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Abstract

In the paper we describe a dependency
parser that uses exact search and global
learning (Crammer et al., 2006) to produce
labelled dependency trees. Our system inte-
grates the task of learning tree structure and
learning labels in one step, using the same
set of features for both tasks. During la-
bel prediction, the system automatically se-
lects for each feature an appropriate level
of smoothing. We report on several exper-
iments that we conducted with our system.
In the shared task evaluation, it scored better
than average.

1 Introduction

Dependency parsing is a topic that has engendered
increasing interest in recent years. One promis-
ing approach is based on exact search and struc-
tural learning (McDonald et al., 2005; McDonald
and Pereira, 2006). In this work we also pursue
this approach. Our system makes no provisions for
non-projective edges. In contrast to previous work,
we aim to learn labelled dependency trees at one
fell swoop. This is done by maintaining several
copies of feature vectors that capture the features’
impact on predicting different dependency relations
(deprels). In order to preserve the strength of Mc-
Donald et al. (2005)’s approach in terms of unla-
belled attachment score, we add feature vectors for
generalizations over deprels. We also employ vari-
ous reversible transformations to reach treebank for-
mats that better match our feature representation and

that reduce the complexity of the learning task. The
paper first presents the methodology used, goes on to
describing experiments and results and finally con-
cludes.

2 Methodology

2.1 Parsing Algorithm

In our approach, we adopt Eisner (1996)’s bottom-
up chart-parsing algorithm in McDonald et al.
(2005)’s formulation, which finds the best pro-
jective dependency tree for an input string ��������	��
�
�
�������

. We assume that every possible head–
dependent pair � ��� is described by a feature vec-
tor ����� with associated weights ����� . Eisner’s algo-
rithm achieves optimal tree packing by storing par-
tial structures in two matrices and . First the
diagonals of the matrices are initiated with 0; then
all other cells are filled according to eqs. (1) and (2)
and their symmetric variants.��� � � �����! "�����

� � � #%$'&(*) ��+ (*, � � (.-/(�0 � � - ��� � (1)

� � � #%$'&(*) � ,�( +1� � (.-/( � (2)

root � #2$'&(*) � + ( + �
� (3-/( � - �54 (  6�74 (

This algorithm only accommodates features for sin-
gle links in the dependency graph. We also investi-
gated an extension, McDonald and Pereira (2006)’s
second-order model, where more of the parsing his-
tory is taken into account, viz. the last dependent 8
assigned to a head � . In the extended model, is up-
dated as defined in eq. (3); optimal packing requires
a third matrix .
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� � � #%$'&(*) ��+ (*, �
� � 0 � � if 8 � �
� (.-/( � else �

� ��� (  "� ��� ( (3)

� � � #%$'&(*) ��+ (*, � � (!-/(�0 � �
2.2 Feature Representation

In deriving features, we used all information given
in the treebanks, i.e. words (w), fine-grained POS
tags (fp), combinations of lemmas and coarse-
grained POS tags (lcp), and whether two tokens
agree1 (agr = yes, no, don’t know). We essentially
employ the same set of features as McDonald et
al. (2005): ������ � � w � , fp � , lcp � , w� , fp� , lcp� ,
w � w� , w � lcp� , lcp � w� , lcp � lcp � , fp � lcp� , fp � fp� ,
fp � fp� agr ��� , fp ��� � fp � fp��� � fp� , fp �	� � fp � fp� fp� 0 � ,
fp � fp � 0 � fp�
� � fp� , fp � fp � 0 � fp� fp� 0 ��� , and token
features for root words � 4� ��� w  � fp  � lcp  � . In
the first order model, we recorded the tag of each
token � between � and

