
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 400–409,
Honolulu, October 2008. c©2008 Association for Computational Linguistics

A Dependency-based Word Subsequence Kernel

Rohit J. Kate

Department of Computer Sciences

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

rjkate@cs.utexas.edu

Abstract

This paper introduces a new kernel which

computes similarity between two natural lan-

guage sentences as the number of paths shared

by their dependency trees. The paper gives a

very efficient algorithm to compute it. This

kernel is also an improvement over the word

subsequence kernel because it only counts

linguistically meaningful word subsequences

which are based on word dependencies. It

overcomes some of the difficulties encoun-

tered by syntactic tree kernels as well. Ex-

perimental results demonstrate the advantage

of this kernel over word subsequence and syn-

tactic tree kernels.

1 Introduction

Kernel-based learning methods (Vapnik, 1998) are

becoming increasingly popular in natural language

processing (NLP) because they allow one to work

with potentially infinite number of features with-

out explicitly constructing or manipulating them. In

most NLP problems, the data is present in structured

forms, like strings or trees, and this structural infor-

mation can be effectively passed to a kernel-based

learning algorithm using an appropriate kernel, like

a string kernel (Lodhi et al., 2002) or a tree kernel

(Collins and Duffy, 2001). In contrast, feature-based

methods require reducing the data to a pre-defined

set of features often leading to some loss of the use-

ful structural information present in the data.

A kernel is a measure of similarity between ev-

ery pair of examples in the data and a kernel-based

machine learning algorithm accesses the data only

through these kernel values. For example, the string

kernel (Lodhi et al., 2002; Cancedda et al., 2003)

computes the similarity between two natural lan-

guage strings as the number of common word sub-

sequences between them. A subsequence allows

gaps between the common words which are penal-

ized according to a parameter. Each word subse-

quence hence becomes an implicit feature used by

the kernel-based machine learning algorithm. A

problem with this kernel is that many of these word

subsequences common between two strings may not

be semantically expressive or linguistically mean-

ingful1. Another problem with this kernel is that

if there are long-range dependencies between the

words in a common word subsequence, then they

will unfairly get heavily penalized because of the

presence of word gaps.

The syntactic tree kernel presented in (Collins and

Duffy, 2001) captures the structural similarity be-

tween two syntactic trees as the number of syntac-

tic subtrees common between them. However, of-

ten syntactic parse trees may share syntactic sub-

trees which correspond to very different semantics

based on what words they represent in the sentence.

On the other hand, some subtrees may differ syn-

tactically but may represent similar underlying se-

mantics. These differences can become particularly

problematic if the tree kernel is to be used for tasks

which require semantic processing.

This paper presents a new kernel which computes

similarity between two sentences as the the number

of paths common between their dependency trees.

1(Lodhi et al., 2002) use character subsequences instead of

word subsequences which are even less meaningful.

400

(a) A fat cat was chased by a dog.

(b) A cat with a red collar was chased two days ago

by a fat dog.

Figure 1: Two natural language sentences.

It improves over the word subsequence kernel be-

cause it only counts the word subsequences which

are linked by dependencies. It also circumvents

some of the difficulties encountered with the syntac-

tic tree kernel when applied for semantic processing

tasks.

Although several dependency-tree-based kernels

and modifications to syntactic tree kernels have been

proposed which we briefly discuss in the Related

Work section, to our best knowledge no previous

work has presented a kernel based on dependency

paths which offers some unique advantages. We also

give a very efficient algorithm to compute this ker-

nel. We present experimental results on the task of

domain-specific semantic parsing demonstrating the

advantage of this kernel over word subsequence and

syntactic tree kernels.

The following section gives some background on

string and tree kernels. Section 3 then introduces

the dependency-based word subsequence kernel and

gives an efficient algorithm to compute it. Some of

the related work is discussed next, followed by ex-

periments, future work and conclusions.

2 String and Tree Kernels

2.1 Word-Subsequence Kernel

A kernel between two sentences measures the simi-

larity between them. Lodhi et al. (2002) presented a

string kernel which measures the similarity between

two sentences, or two documents in general, as the

number of character subsequences shared between

them. This was extended by Cancedda et al. (2003)

to the number of common word subsequences be-

tween them. We will refer to this kernel as the word

subsequence kernel.

