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Abstract

We present Pro3Gres, a deep-syntactic, fast
dependency parser that combines a hand-
written competence grammar with proba-
bilistic performance disambiguation and that
has been used in the biomedical domain. We
discuss its performance in the domain adap-
tation open submission. We achieve aver-
age results, which is partly due to difficulties
in mapping to the dependency representation
used for the shared task.

1 Introduction

The Pro3Gres parser is a dependency parser that
combines a hand-written grammar with probabilis-
tic disambiguation. It is described in detail in
(Schneider, 2007). It uses tagger and chunker
pre-processors – parsing proper happens only be-
tween heads of chunks – and a post-processor graph
converter to capture long-distance dependencies.
Pro3Gres is embedded in a flexible XML pipeline.
It has been applied to many tasks, such as parsing
biomedical literature (Rinaldi et al., 2006; Rinaldi
et al., 2007) and the whole British National Cor-
pus, and has been evaluated in several ways. We
have achieved average results in the CoNLL do-
main adaptation track open submission (Marcus et
al., 1993; Johansson and Nugues, 2007; Kulick et
al., 2004; MacWhinney, 2000; Brown, 1973). The
performance of the parser is seriously affected by
mapping problems to the particular dependency rep-
resentation used in the shared task.

The paper is structured as follows. We give a brief
overview of the parser and its design policy in sec-

tion 2, we describe the domain adaptations that we
have used in section 3, comment on the results ob-
tained in section 4 and conclude in section 5.

2 Pro3Gres and its Design Policy

There has been growing interest in exploring the
space between Treebank-trained probabilistic gram-
mars (e.g. (Collins, 1999; Nivre, 2006)) and formal
grammar-based parsers integrating statistics (e.g.
(Miyao et al., 2005; Riezler et al., 2002)). We
have developed a parsing system that explores this
space, in the vein of systems like (Kaplan et al.,
2004), using a linguistic competence grammar and
a probabilistic performance disambiguation allow-
ing us to explore interactions between lexicon and
grammar (Sinclair, 1996). The parser has been ex-
plicitly designed to be deep-syntactic like a formal
grammar-based parser, by using a dependency rep-
resentation that is close to LFG f-structure, but at
the same time mostly context-free and integrating
shallow approaches and aggressive pruning in or-
der to keep search-spaces small, without permitting
compromise on performance or linguistic adequacy.
(Abney, 1995) establishes the chunks and dependen-
cies model as a well-motivated linguistic theory. The
non-local linguistic constraints that a hand-written
grammar allows us to formulate, e.g. expressing
X-bar principles or barring very marked construc-
tions, further reduce parsing time by at least an order
of magnitude. Since the grammar is on Penn tags
(except for few closed classed words, e.g. allow-
ing including to function as preposition) the effort
for writing it manually is manageable. It has been
developed from scratch in about a person month,
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Figure 1: Pro3Gres parser flowchart

using traditional grammar engineering development
cycles. It contains about 1000 rules, the number is
largely so high due to tag combinatorics: for ex-
ample, the various subject attachment rules combin-
ing a subject ( NN, NNS, NNP, NNPS) and a verb
( VBZ, VBP, VBG, VBN, VBD) are all very simi-
lar.

The parser is fast enough for large-scale appli-
cation to unrestricted texts, and it delivers depen-
dency relations which are a suitable base for a
range of applications. We have used it to parse the
entire 100 million words British National Corpus
(http://www.natcorp.ox.ac.uk) and similar amounts
of biomedical texts. Its parsing speed is about
500,000 words per hour. The flowchart of the parser
can be seen in figure 1.