�
( � ��� � � ������ � fp � fp� fp � � );

in the second order model, we only conditioned on
the previous dependent 8 ( � ��� � � ������ � fp � fp� fp ( ,
lcp � fp� fp ( , w � fp� fp ( � ). All features but unary token
features were optionally extended with direction
of dependency ( ��� �

or ��� �
) and binned token

distance ( � ��� � � ��� , 2, 3, 4, � � , � �
! ).
2.3 Structural Learning

For determining feature weights � , we used on-
line passive–aggressive learning (OPAL) (Crammer
et al., 2006). OPAL iterates repeatedly over all train-
ing instances � , adapting weights after each parse. It
tries to change weights as little as possible (passive-
ness), while ensuring that (1) the correct tree " gets
at least as much weight as the best parse tree #" and
(2) the difference in weight between " and #" rises
with the average number of errors in #" (aggressive-
ness). This optimization problem has a closed–form
solution:

�%$'& 0 �)( � �%$'& ( -+* &-, � , � � "/.�� � , � � #"0.1.
where* & � �  � , � � #"/.�� �  6� , � � "0. - 2 � � LAS , " � #"3.4 � , � � "3.�� � , � � #"0. 465

1Agreement was computed from morphological features,
viz. gender, number and person, and case. In languages with
subject–verb agreement, we added a nominative case feature to
finite verbs. In Basque, agreement is case-specific (absolutive,
dative, ergative, other case).

model # of min. per
order features iteration LAS

1 327,743 13.6 78.62
1 601.125 19.5 78.87
1 1,168,609 38.7 79.03
1 12,948,376 120.0

(513,611) (13.3) 79.53

2 758,433 17.8 78.12
2 1,534,484 25.1 78.40
2 3,257,012 50.0

(181,303) (9.8) 78.92
2 26,088,102 373.0

(582,907) (23.5) 79.26

Table 1: Performance on devset of Italian treebank.
In parentheses: reduction to non-null features after
first iteration.

Having a closed–form solution, OPAL is easier to
implement and more efficient than the MIRA algo-
rithm used by McDonald et al. (2005), although it
achieves a performance comparable to MIRA’s on
many problems (Crammer et al., 2006).

2.4 Learning Labels for Dependency Relations

So far, the presented system, which follows closely
the approach of McDonald et al. (2005), only pre-
dicts unlabelled dependency trees. To derive a la-
beling, we departed from their approach: We split
each feature along the deprel label dimension, so
that each deprel 7 is associated with its own feature
vector (cf. eq. (4), where 8 is the tensor product and9�:

the orthogonal encoding).; ���-< =?> $A@ ( �CB ���D8 9 : , 7E. (4)

In parsing, we only consider the best deprel label.

� � � � #%$'&@�FHGJI ���-< =?> $A@ ( ; ���6< =?> $K@ ( (5)

On its own, this simple approach led to a severe
degradation of performance, so we took a step back
by re-introducing features for unlabelled trees. For
each set of deprels L , we designed a taxonomy M
with a single maximal element (complete abstrac-
tion over deprel labels) and one minimal element for
each deprel label. We also included an intermediate
layer in M that collects classes of deprels, such as
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Language # tokens DevTest # of min. per
Train DevTest Test Split Features Cycle

Catalan 425,915 4,929 5,016 89–1 3,055,518 575.0
Basque 48,019 2,507 5,390 19–1 1,837,155 37.4
Turkish 61,951 3,231 4,513 19–1 1,412,000 26.1
English 441,333 5,240 5,003 86–1 3,609,671 727.2
Greek 62,137 3,282 4,804 19–1 2,723,891 58.0
Hungarian 123,266 8,533 7,344 15–1 2,583,593 148.2
Czech 427,338 4,958 4,724 88–1 1,971,599 591.6
Chinese 333,148 4,027 5,161 82–1 1,672,360 1,015.2
Italian 67,593 3,606 5,096 19–1 1,534,485 52.0
Arabic 107,804 3,865 5,124 27–1 1,763,063 110.0

Table 2: Figures for Experiments on Treebanks.

complement, adjunct, marker, punctuation, or coor-
dination deprels, and in this way provides for better
smoothing. The taxonomy translates to an encoding9 & , where � &� , 7E. � � iff node � in M is an ancestor
of 7 (Tsochantaridis et al., 2004). Substituting

9 &
for
9�:

leads to a massive amount of features, so we
pruned the taxonomy on a feature–to–feature basis
by merging all nodes on a level that only encompass
deprels that never occur with this feature in the train-
ing data.