Consider the two sentences shown in Figure 1.

Some common word subsequences between them

are “a cat”, “was chased by”, “by a dog”, “a cat

chased by a dog”, etc. Note that the subsequence

“was chased by” is present in the second sentence

but it requires skipping the words “two days ago” or

has a gap of three words present in it. The kernel

downweights the presence of gaps by a decay fac-

tor λǫ(0, 1]. If g1 and g2 are the sum totals of gaps

for a subsequence present in the two sentences re-

spectively, then the contribution of this subsequence

towards the kernel value will be λg1+g2 . The ker-

nel can be normalized to have values in the range

of [0, 1] to remove any bias due to different sen-

tence lengths. Lodhi et al. (2002) give a dynamic

programming algorithm to compute string subse-

quence kernels in O(nst) time where s and t are the

lengths of the two input strings and n is the maxi-

mum length of common subsequences one wants to

consider. Rousu and Shawe-Taylor (2005) present

an improved algorithm which works faster when the

vocabulary size is large. Subsequence kernels have

been used with success in NLP for text classification

(Lodhi et al., 2002; Cancedda et al., 2003), informa-

tion extraction (Bunescu and Mooney, 2005b) and

semantic parsing (Kate and Mooney, 2006).

There are, however, some shortcomings of this

word subsequence kernel as a measure of similarity

between two sentences. Firstly, since it considers all

possible common subsequences, it is not sensitive

to whether the subsequence is linguistically mean-

ingful or not. For example, the meaningless sub-

sequences “cat was by” and “a was a” will also be

considered common between the two sentences by

this kernel. Since these subsequences will be used as

implicit features by the kernel-based machine learn-

ing algorithm, their presence can only hurt the per-

formance. Secondly, if there are long distance de-

pendencies between the words of the subsequence

present in a sentence then the subsequence will get

unfairly penalized. For example, the most important

word subsequence shared between the two sentences

shown in Figure 1 is “a cat was chased by a dog”

which will get penalized by total gap of eight words

coming from the second sentence and a gap of one

word from the first sentence. Finally, the kernel is

not sensitive to the relations between the words, for

example, the kernel will consider “a fat dog” as a

common subsequence although in the first sentence

“a fat” relates to the cat and not to the dog.

2.2 Syntactic Tree Kernel

Syntactic tree kernels were first introduced by

Collins and Duffy (2001) and were also used by

401

S

NP

NP

DT

A

NN

cat

PP

IN

with

NP

DT

a

JJ

red

NN

collar

VP

AUX

was

VP

VBD

chased

ADVP

NP

CD

two

NNS

days

RB

ago

PP

IN

by

NP

DT

a

JJ

fat

NN

dog

Figure 3: Syntactic parse tree of the sentence shown in Figure 1 (b).

S

NP

DT

A

JJ

fat

NN

cat

VP

AUX

was

VP

VBD

chased

PP

IN

by

NP

DT

a

NN

dog

Figure 2: Syntactic parse tree of the sentence shown in

Figure 1 (a).

Collins (2002) for the task of re-ranking syntactic

parse trees. They define a kernel between two trees

as the number of subtrees shared between them. A

subtree is defined as any subgraph of the tree which

includes more than one node, with the restriction

that entire productions must be included at every

node. The kernel defined this way captures most

of the structural information present in the syntac-

tic parse trees in the form of tree fragments which

the kernelized learning algorithms can then implic-

itly use as features. The kernel can be computed

in O(|N1||N2|) time, where |N1| and |N2| are the

number of nodes of the two trees. An efficient al-

gorithm to compute tree kernels was given by Mos-

chitti (2006a) which runs in close to linear time in

the size of the input trees.

One drawback of this tree kernel, though, partic-

ularly when used for any task requiring semantic

processing, is that it may match syntactic subtrees

between two trees even though they represent very

dissimilar things in the sentence. For example, be-

tween the syntactic parse trees shown in Figures 2

and 3 for the two sentences shown in Figure 1, the

syntactic tree kernel will find (NP (DT a) JJ NN) as a

common subtree but in the first sentence it represents

“cat” while in the second it represents “collar” and

“dog”. It will also find “(NP (DT a) (JJ fat) NN)”

as a common subtree which again refers to “cat” in

the first sentence and “dog” in the second sentence.

