

whether our results will apply to more real-world

settings where human-annotated expression bound-

aries are not available.

To address these questions, we gradually relax

our previous assumption that the exact boundaries of

expressions are given: for each annotation bound-

ary, we expand the boundary by x words for each

direction, up to sentence boundaries, where x ∈
{1, 5,∞}. We stop expanding the boundary if it

will collide with the boundary of an expression with

a different polarity, so that we can consistently re-

cover the expression-level gold standard for evalua-

tion. This expansion is applied to both the training

and test data, and the performance is reported in Ta-

ble 4. From this experiment, we make the following

observations:

• Expanding the boundaries hurts the perfor-
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mance for any method. This shows that most of

relevant context for judging the polarity is con-

tained within the expression boundaries, and

motivates the task of finding the boundaries of

opinion expressions.

• The NEGEX methods perform better than VOTE

only when the expression boundaries are rea-

sonably accurate. When the expression bound-

aries are expanded up to sentence boundaries,

they perform worse than VOTE. We conjecture

this is because the scope of negators tends to be

limited to inside of expression boundaries.

• The COMPO methods always perform better

than any other heuristic-based methods. And

their performance does not decrease as steeply

as the NEGEX methods as the expression

boundaries expand. We conjecture this is be-

cause methods based on compositional seman-

tics can handle the scope of negators more ade-

quately.

• Among the learning-based methods, those that

involve compositional inference (CCI-COMPO)

always perform better than those that do not

(SC) for any boundaries. And learning with

compositional inference tend to perform bet-

ter than the rigid application of heuristic rules

(COMPO), although the relative performance

gain decreases once the boundaries are relaxed.

5 Related Work

The task focused on in this paper is similar to that

of Wilson et al. (2005) in that the general goal of the

task is to determine the polarity in context at a sub-

sentence level. However, Wilson et al. (2005) for-

mulated the task differently by limiting their evalua-

tion to individual words that appear in their polarity

lexicon. Also, their approach was based on a flat bag

of features, and only a few examples of what we call

content-word negators were employed.

Our use of compositional semantics for the task

of polarity classification is preceded by Moilanen

and Pulman (2007), but our work differs in that

we integrate the key idea of compositional seman-

tics into learning-based methods, and that we per-

form empirical comparisons among reasonable al-

ternative approaches. For comparison, we evalu-

ated our approaches on the polarity classification

task from SemEval-07 (Strapparava and Mihalcea,

2007). We achieve 88.6% accuracy with COMPOPR,

90.1% with SCNEGEX, and 87.6% with CCICOM-

POMC.9 There are a number of possible reasons for

our lower performance vs. Moilanen and Pulman

(2007) on this data set. First, SemEval-07 does not

include a training data set for this task, so we use

400 documents from the MPQA corpus instead. In

addition, the SemEval-07 data is very different from

the MPQA data in that (1) the polarity annotation

is given only at the sentence level, (2) the sentences

are shorter, with simpler structure, and not as many

negators as the MPQA sentences, and (3) there are

many more instances with positive polarity than in

the MPQA corpus.

Nairn et al. (2006) also employ a “polarity” prop-

agation algorithm in their approach to the semantic

interpretation of implicatives. However, their notion

of polarity is quite different from that assumed here

and in the literature on sentiment analysis. In partic-

ular, it refers to the degree of “commitment” of the

author to the truth or falsity of a complement clause

for a textual entailment task.

McDonald et al. (2007) use a structured model

to determine the sentence-level polarity and the

document-level polarity simultaneously. But deci-

sions at each sentence level does not consider struc-

tural inference within the sentence.

Among the studies that examined content-word

negators, Niu et al. (2005) manually collected a

small set of such words (referred as “words that

change phases”), but their lexicon was designed

mainly for the medical domain and the type of nega-

tors was rather limited. Wilson et al. (2005) also

manually collected a handful of content-word nega-

tors (referred as “general polarity shifters”), but not

extensively. Moilanen and Pulman (2007) collected

a more extensive set of negators semi-automatically

using WordNet 2.1, but the empirical effect of such

words was not explicitly investigated.

9For lack of space, we only report our performance on in-

stances with strong intensities as defined in Moilanen and Pul-

man (2007), which amounts to only 208 test instances. The

cross-validation set of MPQA contains 4.9k instances.
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6 Conclusion

In this paper, we consider the task of determining

the polarity of a sentiment-bearing expression, con-

sidering the effect of interactions among words or

constituents in light of compositional semantics. We

presented a novel learning-based approach that in-

corporates structural inference motivated by compo-

sitional semantics into the learning procedure. Our

approach can be considered as a small step toward

bridging the gap between computational semantics

and machine learning methods. Our experimen-

tal results suggest that this direction of research is

promising. Future research includes an approach

that learns the compositional inference rules from

data.
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