2.5 Treebank Transformations

Having no explicit feature representation for the in-
formation in the morphological features slot (cf. sec-
tion 2.2), we partially redistributed that information
to other slots: Verb form, case2 to fp, semantic clas-
sification to an empty lemma slot (Turkish affixes,
e.g. “Able”, “Ly”). The balance between fp and
w was not always optimal; we used a fine-grained3

classification in punctuation tags, distinguished be-
tween prepositions (e.g. in) and preposition–article
combinations (e.g. nel) in Italian4 on the basis of
number/gender features, and collected definite and
indefinite articles under one common fp tag.

When distinctions in deprels are recoverable from
context, we removed them: The dichotomy between
conjunctive and disjunctive coordination in Italian

2Case was transferred to fp only if important for determina-
tion of deprel (CA, HU, IT).

3Classes of punctuation are e.g. opening and closing brack-
ets, commas and punctuation signalling the end of a sentence.

4Prep and PrepArt behave differently syntactically (e.g. an
article can only follow a genuine preposition).

depends in most cases exclusively on the coordinat-
ing conjunction. The Greek and Czech treebanks
have a generic distinction between ordinary deprels
and deprels in a coordination, apposition, and paren-
thesis construction. In Greek, we got rid of the
parenthesis markers on deprels by switching head
and dependent, giving the former head (the paren-
thesis) a unique new deprel. For Czech, we reduced
the number of deprels from 46 to 34 by swapping
the deprels of conjuncts, appositions, etc. and their
heads (coordination or comma). Sometimes, multi-
ple conjuncts take different deprels. We only pro-
vided for the clash between “ExD” (ellipsis) and
other deprels, in which case we added “ExD”, see
below.

1 Minimálně 3 AuxZ
2 dva 3 Atr
3 stupně 0 ExD
4 rozlišení 5 Atr_M � -Apos
5 - 3 Apos � Atr
6 standard 7 ExD_M � -Coord
7 a 5 Coord_M � -Apos:ExD
8 jemně 7 ExD_M � -Coord
9 . 0 AuxK

In Basque, agreement is usually between arguments
and auxiliary verbs, so we re-attached5 relevant ar-
guments from main verb to auxiliary verb.

The training set for Arabic contains some very
long sentences (up to 396 tokens). Since context-
free parsing sentences of this length is tedious,
we split up all sentences at final punctuation signs

5Unfortunately, we did not take into account projectivity, so
this step resulted in a steep increase of non-projective edges
(9.4% of all edges) and a corresponding degradation of our eval-
uation results in Basque.

1158



Language LAS UAS LAcc
Dev Test AV Dev Test AV Dev Test AV

Basque 68.85 66.75 68.06 74.59 73.25 75.15 78.82 76.64 76.06
Greek 73.49 72.29 70.22 82.08 80.47 77.78 84.19 83.16 81.26
Turkish 70.30 72.48 73.19 77.97 79.33 80.33 81.67 82.18 82.29
Italian 78.23 80.46 78.06 82.50 84.54 82.45 86.30 87.44 85.75
Arabic 69.26 70.08 68.34 79.61 81.07 78.84 82.25 82.32 81.79
Hungarian 74.29 73.90 71.49 78.69 78.61 76.34 87.82 87.60 85.89
Chinese 84.06 80.04 76.59 88.25 85.45 81.98 87.04 83.28 80.16
Catalan 85.17 85.75 79.85 90.04 90.79 87.98 91.13 91.29 86.32
Czech 73.26 73.86 70.12 81.63 81.73 77.56 81.36 82.03 79.66
English 86.93 86.21 80.95 88.45 88.91 82.67 91.97 90.89 87.69

Basque (rev.) 72.32 70.48 68.06 77.78 76.72 75.15 80.57 78.85 76.06
Turkish (rev.) 74.50 76.31 73.19 81.12 82.76 80.33 84.90 85.46 82.29

Table 3: Results on DevTest and Test Sets compared with the Average Performance in CoNLL’07. LAS =
Labelled Attachment Score, UAS = Unlabelled Attachment Score, LAcc = Label Accuracy, AV = Average
score.