As another example, consider two simple sentences:

(S (NP Chip) (VP (V saw) (NP Dale))) and (S (NP

Mary) (VP (V heard) (NP Sally))). Even though se-

mantically nothing is similar between them, the syn-

tactic tree kernel will still find common subtrees (S

NP VP), (VP N NP) and (S NP (VP V NP)). The

underlying problem is that the syntactic tree kernel

tends to overlook the words of the sentences which,

in fact, carry the essential semantics. On the other

hand, although (NP (DT a) (NN cat)) and (NP (DT

a) (JJ fat) (NN cat)) represent very similar concepts

but the kernel will not capture this high level sim-

ilarity between the two constituents, and will only

find (DT a) and (NN cat) as the common substruc-

tures. Finally, the most important similarity between

the two sentences is “a cat was chased by a dog”

which will not be captured by this kernel because

402

was

cat

a fat

chased

by

dog

a

Figure 4: Dependency tree of the sentence shown in Fig-

ure 1 (a).

(b)

was

cat

a with

collar

a red

chased

by

dog

a fat

ago

days

two

Figure 5: Dependency tree of the sentence shown in Fig-

ure 1 (b).

there is no common subtree which covers it. The

Related Work section discusses some modifications

that have been proposed to the syntactic tree kernel.

3 A Dependency-based Word Subsequence

Kernel

A dependency tree encodes functional relationships

between the words in a sentence (Hudson, 1984).

The words of the sentence are the nodes and if a

word complements or modifies another word then

there is a child to parent edge from the first word to

the second word. Every word in a dependency tree

has exactly one parent except for the root word. Fig-

ures 4 and 5 show dependency trees for the two sen-

tences shown in Figure 1. There has been a lot of

progress in learning dependency tree parsers (Mc-

Donald et al., 2005; Koo et al., 2008; Wang et al.,

2008). They can also be obtained indirectly from

syntactic parse trees utilizing the head words of the

constituents.

We introduce a new kernel which takes the words

into account like the word-subsequence kernel and

also takes the syntactic relations between them into

account like the syntactic tree kernel, however, it

does not have the shortcomings of the two kernels

pointed out in the previous section. This kernel

counts the number of common paths between the de-

pendency trees of the two sentences. Another way

to look at this kernel is that it counts all the common

word subsequences which are linked by dependen-

cies. Hence we will call it a dependency-based word

subsequence kernel. Since the implicit features it

uses are dependency paths which are enumerable, it

is a well defined kernel. In other words, an example

gets implicitly mapped to the feature space in which

each dependency path is a dimension.

The dependency-based word subsequence kernel

will find the common paths ‘a → cat’, ‘cat → was

← chased’, ‘chased← by← dog’ among many oth-

ers between the dependency trees shown in Figures 4

and 5. The arrows are always shown from child node

to the parent node. A common path takes into ac-

count the direction between the words as well. Also

note that it will find the important subsequence ‘a

→ cat → was ← chased ← by ← dog ← a’ as a

common path.

It can be seen that the word subsequences this

kernel considers as common paths are linguistically

meaningful. It is also not affected by long-range de-

pendencies between words because those words are

always directly linked in a dependency tree. There

is no need to allow gaps in this kernel either because

related words are always linked. It also won’t find

‘a fat’ as a common path because in the first tree

“cat” is between the two words and in the second

sentence “dog” is between them. Thus it does not

have the shortcomings of the word subsequence ker-

nel. It also avoids the shortcomings of the syntac-

tic tree kernel because the common paths are words

themselves and syntactic labels do not interfere in

capturing the similarity between the two sentences.

It will not find anything common between depen-

dency trees for the sentences “Chip saw Dale” and

“Mary heard Sally”. But it will find ‘a → cat’ as a

common path between “a cat” and “a fat cat”. We

however note that this kernel does not use general

syntactic categories, unlike the syntactic tree kernel,

which will limit its applicability to the tasks which

depend on the syntactic categories, like re-ranking

syntactic parse trees.