Pro3Gres (PRObabilistic PROlog-implemented
RObust Grammatical Role Extraction System) uses
a dependency representation that is close to LFG
f-structure, in order to give it an established lin-
guistic background. It uses post-processing graph
structure conversions and mild context-sensitivity to
capture long-distance dependencies. We have ar-
gued in (Schneider, 2005) that LFG f-structures can
be parsed for in a completely context-free fashion,
except for embedded WH-questions, where a de-
vice such as functional uncertainty (Kaplan and Za-
enen, 1989) or the equivalent Tree-Adjoining Gram-
mar Adjoining operation (Joshi and Vijay-Shanker,
1989) is used. In Dependency Grammar, this device
is also known as lifting (Kahane et al., 1998; Nivre
and Nilsson, 2005).

We use a hand-written competence grammar,
combined with performance-driven disambiguation
obtained from the Penn Treebank (Marcus et
al., 1993). The Maximum-Likelihood Estimation
(MLE) probability of generating a dependency re-
lation R given lexical heads (a and b) at distance (in

chunks) δ is calculated as follows.

p(R, δ|a, b) ∼= p(R|a, b) · p(δ|R) =
#(R, a, b)∑n

i=1 #(Ri, a, b)
· #(R, δ)

#R

The counts are backed off (Collins, 1999; Merlo
and Esteve Ferrer, 2006). The backoff levels include
semantic classes from WordNet (Fellbaum, 1998):
we back off to the lexicographer file ID of the most
frequent word sense. An example output of the
parser is shown in figure 2.

3 Domain Adaptation

Based on our experience with parsing texts form the
biomedical domain, we have used the following two
adaptations to the domain of chemistry.

(Hindle and Rooth, 1993) exploit the fact that in
sentence-initial NP PP sequences the PP unambigu-
ously attaches to the noun. We have observed that in
sentence-initial NP PP PP sequences, also the sec-
ond PP frequently attaches to the noun, the noun
itself often being a relational noun. We have thus
used such sequences to learn relational nouns from
the unlabelled domain texts. Relational nouns are
allowed to attach several argument PPs in the gram-
mar, all other nouns are not.

Multi-word terms, adjective-preposition construc-
tions and frequent PP-arguments have strong collo-
cational force. We have thus used the collocation
extraction tool XTRACT (Smadja, 2003) to discover
collocations from large domain corpora. The prob-
ability of generating a dependency relation is aug-
mented for collocations above a certain threshold.
Since the tagging quality of the Chemistry testset
is high, the impact of multi-word term recognition
was lower than the biomedical domain when using a
standard tagger, as we have shown in (Rinaldi et al.,
2007).

For the CHILDES domain, we have not used any
adaptation. The hand-written grammar fares quite
well on most types of questions, which are very fre-
quent in this domain. In the spirit of the shared
task, we have not attempted to correct tagging errors,
which were frequent in the CHILDES domain. We
have restricted the use of external resources to the
hand-written, domain-independent grammar, and to
WordNet. Due to serious problems in mapping our
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Figure 2: Example of original parser output

LFG f-structure based dependencies to the CoNLL
representation, much less time than expected was
available for the domain adaptation.

4 Our Results

We have achieved average results: Labeled attach-
ment score: 3151 / 5001 * 100 = 63.01, unlabeled at-
tachment score: 3327 / 5001 * 100 = 66.53, label ac-
curacy score: 3832 / 5001 * 100 = 76.62. These re-
sults are about 10 % below what we typically obtain
when using our own dependency representation or
GREVAL (Carroll et al., 2003), a deep-syntactic an-
notation scheme that is close to ours. Detailed eval-
uations are reported in (Schneider, 2007). Our map-
ping was quite poor, especially when conjunctions
are involved. Also punctuation is attached poorly.
5.7 % of all dependencies remained unmapped (un-
known in the figure). We give an overview of the the
relation-dependent results in figures 1 and 2.