(AuxK). With this trick, we pushed down maximal
sentence length to 196.

Unfortunately, we overlooked the fact that in
Turkish, the ROOT deprel not only designates root
nodes but also attaches some punctuation marks.
This often leads to non-projective structures, which
our parser cannot handle, so our parser scored be-
low average in Turkish. In after–deadline experi-
ments, we took this feature of the Turkish treebank
into account and achieved above–average results by
re-linking all ROOT-ed punctuation signs to the im-
mediately preceding token.

3 Experiments and Results

All experiments were conducted on the treebanks
provided in the shared task (Hajič et al., 2004;
Aduriz et al., 2003; Martí et al., 2007; Chen et
al., 2003; Böhmová et al., 2003; Marcus et al.,
1993; Johansson and Nugues, 2007; Prokopidis et
al., 2005; Csendes et al., 2005; Montemagni et al.,
2003; Oflazer et al., 2003). For our contribution,
we used the second-order algorithm; only afterwards
did we also apply the first-order model to the data,
with quite good results (cf. Table 1). For testing
our approach, we split the treebanks provided into
an actual training and a development set (details are
in Table 2). From each training set, we extracted
at least a million features (not counting the split for

deprel labels). The last column in Table 2 shows the
average time needed in a training iteration.

For nearly all languages, our approach achieved a
performance better than average (see Table 3). Only
in Turkish and Basque did we score below average.
On closer inspection, we saw that this performance
was due to our projectivity assumption and to insuf-
ficient exploration of these treebanks. In its bottom
part, Table 3 gives results of improved versions of
our approach.

4 Conclusion

We presented an approach to dependency parsing
that is based on exact search and global learning.
Special emphasis is laid on an integrated derivation
of labelled and unlabelled dependency trees. We
also employed various transformation techniques to
reach treebank formats that are better suited to our
approach. The approach scores better than average
in (nearly) all languages. Nevertheless, it is still a
long way from cutting–edge performance. One di-
rection we would like to explore in the future is the
integration of dynamic features on deprel labels.
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J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. In Proc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on Computational
Linguistics (NODALIDA).

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the Penn
Treebank. Computational Linguistics, 19(2):313–330.

M. A. Martí, M. Taulé, L. Màrquez, and M. Bertran.
2007. CESS-ECE: A multilingual and multilevel
annotated corpus. Available for download from:
http://www.lsi.upc.edu/ � mbertran/cess-ece/.

Ryan McDonald and Fernando Pereira. 2006. Online
Learning of Approximate Dependency Parsing Algo-
rithms. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL’06), Trento, Italy.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online Large-Margin Training of Dependency
Parsers. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05).

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari,
O. Corazzari, A. Lenci, A. Zampolli, F. Fanciulli,
M. Massetani, R. Raffaelli, R. Basili, M. T. Pazienza,
D. Saracino, F. Zanzotto, N. Nana, F. Pianesi, and
R. Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In Abeillé (Abeillé, 2003), chap-
ter 11, pages 189–210.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé
(Abeillé, 2003), chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papa-
georgiou, and S. Piperidis. 2005. Theoretical and
practical issues in the construction of a Greek depen-
dency treebank. In Proc. of the 4th Workshop on Tree-
banks and Linguistic Theories (TLT), pages 149–160.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support Vector
Machine Learning for Interdependent and Structured
Output Spaces. In Proceedings of the 21st Interna-
tional Conference on Machine Learning.

1160