403

We now give an efficient algorithm to compute

all the common paths between two trees. To our

best knowledge, no previous work has considered

this problem. The key observation for this algo-

rithm is that a path in a tree always has a structure in

which nodes (possibly none) go up to a highest node

followed by nodes (possibly none) coming down.

Based on this observation we compute two quanti-

ties for every pair of nodes between the two trees.

We call the first quantity common downward paths

(CDP) between two nodes, one from each tree, and

it counts the number of common paths between the

two trees which originate from those two nodes and

which always go downward. For example, the com-

mon downward paths between the ‘chased’ node of

the tree in Figure 4 and the ‘chased’ node of the

tree in Figure 5 are ‘chased ← by’, ‘chased ← by

← dog’ and ‘chased ← by ← dog ← a’. Hence

CDP (chased, chased) = 3. A word may occur

multiple times in a sentence so the CDP values will

be computed separately for each occurrence. We

will shortly give a fast recursive algorithm to com-

pute CDP values.

Once these CDP values are known, using these

the second quantity is computed which we call com-

mon peak paths (CPP) between every two nodes,

one from each tree. This counts the number of com-

mon paths between the two trees which peak at those

two nodes, i.e. these nodes are the highest nodes in

those paths. For example, ‘was’ is the peak for the

path ‘a → cat → was ← chased’. Since every com-

mon path between the two trees has a unique highest

node, once these CPP values have been computed,

the number of common paths between the two trees

is simply the sum of all these CPP values.

We now describe how all these values are effi-

ciently computed. The CDP values between every

two nodes n1 and n2 of the trees T1 and T2 respec-

tively, is recursively computed as follows:

CDP (n1, n2) = 0 if n1.w 6= n2.w

otherwise,

CDP (n1, n2) =
∑

c1ǫC(n1)
c2ǫC(n2)

c1.w = c2.w

(1 + CDP (c1, c2))

In the first equation, n.w stands for the word at

the node n. If the words are not equal then there

cannot be any common downward paths originating

from the nodes. In the second equation, C(n) rep-

resents the set of children nodes of the node n in a

tree. If the words at two children nodes are the same,

then the number of common downward paths from

the parent will include all the common downward

paths at the two children nodes incremented with the

link from the parent to the children. In addition the

path from parent to the child node is also a common

downward path. For example, in the trees shown

in Figures 4 and 5, the nodes with word ‘was’ have

‘chased’ as a common child. Hence all the common

downward paths originating from ‘chased’ (namely

‘chased ← by’, ‘chased ← by ← dog’ and ‘chased

← by ← dog ← a’) when incremented with ‘was

← chased’ become common downward paths orig-

inating from ‘was’. In addition, the path ‘was ←
chased’ itself is a common downward path. Since

‘cat’ is also a common child at ‘was’, it’s common

downward paths will also be added.

The CDP values thus computed are then used to

compute the CPP values as follows:

CPP (n1, n2) = 0 if n1.w 6= n2.w

otherwise,

CPP (n1, n2) = CDP (n1, n2) +
∑

c1, ĉ1ǫC(n1)
c2, ĉ2ǫC(n2)
c1.w = c2.w

ĉ1.w = ĉ2.w

(
1 + CDP (c1, c2) + CDP (ĉ1, ĉ2)+

CDP (c1, c2) ∗ CDP (ĉ1, ĉ2))

If the two nodes are not equal then the number of

common paths that peak at them will be zero. If

the nodes are equal, then all the common downward

paths between them will also be the paths that peak

at them, hence it is the first term in the above equa-

tion. Next, the remaining paths that peak at them

can be counted by considering every pair of common

children nodes represented by c1 & c2 and ĉ1 & ĉ2.