Mapping problems include the following exam-
ples. First, headedness is handled very differently:
while we assume auxiliaries, prepositions and co-
ordinations to be dependents, the CoNNL repre-
sentation assumes the opposite, which leads to in-
correct mapping under complex interactions. Sec-
ond, the semantics of parentheticals (PRN) partly
remains unclear. In Quinidine elimination was
capacity limited with apparent Michaelis constant
(appKM) of 2.6 microM (about 1.2 mg/L) the gold
standard annotates the second parenthesis as paren-
thetical, but the first as nominal modification, al-
though both may be said to have appositional char-
acter. Third, we seem to have misinterpreted the
roles of ADV and AMOD, as they are often mutu-
ally exchanged. Fourth, the logical subject (LGS)
is sometimes marked on the by-PP (... are strongly
inhibited by-LGS carbon monoxide) and sometimes
on the participle (... are increased-LGS by pre-

deprel gold correct system recall (%) prec. (%)
ADV 366 212 302 57.92 70.20
AMOD 87 8 87 9.20 9.20
CC 11 0 0 0.00 NaN
COORD 402 233 342 57.96 68.13
DEP 9 0 0 0.00 NaN
EXP 2 0 0 0.00 NaN
GAP 14 0 0 0.00 NaN
IOBJ 3 0 0 0.00 NaN
LGS 37 0 0 0.00 NaN
NMOD 1813 1576 1763 86.93 89.39
OBJ 185 146 208 78.92 70.19
P 587 524 525 89.27 99.81
PMOD 681 533 648 78.27 82.25
PRN 34 13 68 38.24 19.12
ROOT 195 138 190 70.77 72.63
SBJ 279 217 296 77.78 73.31
VC 129 116 136 89.92 85.29
VMOD 167 116 149 69.46 77.85
unknown 0 0 287 NaN 0.00

Table 1: Prec.&recall of DEPREL

treatment) in the gold standard. Relations between
heads of chunks, which are central for predicate-
argument structures which Pro3Gres aims to re-
cover, such as SBJ, NMOD, ROOT, perform better
than those for which Pro3Gres was not originally
designed, particularly ADV, AMOD, PRN, P. Perfor-
mance on COORD was particularly disappointing.
Generally, mapping problems between different rep-
resentations would be smaller if one used a depen-
dency representation that maximally abstracts away
from form to function, for example (Carroll et al.,
2003).

We have obtained results slightly above average
on the CHILDES domain, although we did not adapt
the parser to this domain in any way (unlabeled at-
tachment score: 3013 / 4999 * 100 = 60.27 %).
The hand-written grammar, which includes rules for
most types of questions, fares relatively well on this
domain since questions are rare in the Penn Tree-
bank (see (Hermjakob, 2001)). Pro3Gres has been
employed for question parsing at a TREC confer-
ence (Burger and Bayer, 2005).
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deprel gold correct system recall (%) prec. (%)
ADV 366 161 302 43.99 53.31
AMOD 87 5 87 5.75 5.75
CC 11 0 0 0.00 NaN
COORD 402 170 342 42.29 49.71
DEP 9 0 0 0.00 NaN
EXP 2 0 0 0.00 NaN
GAP 14 0 0 0.00 NaN
IOBJ 3 0 0 0.00 NaN
LGS 37 0 0 0.00 NaN
NMOD 1813 1392 1763 76.78 78.96
OBJ 185 140 208 75.68 67.31
P 587 221 525 37.65 42.10
PMOD 681 521 648 76.51 80.40
PRN 34 12 68 35.29 17.65
ROOT 195 138 190 70.77 72.63
SBJ 279 190 296 68.10 64.19
VC 129 116 136 89.92 85.29
VMOD 167 85 149 50.90 57.05
unknown 0 0 287 NaN 0.00

Table 2: Prec.&recall of DEPREL+ATTACHMENT

5 Conclusion

We have described the Pro3Gres parser. We have
achieved average results in the shared task with rel-
atively little adaptation. Mapping to different repre-
sentations is an often underestimated task. Our per-
formance on the CHILDES task, where we did not
adapt the parser, indicates that hand-written, care-
fully engineered competence grammars may be rel-
atively domain-independent while performance dis-
ambiguation is more domain-dependent. We will
adapt the parser to further domains and include more
unsupervised learning methods.
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