For example, for the common node ‘was’ in Figures

4 and 5, the children nodes ‘cat’ and ‘chased’ are

common. The path ‘cat → was ← chased’ is a path

that peaks at ‘was’, hence 1 is added in the second

404

term. All the downward paths from ‘cat’ when in-

cremented up to ‘was’ and down to ‘chased’ are also

the paths that peak at ‘was’ (namely ‘a→ cat→was

← chased’). Similarly, all the downward paths from

‘chased’ when incremented up to ‘was’ and down to

‘cat’ are also paths that peak at ‘was’ (‘cat → was

← chased ← by’, ‘cat → was ← chased ← by ←
dog’, etc.). Hence the next two terms are present in

the equation. Finally, all the downward paths from

‘cat’ when incremented up to ‘was’ and down to ev-

ery downward path from ‘chased’ are also the paths

that peak at ‘was’ (‘a → cat → was ← chased ←
by’, ‘a → cat → was ← chased ← by ← dog’ etc.).

Hence there is the product term present in the equa-

tion. It is important not to re-count a path from the

opposite direction hence the two pairs of common

children are considered only once (i.e. not reconsid-

ered symmetrically).

The dependency word subsequence kernel be-

tween two dependency trees T1 and T2 is then sim-

ply:

K(T1, T2) =
∑

n1ǫT1

n2ǫT2

n1.w = n2.w

(1 + CPP (n1, n2))

We also want to count the number of common

words between the two trees in addition to the num-

ber of common paths, hence 1 is added in the equa-

tion. The kernel is normalized to remove any bias

due to different tree sizes:

Knormalized(T1, T2) =
K(T1, T2)

√

K(T1, T1) ∗K(T2, T2)

Since for any long path common between two

trees, there will be many shorter paths within it

which will be also common between the two trees,

it is reasonable to downweight the contribution of

long paths. We do this by introducing a parameter

αǫ(0, 1] and by downweighting a path of length l by

αl. A similar mechanism was also used in the syn-

tactic tree kernel (Collins and Duffy, 2001).

The equations for computing CDP and CPP

are accordingly modified as follows to accommodate

this downweighting.

CDP (n1, n2) = 0 if n1.w 6= n2.w

otherwise,

CDP (n1, n2) =
∑

c1ǫC(n1)
c2ǫC(n2)

c1.w = c2.w

(α + α ∗ CDP (c1, c2))

CPP (n1, n2) = 0 if n1.w 6= n2.w

otherwise,

CPP (n1, n2) = CDP (n1, n2) +

∑

c1, ĉ1ǫC(n1)
c2, ĉ2ǫC(n2)
c1.w = c2.w

ĉ1.w = ĉ2.w

(
α2 + α ∗ CDP (c1, c2)+

α ∗ CDP (ĉ1, ĉ2)+
α2

∗ CDP (c1, c2) ∗ CDP (ĉ1, ĉ2)
)

This algorithm to compute all the common paths

between two trees has worst time complexity of

O(|T1||T2|), where |T1| and |T2| are the number of

nodes of the two trees T1 and T2 respectively. This

is because CDP computations are needed for every

pairs of nodes between the two trees and is recur-

sively computed. Using dynamic programming their

recomputations can be easily avoided. The CPP

computations then simply add the CDP values2. If

the nodes common between the two trees are sparse

then the algorithm will run much faster. Since the

algorithm only needs to store the CDP values, its

space complexity is O(|T1||T2|). Also note that this

algorithm computes the number of common paths

of all lengths unlike the word subsequence kernel

in which the maximum subsequence length needs to

be specified and the time complexity then depends

on this length.

4 Related Work

Several modifications to the syntactic tree kernels

have been proposed to overcome the type of prob-

lems pointed out in Subsection 2.2. Zhang et al.

(2007) proposed a grammar-driven syntactic tree

kernel which allows soft matching between the sub-

trees of the trees if that is deemed appropriate by

the grammar. For example, their kernel will be able

2This analysis uses the fact that any node in a tree on average

has O(1) number of children.

405

to match the subtrees (NP (DT a) (NN cat)) and

(NP (DT a) (JJ fat) (NN cat)) with some penalty.

Moschitti (2006b) proposed a partial tree kernel

which can partially match subtrees. Moschitti et

al. (2007) proposed a tree kernel over predicate-

argument structures of sentences based on the Prob-

Bank labels. Che et al. (2006) presented a hy-

brid tree kernel which combines a constituent and

a path kernel. We however note that the paths in this

kernel link predicates and their arguments and are

very different from general paths in a tree that our

dependency-based word subsequence kernel uses.

Shen et al. (2003) proposed a lexicalized syntac-

tic tree kernel which utilizes LTAG-based features.

Toutanova et al. (2004) compute similarity between

two HPSG parse trees by finding similarity between

the leaf projection paths using string kernels.

A few kernels based on dependency trees have

also been proposed. Zelenko et al. (2003) pro-

posed a tree kernel over shallow parse tree represen-

tations of sentences. This tree kernel was slightly

generalized by Culotta and Sorensen (2004) to com-

pute similarity between two dependency trees. In

addition to the words, this kernel also incorporates

word classes into the kernel. The kernel is based

on counting matching subsequences of children of

matching nodes. But as was also noted in (Bunescu

and Mooney, 2005a), this kernel is opaque i.e. it is

not obvious what the implicit features are and the

authors do not describe it either. In contrast, our

dependency-based word subsequence kernel, which

also computes similarity between two dependency

trees, is very transparent with the implicit features

being simply the dependency paths. Their kernel is

also very time consuming and in their more general

sparse setting it requires O(mn3) time and O(mn2)
space, where m and n are the number of nodes of

the two trees (m >= n) (Zelenko et al., 2003).

Bunescu and Mooney (2005a) give a shortest path

dependency kernel for relation extraction. Their ker-

nel, however, does not find similarity between two

sentences but between the shortest dependency paths

connecting the two entities of interests in the sen-

tences. This kernel uses general dependency graphs

but if the graph is a tree then the shortest path is

the only path between the entities. Their kernel also

uses word classes in addition to the words them-

selves.

5 Experiments

We show that the new dependency-based word sub-

sequence kernel performs better than word subse-

quence kernel and syntactic tree kernel on the task

of domain-specific semantic parsing.

5.1 Semantic Parsing

Semantic parsing is the task of converting natu-

ral language sentences into their domain-specific

complete formal meaning representations which an

application can execute, for example, to answer

database queries or to control a robot. A learn-

ing system for semantic parsing induces a seman-

tic parser from the training data of natural language

sentences paired with their respective meaning rep-

resentations. KRISP (Kate and Mooney, 2006)

is a semantic parser learning system which uses

word subsequence kernel based SVM (Cristianini

and Shawe-Taylor, 2000) classifiers and was shown

to be robust to noise compared to other semantic

parser learners. The system learns an SVM classi-

fier for every production of the meaning representa-

tion grammar which tells the probability with which

a substring of the sentence represents the semantic

concept of the production. Using these classifiers

a complete meaning representation of an input sen-

tence is obtained by finding the most probable parse

which covers the whole sentence. For details please

refer to (Kate and Mooney, 2006).

The key operation in KRISP is to find the sim-

ilarity between any two substrings of two natural

language sentences. Word subsequence kernel was

employed in (Kate and Mooney, 2006) to compute

the similarity between two substrings. We modi-

fied KRISP so that the similarity between two sub-

strings can also be computed using the syntactic tree

kernel and the dependency-based word subsequence

kernel. For applying the syntactic tree kernel, the

syntactic subtree over a substring of a sentence is de-

termined from the syntactic tree of the sentence by

finding the lowest common ancestor of the words in

this substring and then considering the smallest sub-

tree rooted at this node which includes all the words

of the substring. For applying the dependency-based

word subsequence kernel to two substrings of a sen-

tence, the kernel computation was suitably modified

so that the common paths between the two depen-

406

dency trees always begin and end with the words

present in the substrings. This is achieved by in-

cluding only those downward paths in computations

of CDP which end with words within the given

substrings. These paths relate the words within the

substrings perhaps using words outside of these sub-

strings.

5.2 Methodology

We measure the performance of KRISP obtained us-

ing the three types of kernels on the GEOQUERY

corpus which has been used previously by several

semantic parsing learning systems. It contains 880
natural language questions about the US geogra-

phy paired with their executable meaning represen-

tations in a functional query language (Kate et al.,

2005). Since the purpose of the experiments is to

compare different kernels and not different seman-

tic parsers, we do not compare the performance with

other semantic parser learning systems. The train-

ing and testing was done using standard 10-fold

cross-validation and the performance was measured

in terms of precision (the percentage of generated

meaning representations that were correct) and re-

call (the percentage of all sentences for which cor-

rect meaning representations were obtained). Since

KRISP assigns confidences to the meaning represen-

tations it outputs, an entire range of precision-recall

trade-off can be obtained. We measure the best F-

measure (harmonic mean of precision and recall) ob-

tained when the system is trained using increasing

amounts of training data.

Since we were not interested in the accuracy of

dependency trees or syntactic trees but in the com-

parison between various kernels, we worked with

gold-standard syntactic trees. We did not have gold-

standard dependency trees available for this cor-

pus so we obtained them indirectly from the gold-

standard syntactic trees using the head-rules from

(Collins, 1999). We however note that accurate syn-

tactic trees can be obtained by training a syntac-

tic parser on WSJ treebank and gold-standard parse

trees of some domain-specific sentences (Kate et al.,

2005).

In the experiments, the α parameter of the

dependency-based word subsequence kernel was set

to 0.25, the λ parameter of the word subsequence

kernel was fixed to 0.75 and the downweighting pa-

Examples Dependency Word Syntactic

40 25.62 21.51 23.65

80 45.30 42.77 43.14

160 63.78 61.22 59.66

320 72.44 70.36 67.05

640 77.32 77.82 74.26

792 79.79 79.09 76.62

Table 1: Results on the semantic parsing task with in-

creasing number of training examples using dependency-

based word subsequence kernel, word subsequence ker-

nel and syntactic tree kernel.

rameter for the syntactic tree kernel was fixed to 0.4.

These were determined through pilot experiments

with a smaller portion of the data set. The maxi-

mum length of subsequences required by the word

subsequence kernel was fixed to 3, a longer length

was not found to improve the performance and was

only increasing the running time.

5.3 Results

Table 1 shows the results. The dependency-based

word subsequence kernel always performs better

than the syntactic tree kernel. All the numbers

under the dependency kernel were found statisti-

cally significant (p < 0.05) over the correspond-

ing numbers under the syntactic tree kernel based on

paired t-tests. The improvement of the dependency-

based word subsequence kernel over the word sub-

sequence kernel is greater with less training data,

showing that the dependency information is more

useful when the training data is limited. The per-

formance converges with higher amounts of training

data. The numbers shown in bold were found statis-

tically significant over the corresponding numbers

under the word subsequence kernel.

It may be noted that syntactic tree kernel is mostly

doing worse than the word subsequence kernel. We

believe this is because of the shortcomings of the

syntactic tree kernel pointed out in Subsection 2.2.

Since this is a semantic processing task, the words

play an important role and the generalized syntactic

categories are not very helpful.

6 Future Work

In future, the dependency-based word subsequence

kernel could be extended to incorporate word classes

407

like the kernels presented in (Bunescu and Mooney,

2005a; Zelenko et al., 2003). It should be possible to

achieve this by incorporating matches between word

classes in addition to the exact word matches in the

kernel computations similar to the way in which the

word subsequence kernel was extended to incorpo-

rate word classes in (Bunescu and Mooney, 2005b).

This will generalize the kernel and make it more ro-

bust to data sparsity.

The dependency-based word subsequence kernel

could be tested on other tasks which require comput-

ing similarity between sentences or texts, like text

classification, paraphrasing, summarization etc. We

believe this kernel will help improve performance on

those tasks.

7 Conclusions

We introduced a new kernel which finds similarity

between two sentences as the number of common

paths shared between their dependency trees. This

kernel can also be looked upon as an improved word

subsequence kernels which only counts the common

word subsequences which are related by dependen-

cies. We also gave an efficient algorithm to compute

this kernel. The kernel was shown to out-perform

the word subsequence kernel and the syntactic tree

kernel on the task of semantic parsing.

References

Razvan C. Bunescu and Raymond J. Mooney. 2005a.

A shortest path dependency kernel for relation extrac-

tion. In Proc. of HLT/EMNLP-05, pages 724–731,

Vancouver, BC, October.

Razvan C. Bunescu and Raymond J. Mooney. 2005b.

Subsequence kernels for relation extraction. In

Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances

in Neural Information Processing Systems 18, Vancou-

ver, BC.

Nicola Cancedda, Eric Gaussier, Cyril Goutte, and

Jean Michel Renders. 2003. Word sequence kernels.

Journal of Machine Learning Research, Special Issue

on Machine Learning Methods for Text and Images,

3:1059–1082, February.

Wanxiang Che, Min Zhang, Ting Liu, and Sheng Li.

2006. A hybrid convolution tree kernel for semantic

role labeling. In Proc. of COLING/ACL-06, pages 73–

80, Sydney, Australia, July.

Michael Collins and Nigel Duffy. 2001. Convolution

kernels for natural language. In Proc. of NIPS-2001.

Michael Collins. 1999. Head-driven Statistical Models

for Natural Language Parsing. Ph.D. thesis, Univer-

sity of Pennsylvania.

Michael Collins. 2002. New ranking algorithms for pars-

ing and tagging: Kernels over discrete structures, and

the voted perceptron. In Proc. of ACL-2002, pages

263–270, Philadelphia, PA, July.

Nello Cristianini and John Shawe-Taylor. 2000. An

Introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge Univer-

sity Press.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency

tree kernels for relation extraction. In Proc. of ACL-

04, pages 423–429, Barcelona, Spain, July.

Richard Hudson. 1984. Word Grammar. Blackwell.

Rohit J. Kate and Raymond J. Mooney. 2006. Us-

ing string-kernels for learning semantic parsers. In

Proc. of COLING/ACl-06, pages 913–920, Sydney,

Australia, July.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney.

2005. Learning to transform natural to formal lan-

guages. In Proc. AAAI-2005, pages 1062–1068, Pitts-

burgh, PA, July.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.

Simple semi-supervised dependency parsing. In Proc.

of ACL-08, pages 595–603, Columbus, Ohio, June.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello

Cristianini, and Chris Watkins. 2002. Text classifica-

tion using string kernels. Journal of Machine Learning

Research, 2:419–444.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and

Jan Hajic̆. 2005. Non-projective dependency pars-

ing using spanning tree algorithms. In Proc. of

HLT/EMNLP-05, pages 523–530, Vancouver, BC.

Alessandro Moschitti, Silvia Quarteroni, Roberto Basili,

and Suresh Manandhar. 2007. Exploiting syntactic

and shallow semantic kernels for question answer clas-

sification. In Proc. of ACL-07, pages 776–783, Prague,

Czech Republic, June.

Alessandro Moschitti. 2006a. Making tree kernels prac-

tical for natural language learning. In Proc. of EACL-

06, pages 113–120, Trento, Italy, April.

Alessandro Moschitti. 2006b. Syntactic kernels for natu-

ral language learning: the semantic role labeling case.

In Proc. of HLT/NAACL-06, short papers, pages 97–

100, New York City, USA, June.

Juho Rousu and John Shawe-Taylor. 2005. Efficient

computation of gapped substring kernels on large al-

phabets. Journal of Machine Learning Research,

6:1323–1344.

Libin Shen, Anoop Sarkar, and Aravind Joshi. 2003. Us-

ing ltag based features in parse reranking. In Proc. of

EMNLP-2003, pages 89–96, Sapporo, Japan, July.

408

Kristina Toutanova, Penka Markova, and Christopher

Manning. 2004. The leaf projection path view

of parse trees: Exploring string kernels for HPSG

parse selection. In Proc. EMNLP-04, pages 166–173,

Barcelona, Spain, July.

Vladimir N. Vapnik. 1998. Statistical Learning Theory.

John Wiley & Sons.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin. 2008.

Semi-supervised convex training for dependency pars-

ing. In Proceedings of ACL-08: HLT, pages 532–540,

Columbus, Ohio, June.

D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel

methods for relation extraction. Journal of Machine

Learning Research, 3:1083–1106.

Min Zhang, Wanxiang Che, Aiti Aw, Chew Lim Tan,

Guodong Zhou, Ting Liu, and Sheng Li. 2007. A

grammar-driven convolution tree kernel for semantic

role classification. In Proc. of ACL-2007, pages 200–

207, Prague, Czech Republic, June.

409

